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Neuropeptide Y (NPY) is an abundant sympathetic co-transmitter, widely found in the

central and peripheral nervous systems and with diverse roles in multiple physiological

processes. In the cardiovascular system it is found in neurons supplying the vasculature,

cardiomyocytes and endocardium, and is involved in physiological processes including

vasoconstriction, cardiac remodeling, and angiogenesis. It is increasingly also implicated

in cardiovascular disease pathogenesis, including hypertension, atherosclerosis,

ischemia/infarction, arrhythmia, and heart failure. This review will focus on the

physiological and pathogenic role of NPY in the cardiovascular system. After summarizing

the NPY receptors which predominantly mediate cardiovascular actions, along with

their signaling pathways, individual disease processes will be considered. A thorough

understanding of these roles may allow therapeutic targeting of NPY and its receptors.

Keywords: Neuropeptide Y (NPY), sympathetic nervous system, co-transmission, cardiovascular disease,

hypertension, myocardial infarction, heart failure, arrhythmia

INTRODUCTION

Neuropeptide Y (NPY) is a highly conserved peptide, which is abundantly distributed in the central
and peripheral nervous system and was first discovered in porcine brain (Tatemoto et al., 1982;
Pedrazzini et al., 2003). NPY is mainly found in post-ganglionic sympathetic neurons, from which
it is released simultaneously with norepinephrine (NE) (Lundberg et al., 1990; Larhammar, 1996)
in response to sympathetic stimulation, functioning as a “co-transmitter.” Geoffrey Burnstock was
the first to suggest that neurons release more than one neurotransmitter (Burnstock, 1976). Henry
Dale’s principle had to be revised to state that “at all the axonal branches of a neuron, there is
liberation of the same transmitter substance or substances” to incorporate Burnstock’s theory that
nerves of the same class utilize more than one neurotransmitter (Eccles, 1976). Sympathetic nerves
contain co-transmitters such as adenosine triphosphate (ATP) and galanin in addition to NPY,
although significant co-transmitter release generally occurs only on high-level neuronal stimulation
(Lundberg et al., 1986). Unlike ATP which is rapidly metabolized (Burnstock, 1976), NPY and
galanin are slowly diffusing molecules with a much longer half-life and duration of action than
classical neurotransmitters (Lundberg, 1996).

NPY is a prominent player in a variety of physiological functions, including the
regulation of mood, cardiovascular and immune homeostasis, vasomotion, angiogenesis,
cardiac remodeling, appetite, gastrointestinal motility, neuroendocrine axis, sympathetic
and vagal transmission (Hellstorm et al., 1985; Yang and Levy, 1992; Grundemar
and Hakanson, 1993; Wan and Lau, 1995; Michel et al., 1998). NPY is the most
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abundant neuropeptide in the heart (Gu et al., 1983), and is
present in post-ganglionic sympathetic neurons supplying the
vasculature, endocardium and cardiomyocytes, as well as in
intracardiac ganglia and parasympathetic neurons (Mcdermott
and Bell, 2007). However, in addition to its important role in
normal physiological control mechanisms, it is also increasingly
implicated in the pathophysiology of a number of cardiovascular
disease processes. In humans and animals, elevated plasma
NPY levels were observed in several stress conditions including
exercise, hypoxia, cold exposure, tissue injury, ischemia, and
hemorrhagic shock (Pernow et al., 1987), and dysregulation of
NPY has been implicated in the pathophysiology of metabolic
disorders (Dvorakova et al., 2014). Furthermore, increased
plasma NPY levels are also found in pathological conditions with
sympathetic hyperactivity such as hypertension, left-ventricle
hypertrophy, and heart failure (Zukowska-Grojec et al., 1991,
1998b; Dvorakova et al., 2014). These roles raise the potential for
the therapeutic targeting of NPY receptors in novel therapies for
cardiovascular disease.

