

Supplementary Figure 1 | Dimension reduction of metacommunities associated with colorectal carcinogenesis. (a) Robustness of two widely used partitioning approaches in response to varying rarity thresholds. (b) Comparison of DMM- (top) and PAM-based (bottom) detection of microbial community clusters using non-metric multidimensional scaling (NMDS) of Jensen-Shannon Divergence distance matrices. (c) NMDS ordination of representative samples from DMM-based approach using relative abundance profiles of metacommunity markers. Metacommunities are represented by 80% confidence ellipses.

Supplementary Figure $2 \mid$ Microbiome-based classification of colorectal tumour statuses. Receiver operating characteristic (ROC) analyses of (a) Microbial Community Polarization index (MCPI) and (b-d) LASSO classifier performance based on bacterial phylotypes that were identified by (b) DMM community typing, (c) 100 iterations of the ten-fold Random Forests cross-validations, and (d) differential abundance analysis using the LEfSe algorithm. AUC values are shown with 95% confidence intervals (shaded-area). NC, normal control; AN, adenoma; CA, carcinoma.

Supplementary Figure $3 \mid$ Alterations of mucosal community types at lesions relative to adjacent normal mucosae along the adenoma-carcinoma sequence. Open and closed circles represent lesion-adjacent mucosae and lesions, respectively.

Supplementary Figure 4 | Cumulative distribution functions comparing the differences in taxonomic occurrences between disease-states. Correlation coefficients with statistical significances (FDR < 0.1) were selected for visualization. Distances between two-sample distributions were assessed separately for each group of (a) positive and (b) negative correlations by Kolmogorov-Smirnov tests. P-values were adjusted by BH step-up procedure; * $q<0.05$; ** $q<0.01 ; * * * q<0.001$; **** $q<0.0001$. NC, normal control; ANj, adenoma-adjacent; AN, adenoma; CAj , carcinoma-adjacent; CA , carcinoma.

Supplementary Figure 5 | Reproducibility of ecological interactions within cancer-niches. Re-analysis of taxonomic relationships revealed analogous patterns of statistically significant interactions in: (a) Kostic et al. dataset, and (b) Zeller et al. dataset. Shown are correlation coefficients (green for positive; red for negative) with concordant directions and false discovery rates of 0.25 or less between two studies. Adjusted R^{2} and p-values are from multiple linear regression analyses.

Supplementary Figure 6 | Representative functional modules and pathways that are enriched in metacommunities. Modules or pathways are listed in the descending order of LDA scores from top to bottom in the legend keys and from left to right in the boxplot panels. Gene families are represented by the metacommunity in which they are overrepresented; underrepresented families are greyed out to provide contrasts for visualization. The heights of boxes show the interquartile range (IQR) between the first and third quartiles in which medians are bolded; minimum and maximum values are denoted by whiskers; closed-circles are outliers.

A: Arginine \& proline metabolism
Mo0028: Onnithine biosynthesis
B: Alkaloid \& other secondary metabolite biosynthesis
C: Lysine metabolism
C: Lysine metabolism
D: Serine \& threonine metabolism
E: Mistidine metabolism MOOO26: Histidine biosynthesis
M00045: Histidine degradation
F: Branched-chain amino acid metabolism Mo0019: Leucine biosynthesis
MO0036: Leucine degradation G: Polyamine biosynthesis M00133: Polyamine blosynthesis
M00136: Prokaryotic $G A B A$ biosynthesis H: Aromatic amino acid metabolism M00025: Tyrosine biosynthesis Moooz2: Shikimate pathway I: Pyrimidine metabolism Mooos3: Pyrimididine deoxyryibonuleotide biosynthe MOOO46: beta-Alanine biosynthesis
J: Purine metabolism M00050: Guanine nucleotide biosynthesis
MOOO48: Inosine monophosphate biosynthesis M00048: Inosine monophosphate biosynthes
M00049: Adenine nucleotide biosynthesis
K: Cysteine \& methionine metabolism Moo017: Methionine biosynthesis MOOO35: Methionine degradation
MOOO34: Methionine salvage pathwa; Cofactor \& vitamin biosynthesis M00121: Heme biosynthesis M00123: Biotin biosynthesis M00122: Cobalamin blosynthesis M00125: Riboflavin biosynthesis
Mo0124 Pyyidoxal liosyntesis
M00127: Thiamine biosynthesis M00126: Tetrahydrofolate biosynthesis
M00119: Pantothenate biosynthesis M00115: NAD biosynthesis Mo0116: Menaquinone biosynthesis
M00117: Prokaryotic ubiquinone bios g: Carbohydrate \& lipid metabolism (structure)
L: Carbohydrate metabolism

