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Energy metabolism in humans is tuned to distinct sex-specific functions that potentially
reflect the unique requirements in females for gestation and lactation, whereas male
metabolism may represent a default state. These differences are the consequence of the
action of sex chromosomes and sex-specific hormones, including estrogens and prog-
esterone in females and androgens in males. In humans, sex-specific specialization is
associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e.,
females store more lipids and have higher whole-body insulin sensitivity than males, while
males tend to oxidize more lipids than females.These patterns are influenced by the men-
strual phase in females, and by nutritional status and exercise intensity in both sexes. This
minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their
regulation by sex hormones, with a primary emphasis on studies in humans and the most
relevant pre-clinical model of human physiology, non-human primates.
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INTRODUCTION
While the role of sex in biology is undisputed, its consideration in
research has been the subject of much recent debate. Although ini-
tial concerns were raised with the underrepresentation of women
in clinical studies (1, 2), this issue also applies to pre-clinical
research in many fields (3, 4). More recently, the National Institutes
of Health is considering a proposal to require representation of
both sexes in animal as well as cell-based studies (5, 6); in the latter
instance, the effect of the sex of the source tissue, especially in the
case of established cell lines, is not often considered (7). In parallel,
a growing number of biomedical research journals are requiring
specific clarification of the sex of animals and of the source tissue
of cells used in published studies. In this context, it is timely to con-
sider the sex-specific aspects of glucose and lipid metabolism in
light of the disruption of these regulatory mechanisms in clinical
pathologies such as metabolic syndrome, obesity, and diabetes. It
is important to recall the distinction between sex, defined by chro-
mosomal makeup, and gender, which is a social/cultural construct.
Thus, in humans, sex differences arise from gene-dosage effects of
the X and Y chromosomes (8, 9), which are elicited to a great extent
through the actions of sex hormones. The effect of sex chromo-
somes themselves on metabolism has been clearly demonstrated
by analyses of the four core genotypes mouse model that demon-
strated that the sex chromosome complement controls adiposity,
feeding behavior, fatty liver, and systemic glucose homeostasis (9),
independent of gonadal sex. The mechanisms of sex differences
in central nervous system (CNS) control of energy homeostasis in
health and disease have been well summarized in several recent
reviews (10–14).

SEX-SPECIFIC DIFFERENCES IN FAT DISTRIBUTION
Women have higher percent body-fat (15, 16), less visceral white
adipose tissue (V WAT), and more subcutaneous adipose tissue

(SC WAT), both in the abdominal (17–20) and gluteofemoral (21,
22) regions. Various factors responsible for individual variabil-
ity and sex differences in fat distribution have been described in
detail in a recent review (23). Although body-mass index (BMI)
is a strong predictor of overall mortality in humans (24), body-
fat distribution is a stronger predictor of metabolic health. For
example, low SC WAT is a favorable factor, whereas high V WAT
is an unfavorable factor associated with altered lipid and glucose
homeostasis (25–27). Furthermore, gluteal-femoral fat may have
a protective effect against diabetes and overall mortality (28–30),
suggesting that the effective compartmentalization of free fatty
acids (FFAs) in low SC WAT may prevent abdominal obesity and
associated metabolic disease (31). Regional differences in FFA
metabolism do not fully explain sex-specific WAT distribution in
humans, although a general trend in regional lipid utilization is
consistent with the android and gynoid body types observed in
males and females, respectively (25).

SEX-SPECIFIC DIFFERENCES IN LIPID METABOLISM
LIPOLYSIS
Under basal post-absorptive conditions, systemic FFA flux is sim-
ilar in men and women (32), although upper-body SC WAT is
more lipolytically active than lower-body SC WAT in both men and
women [Figure 1; (32, 33)]. Non-oxidative FFA clearance through
re-esterification, however, is higher in women than in men (34),
suggesting that women tend to store, whereas men tend to oxidize,
circulating FFAs (35). Men are less sensitive to the antilipolytic
effects of insulin; i.e., the release of postprandial FFAs from upper-
body SC WAT is less suppressed (more insulin-resistant) in men
and FFA release from V WAT is less suppressed in women (32).
This pattern of lipolysis is consistent with higher proportion of V
WAT found in men (Figure 1). After a meal, systemic FFA flux is
more suppressed by insulin in women (32), suggesting that women
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FIGURE 1 | Sex- and depot-specific differences in lipid metabolism in
humans. Women have higher percent body-fat and lower muscle mass and
oxidize less lipid substrate than men. Women also have less V WAT and
more SC WAT, both in the abdominal and gluteofemoral regions, than men.
Outward arrows indicate basal (b) and insulin-inhibited (i) lipolysis. Inward
arrows indicate basal (b) and insulin-stimulated (i) FFA uptake. Under basal
post-absorptive conditions, upper-body SC WAT is more lipolytically active
than lower-body SC WAT in both men and women (red outward arrows).
The release of postprandial FFAs from upper-body SC WAT is less
suppressed by insulin in men and FFA release from V WAT is less
suppressed in women (green outward arrows). A greater percentage of
postprandial FFAs are taken up by upper-body SC WAT in women than in
men. Women display higher direct FFA uptake in leg SC WAT than men.
Direct FFA uptake is higher in upper SC WAT than in lower SC WAT in men,
but not in women. These sex differences in the topography of lipid
metabolism may explain higher SC WAT, especially low-body SC WAT, in
women compared to men. Higher muscle mass in males is beneficial for
more efficient oxidation of FFAs.