$$
\text { MOO311: } 2 \text {-oxoglutarate.ferredoxin oxidoreductase }
$$

i: Genetic information processing M: DNA polymerase
M00260: Bacterial DNA polymerase III complex
N : Proteasome
M00342: Bacte
O: Ribosome
Mo0178: Bacterial ribosome
h: Energy metabolism (structure)
P: Photosynthesis
Mo0164: ATP synthase
M00164:ATP sy
ATP synthesis
M00156: Complex IV, cytochrome o ubiquinol oxidase
M00156: Complex IV, cytochrome c oxidase, cbb3-type M00150: Complex III, type ATPase M00144: Complex I I. NADH dehy rycrogene M00149: Complex II, succinate dehy
M00159: Prokaryotic V-type ATPase
Environmental information processing Q: Phosphotransferase system M002287: Galactosamine-specific || compon M00277: N -acetysamine-specific II component M00276: Mannose-specific II componeni
R: Peptide \& nickel transport Mo0349: Microcin C transport M00348: Glutathione transport
MO2039: Peptides/nickel transpor

S: Metallic cation, iron-siderophore \& vitamin B12 transport M00317: Manganeseifon transport M00245: Cobalt transport M00246: Nickel transpp
MOO319: Manganese/z
T: Mineral \& organic ion transport M00299: Spermidine/putrescine transpor M00193: Putative spermidine/putrescine transport M00301: Mannopine transport M00302: 2-Aminoethylphosphonate transport
M00185: Sulfate transport
Bacterial secretion system
Moo334-Type VI secretion
MoO334: Type VI Isecre
Mo033: Sec system
MOO336: Twin-arginine translo
MOO326: RTX toxin transport
MO0326: : RTX toxin transport
MOO332: Type III secretion
M00333: Type IV secretion
M00331: Type II general secretion

Carbohydrate \& lipid metabolism
\mathbf{Y} : Lipid metabolism
Z: Fatty acid metabolism
Z. Fatty acia metabolism
MO0088: Ketone body biosynt
a: Glycosaminoglycan metabolism
b. Terpenoid backbone biosynthesis
b: Terpenoid backbone biosynthesis
Mooogs: Mevalonate C5 isoprenoid biosynthesis M00096: Non-mevalonate C5 isoprenoid biosynthesis
c: Lipopolysaccharide metabolism
M00060: Lipopolysaccharide biosynthesis
M00064: ADP-L-glycero-D-manno-heptose biosynthesis
d: Other carbohydrate metabolism
M00061: Uronic acid metabolism Mo0373: Ethylmalonyl pathway
Central carbohydrate metabolism M00002: Glycolysis, 3C core module
M00008: Entner-Doudoroff pathway M00009: TCA cycle
M00006: Oxidative MOOOO6: Oxidative pentose phosphate pathway
M00007: Non-oxidative pentose phosphate M00007: Non-oxidative pentose phosphate pathway
M00004: Pentiose posphate cycle M00011: TCA cycle, second carbon oxidation M00003: Gluconeogenesis
M00001: Embden-Meyerhof pathway

Supplementary Figure 7 | Summary cladogram of differentially abundant KEGG modules imputed. Node size and transparency represent the total relative abundance and prevalence of a module, respectively. Clades and nodes are annotated in a clockwise manner. Functional categories at level 2 of the BRITE module hierarchy are distinguished by respective node colors. Node color intensity is proportional to the coverage of a module. Inner and outer ring indicate differential enrichments of modules based on metacommunity and mucosal phenotypes, respectively.