may have a higher risk of fat gain. Because the contribution of V
WAT lipolysis to hepatic FFA delivery is greater in women, they are
also more susceptible to hepatic insulin resistance (36, 37).

FFA UPTAKE AND TRIGLYCERIDE STORAGE
Although most lipid adsorption in human WAT tissue is medi-
ated via hydrolysis of circulating triglycerides (TG) by lipoprotein
lipase (LPL), it is now recognized that direct, LPL-independent
FFA uptake may also contribute to lipid storage in humans (38,
39). A greater percentage of meal FFAs is stored (primarily by the
LPL-dependent pathway) in upper SC WAT than in lower SC WAT
in both men and women, but a greater percentage of dietary FFAs
is stored in SC WAT in women than in men, who tend to store FFAs
in V WAT [Figure 1; (35, 40)]. Interestingly, testosterone treatment
increases the percentage of FFAs stored in SC WAT and decreases
FFA storage in V WAT in middle-aged men (41). Basal FFA uptake
and expression levels of FFA transporters are higher in upper SC
WAT than in lower SC WAT in men, but not in women (38, 39).

Women, however, display higher FFA uptake in leg SC WAT, which
correlates with greater postprandial WAT LPL activity in women
[Figure 1; (42)]. Furthermore, women have the highest rate of TG
synthesis in their SC WAT compared to their visceral or any WAT
depot in men (43). The menstrual cycle has no apparent effect on
FFA tissue uptake in healthy women, consistent with studies in
female non-human primates (NHPs) (35, 44).

SEX-SPECIFIC DIFFERENCES IN GLUCOSE METABOLISM
AND INSULIN ACTION
Glucose metabolism in both sexes is highly responsive to physio-
logical and nutritional states and physical fitness (45). During exer-
cise, women oxidize more lipids and less carbohydrates, deplete
less muscle glycogen, and exhibit lower hepatic glucose produc-
tion (46, 47). At high altitude, women are able to attenuate the
use of carbohydrates (48). This preferential substrate selection is
attributed to estrogens (49). The potential mechanisms responsi-
ble for sex-specific metabolic responses to exercise include lower
sympathetic nerve activity (50) and a greater type I and type II
muscle fiber density (51) in women. Despite having a lower per-
centage of fat mass, the prevalence of type-2 diabetes and insulin
resistance is higher in men (52–54). These differences are explained
by higher whole-body insulin sensitivity in women (55–57). The
human data are consistent with rodent studies that demonstrated
greater insulin sensitivity and greater resistance to a high-fat diet
(HFD) in females (58–61). The majority of human studies showed
that glucose effectiveness and glucose appearance rates (62) are
also higher in women (63–66).

The mechanisms responsible for sex differences in insulin sen-
sitivity are not understood. One study reported no differences
in insulin secretion between young males and young females (64),
whereas others showed that females have higher first-phase insulin
secretion than males (65). Sex differences in insulin signaling are
tissue-specific, but have been primarily studied in rodent models
(67). Kahn and colleagues reported that, in rodents, female WAT
had a greater response to insulin and a greater increase in Akt
and extracellular signal-related kinase (ERK) phosphorylation and
lipogenesis than male WAT (61). Castration increased the insulin
responsiveness of male WAT, while ovariectomy decreased insulin
responsiveness of female WAT (61). Our studies in NHPs, how-
ever, suggest that, in contrast to rodents, testosterone promotes
insulin-stimulated Akt phosphorylation and stimulates lipogen-
esis in WAT of castrated males (68). Greater rates of insulin-
stimulated glucose uptake in female skeletal muscle and WAT
correlate with higher expression levels of muscle mRNAs encoding
glucose transporter-4 (Glut4) and metabolic enzymes (69).

SEX HORMONES AND METABOLISM
ESTROGENS, PROGESTERONE, AND MENSTRUAL CYCLE
The use of oral steroidal contraceptives is associated with a reduc-
tion in insulin sensitivity and low estrogen levels (70), suggest-
ing that estrogens may protect females against insulin resistance.
Consistent with this idea, studies in estrogen-deficient aromatase-
knockout (ArKO) and ovariectomized wild-type mice showed
that estrogen replacement can protect female mice against hepatic
steatosis and improve mitochondrial β-oxidation (71) and insulin
sensitivity (61, 72). The molecular mechanisms responsible for
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estrogen-mediated improvement in lipid-induced insulin resis-
tance are tissue and pathway-specific and estrogen’s effects on
various signal transduction and metabolic pathways in adipocytes,
myocytes, and hepatocytes have been described in detail in a recent
review (73).

Many anti-obesity effects of estrogens in mice are mediated
by central mechanisms. Important regulators of metabolism have
receptors in the CNS that mediate overall energy expenditure, food
intake, glucose, and homeostasis (74). However, little is known
about sex differences in CNS regulation of metabolism and most
research has focused on estrogen action (75). The majority of
estrogen’s anorexic action in the hypothalamus is mediated by
estrogen receptor-α (ERα), and not estrogen receptor-β (ERβ)
(76), although one study contested this notion (77). Diminished
ERα activity is associated with obesity in both sexes. Estrogen-
deficient androgen receptor (AR) knockout and ERα knockout
male and female mice are obese and have decreased energy
expenditure (78–80).

In addition to central mechanisms, estrogens can also directly
suppress TG synthesis by reducing lipogenesis in the liver and
increasing lipolysis in adipocytes (81–83). Estrogens potentiate
lipid accumulation in SC WAT in males and females (84, 85),
promote FFA β-oxidation, and reduce TG storage by stimulating
the expression of peroxisome proliferation activator receptor-delta
(PPARδ) and by activating AMP-activated protein kinase [AMPK;
(81)]. In pancreas, estrogens exert protective effects on β-cell func-
tion by reducing amyloid formation in ovariectomized females
(86) and obese males (87), and decrease β-cell injury induced by
streptozotocin (STZ) in both sexes (88, 89). Interestingly, men
lacking estrogen production or signaling because of mutations
in the genes encoding aromatase or ERα are insulin-resistant
and glucose-intolerant (90, 91), suggesting that estrogens may
also regulate energy homeostasis in males. Although the benefi-
cial effects of estrogens on whole-body glucose metabolism and
insulin sensitivity have been demonstrated in several rodent mod-
els (73, 92), sex-specific effects in humans remain to be further
elucidated.

Glucose metabolism is also affected by the menstrual phase,
when the energy demand is high, which can be explained by the
suppressive effect of estrogens and progesterone on gluconeoge-
nesis (93). Estrogens promote insulin sensitivity, whereas prog-
esterone promotes insulin resistance by antagonizing the positive
effect of estrogens on contraction-stimulated glucose uptake (94)
and increasing the activity of the β-oxidation pathway in skeletal
muscle during exercise (95, 96). Glucose metabolism and exer-
cise performance are influenced by the menstrual cycle phase in
that glucose appearance and disappearance rates are higher during
the follicular phase (high estrogen-to-progesterone ratio) com-
pared to the luteal phase (high progesterone-to-estrogen ratio)
(97). Muscle glycogen utilization depends on FFA availability in
that there is an inverse correlation between FFA concentration
and muscle glycogen use during exercise. The opposing actions of
estrogens and progesterone on glycogen utilization may be medi-
ated by their impact on FFA availability (98). Thus, glucose and
lipid metabolism depends on the menstrual cycle phase, which
determines the progesterone-to-estrogen ratio, and nutritional
and exercise status.

ANDROGENS
A significant portion of the world population suffers from various
forms of metabolic abnormalities related to androgen imbalance,
including hypoandrogenism in men (99–105) and hyperandro-
genism in women (99, 106). Androgen deficiency in men is
associated with insulin resistance and obesity, and treatment of
hypogonadal men with testosterone improves insulin sensitivity
and reduces fat content (99–105). In contrast, the androgen excess
observed in women with polycystic ovary syndrome (PCOS) is
associated with insulin resistance and obesity (99, 106).