Supplementary Figure 8 |Summary cladogram of differentially abundant KEGG pathways imputed. Node size and transparency represent the total relative abundance and prevalence of a pathway, respectively. Clades and nodes are annotated in a clockwise manner. Functional categories at level 1 of the BRITE pathway hierarchy are distinguished by respective node colors. Inner and outer ring indicate differential enrichments of modules based on metacommunity and mucosal phenotypes, respectively.

Supplementary Figure 9 | Relative taxonomic abundance of the top 42 operational taxonomic units (OTUs) at $\mathbf{9 7 \%}$ identity. OTUs are ranked in the ascending order of the size of total relative abundance after rarefication. Error bars represent standard errors of the means (SEMs). Mann-Whitney U test corrected by BH step-up procedure; * $q<0.05 ;{ }^{* *} q<0.01$; *** $q<0.001$; **** $q<0.0001$.

Supplementary Figure 10 | Associations of metacommunities with clinical metadata. The heights of boxes represent the IQR between the first and third quartiles in which medians are bolded; minimum and maximum values are denoted by whiskers; closed-circles are outliers. Mann-Whitney U tests corrected by BH step-up procedure; * $q<0.05$; ** $q<0.01$; *** $q<$ 0.001.

Supplementary Figure 11 | Breakdown of sequencing reads at bacterial class-level. Areas represent microbiome profiles of mucosal biopsies from normal ($n=61$), adenoma-affected ($n=$ 47), carcinoma-affected ($n=52$) colon.

Supplementary Figure $12 \mid$ Comparisons of OTU sampling depths among biopsy phenotypes. Rarefaction curves describe the number of 97% OTUs detected as sequencing effort increases.

Supplementary Figure 13 | Five-way Venn diagram showing the distribution of $\mathbf{9 7 \%}$ OTUs shared among colorectal mucosal phenotypes. Number of shared sequence clusters are provided in the intersected areas.

$\begin{gathered} \text { PATIENT } \\ \text { CHARACTERISTICS } \end{gathered}$	NORMAL COLON	COLORECTAL ADENOMA	COLORECTAL CARCINOMA	Adjusted p-value (Bonferroni)
Age, years (mean \pm s.d.)	60.13 ± 5.99	67.32 ± 8.80	67.85 ± 13.18	<0.001
Gender (n, percent) Male Female	$\begin{aligned} & 25 \text { (40.98) } \\ & 36 \text { (59.02) } \end{aligned}$	$\begin{aligned} & 21 \text { (44.68) } \\ & 26 \text { (55.32) } \end{aligned}$	$\begin{aligned} & 31 \text { (59.62) } \\ & 21 \text { (40.38) } \end{aligned}$	1
BMI, kg/m ${ }^{2}$ (mean \pm s.d.)	22.99 ± 2.75	24.02 ± 3.95	22.60 ± 2.79	1
Chronic alcohol use (n, percent)	3 (4.92)	5 (10.64)	10 (19.23)	1
Smoking history (n, percent) Chronic smoker Current non-smoker	$\begin{aligned} & 2(3.28) \\ & 0(0.00) \end{aligned}$	$\begin{gathered} 4(8.51) \\ 8(17.02) \end{gathered}$	$\begin{aligned} & 12 \text { (23.08) } \\ & 14 \text { (26.92) } \end{aligned}$	1
First degree family history of CRC (n, percent)	2 (3.28)	6 (12.77)	1 (1.92)	1
Diabetes mellitus (n, percent)	2 (3.28)	2 (4.26)	4 (7.69)	1
Anatomic origin (n, percent)				
Proximal	27 (44.26)	20 (42.55)	13 (25.00)	1
Cecum	2 (3.28)	3 (6.38)	2 (3.85)	1
Ascending colon	25 (40.98)	11 (23.40)	10 (19.23)	1
Hepatic flexure	0 (0.00)	2 (4.26)	1 (1.92)	1
Transverse colon	0 (0.00)	6 (12.77)	1 (1.92)	0.121
Distal	34 (55.74)	27 (57.45)	39 (75.00)	1
Splenic flexure	0 (0.00)	1 (2.13)	0 (0.00)	1
Descending colon	10 (16.39)	7 (14.89)	3 (5.77)	1
Sigmoid colon	2 (3.28)	7 (14.89)	10 (19.23)	0.757
Rectosigmoid junction	0 (0.00)	2 (4.26)	6 (11.54)	0.279
Rectum	22 (36.07)	8 (17.02)	19 (36.54)	1
TNM staging, AJCC 7th Edition (n, percent)				