Sex-dependent actions of androgens in WAT may explain dif-
ferences in body-fat distribution (107) and insulin sensitivity in
males and females (52, 54–56, 61). Aromatization of testosterone
to 17β-estradiol is important for energy homeostasis, and an
increased androgen-to-estrogen ratio promotes visceral obesity
in males (108, 109). Men with genetic androgen resistance due to
decreased AR expression develop visceral obesity (110), and AR
knockout mice demonstrate higher visceral adiposity and insulin
resistance (111, 112), suggesting that androgens may suppress
WAT mass both in humans and rodents. Although human studies
consistently demonstrate a positive correlation between hypogo-
nadism, increased body-fat, and insulin resistance (99–105, 113,
114), it is unknown whether these changes represent direct effects
of androgen imbalance on target tissues or secondary effects of
aging or changes in lifestyle on whole-body metabolism and body
composition.

For example, testosterone promotes the commitment of pluo-
ropotent mesenchymal stem cells to the myogenic lineage (115),
which may indirectly improve energy expenditure and acceler-
ate fat mass loss, contributing to improved insulin sensitivity
in testosterone-supplemented males. Testosterone increases the
expression of the transcription factor PGC1α in skeletal muscle
(116), stimulating mitochondrial biogenesis, substrate oxidation,
and muscle insulin sensitivity. Lower levels of PGC1α are found
in insulin-resistant type-2 diabetic patients (117). In rodents,
testosterone exerts gender-specific protective effects against STZ-
induced apoptosis of male β-cells (118, 119). Interestingly, andro-
gen administration to normally STZ-resistant female rats make
them highly susceptible to β-cell death (88). Thus, in rodents
testosterone is involved in a gender-specific regulation of β-cell
number, playing a protective antidiabetic role in males, but can
override the protective role of estrogens in females, illustrating the
importance of the androgen/estrogen ratio in β-cell survival in
females.

SEX-SPECIFIC EFFECTS IN NHPs
Consistent with human studies, female rhesus macaques exhibit
significantly higher levels of insulin-stimulated glucose disposal
than males (120) and estrogens can improve glucose regulation in
female macaques (121). In contrast to estrogen effects, adult female
rhesus macaques exposed to androgens developed insulin resis-
tance, although this effect was only apparent in animals consuming
a HFD (44). Studies in prenatally androgenized monkeys further
demonstrated that androgens disrupt insulin sensitivity and glu-
coregulation in female offspring (122, 123). These findings are
consistent with the idea that exposure of females to androgens may
trigger a metabolic reprograming toward a male-like phenotype.

www.frontiersin.org January 2015 | Volume 5 | Article 241 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Diabetes/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varlamov et al. Sex differences in metabolism

Androgen effects in adult female NHPs are menstrual cycle-
dependent, in that V WAT lipolysis and hormone-sensitive lipase
(HSL) expression were upregulated during the luteal phase com-
pared with the early follicular phase of the ovarian cycle, while
hyperandrogenemia attenuated lipolysis and HSL expression dur-
ing the luteal phase but not during menses (44). Insulin sensitivity
of FFA uptake in WAT was also differentially affected by testos-
terone in a menstrual cycle-dependent manner (44). Collectively,
these findings may explain the predisposition of women with
PCOS to WAT dysfunction and obesity (99, 106). Androgen sup-
plementation studies in adult male rhesus macaques suggest that
androgens do not control whole-body insulin sensitivity, at least
under conditions of a low-fat (chow) diet (68, 124), but a lack
of testosterone can have a negative impact on WAT biogenesis
and function (68). Prenatally androgenized male rhesus macaques,
however, develop insulin resistance, suggesting that early exposure
to androgens may cause fetal reprograming of male metabolic tis-
sues (125). Interestingly, testosterone stimulates WAT lipogenic
gene expression in both males and females (44, 68), suggesting
that androgens can facilitate maturation of WAT in both sexes.

CONCLUSION
Overall, female lipid metabolism functions to store more fat in
SC WAT, with a higher proportion of lipids deposited in lower
body-fat, while men store more lipids in V WAT than in SC WAT
and oxidize dietary FFAs more readily than women. These differ-
ences presumably reflect the opposite sex-specific specialization in
energy utilization, with women having the unique burden of ges-
tation and lactation. Higher insulin sensitivity and lower muscle
mass observed in women is more beneficial for energy storage in
WAT and less beneficial for its oxidation. Furthermore, more effi-
cient insulin inhibition of lipolysis facilitates greater TG retention
in female WAT than in male WAT. Estrogens and androgens exert
beneficial metabolic effects by lowering body-fat and improving
insulin sensitivity in females and males, respectively, although the
role of androgens in regulating insulin action in humans, espe-
cially under conditions of different diets, remains controversial.
The use of NHP models may help separate the direct effects of sex
hormones on metabolic tissues from indirect effects, such as the
differences in lifestyle, diet, and prior medical history observed in
human patients.
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