Zero	-	-	1 (1.92)	-
I	-	-	11 (21.15)	-
II	-	-	14 (26.92)	-
III	-	-	14 (26.92)	-
IV	-	-	12 (23.08)	-
Histomorphologic type (n, percent)				
Sessile-serrated	-	3 (6.38)	-	-
Tubular	-	28 (59.57)	-	-
Tubulovillous	-	15 (31.91)	-	-
Villous	-	1 (2.13)	-	-
Grade of dysplasia (n, percent)				
Low	-	35 (74.47)	-	-
High	-	12 (25.53)	-	-

Supplementary Table $1 \mid$ Overview of 16S rRNA discovery cohort. Multiple group comparisons for categorical and continuous variables were performed by Chi-squared/Fisher's exact tests and Kruskal-Wallis rank-sum tests, respectively.

$\begin{gathered} \text { PATIENT } \\ \text { CHARACTERISTICS } \end{gathered}$	NORMAL COLON	COLORECTAL ADENOMA	COLORECTAL CARCINOMA	Adjusted p-value (Bonferroni)
Age, years (mean \pm s.d.)	41.28 ± 7.87	55.80 ± 11.36	61.34 ± 9.97	1
Gender (n, percent) Male Female	$\begin{aligned} & 10(40.00) \\ & 15 \text { (60.00) } \end{aligned}$	$\begin{gathered} 32(78.05) \\ 9(21.95) \end{gathered}$	$\begin{aligned} & 26(52.00) \\ & 24(48.00) \end{aligned}$	0.086
Anatomic origin (n, percent) Proximal Distal	$\begin{gathered} 0(0.00) \\ 25(100.00) \end{gathered}$	$\begin{aligned} & 11 \text { (26.83) } \\ & 30(73.17) \end{aligned}$	$\begin{aligned} & 24(48.00) \\ & 36 \text { (72.00) } \end{aligned}$	$\begin{gathered} 0.031 \\ 1 \\ \hline \end{gathered}$
```TNM staging, AJCC 7th Edition (n, percent) Zero I II III IV```	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		$\begin{gathered} 0(0.00) \\ 6(12.00) \\ 17(34.00) \\ 25(50.00) \\ 2(4.00) \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
Histomorphologic type ( $n$, percent)   Sessile-serrated   Tubular   Tubulovillous   Villous		$\begin{gathered} 2(4.88) \\ 27(65.85) \\ 11(26.83) \\ 0(0.00) \\ \hline \end{gathered}$		- - -
Grade of dysplasia ( $n$, percent)   Low   High   NA	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 14(28.00) \\ 6(12.00) \\ 21(42.00) \end{gathered}$	$-$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$

Supplementary Table $2 \mid$ Overview of real-time PCR validation cohort. Multiple group comparisons for categorical and continuous variables were performed by Chi-squared/Fisher's exact tests and Kruskal-Wallis rank-sum tests, respectively.