This review will summarize the physiological functions of
NPY, its receptors and their associated signaling pathways in
the cardiovascular system, before focussing on the current
understanding of the role of NPY in physiological cardiovascular
regulation and different cardiovascular disease processes.

THE NPY FAMILY OF PEPTIDES

Neuropeptide Y
NPY is a 36-residue peptide amide (Tatemoto, 1982) synthesized
and released by sympathetic nerves and the adrenal medulla
(Pedrazzini et al., 2003; Zukowska et al., 2003b). The biosynthesis
of functional NPY is achieved via the cleavage of a precursor
(pre-pro-NPY) to generate NPY1−36, that is further truncated
by the enzyme dipeptidyl peptidase 4 (DPP-4) to produce
NPY3−36 (Aizawa-Abe et al., 2000; Robich et al., 2010; Dvorakova
et al., 2014). NPY modulates its functions on the cardiovascular,
central, and peripheral systems via the activation of a G protein-
coupled Y-family of receptors (GPCR; Y1R,Y2R, Y3R, Y4R, Y5R,
and γ6R) (Li et al., 2011; Troke et al., 2013). Similar to peptide
YY (PYY) and pancreatic polypeptide (PP), NPY is one of the
“PP fold” peptides (Pedrazzini et al., 2003). Despite structural
similarities, each “PP fold” peptides have specific functionalities
(Troke et al., 2013).

Peptide YY (PYY) and Pancreatic
Polypeptide (PP)
Released primarily in the gastrointestinal (GI) system by
enteroendocrine cells, PYY influences appetite, GI motility,
water, and electrolyte absorption (Brothers andWahlestedt, 2010;
Troke et al., 2013; Torang et al., 2015; Saraf et al., 2016). The
most abundant PPY, the anorexigenic PPY3−36, is a truncated
version of PPY (PPY1−36) post-DPP-4 cleavage (Torang et al.,
2015). Similarly, PPY mediates its activity via the activation
of GPCR; PYY1−36 binds to most Y family receptors (Y1R-
Y5R) whereas, PYY3−36 is selective and has a higher affinity
for the Y2R and Y5R (Brothers and Wahlestedt, 2010; Troke
et al., 2013; Saraf et al., 2016). Upon food consumption, the

pancreas stimulates the release of PP, triggering food absorption
primarily via binding to Y4R (Saraf et al., 2016). Further
consideration of PYY and PP is beyond the scope of this
review.

OVERVIEW OF RECEPTOR SUBTYPES
AND SIGNALING IN THE
CARDIOVASCULAR SYSTEM

Understanding of the molecular NPY receptor signaling
pathways is crucial to facilitate therapeutic development
(Pedrazzini et al., 2003). Among the six identified Y family GPCR,
Y1R, Y2R, and Y5R are the main cardiovascular homeostasis
regulators (Silva et al., 2002; Mcdermott and Bell, 2007). These
receptors are expressed in the peripheral and central nervous
system, including within the blood vessels, cardiomyocytes and
enteroendocrine cells (Brothers and Wahlestedt, 2010; Troke
et al., 2013). The receptors display some common and distinct
functions, with different peptide preferences (Gehlert, 2004;
Brothers and Wahlestedt, 2010; Troke et al., 2013) (Table 1).

Molecularly, Y1R, Y2R, and Y5R are coupled to a Gαi subunit
and have been shown to hinder the synthesis of cyclic adenosine
monophosphate (cAMP) via adenylyl cyclase inhibition (Kassis
et al., 1987; Motulsky andMichel, 1988; Ali et al., 2016), reducing
protein kinase A (PKA) dependent stimulation of the L-type
calcium (Ca2+) current (Bryant and Hart, 1996; Larhammar,
1996; Lee et al., 2003; Gehlert, 2004; Troke et al., 2013). There
may also be direct G protein coupling to inhibit N-type Ca2+

channels (Hirning et al., 1990; Wiley et al., 1990) and stimulate
inwardly rectifying potassium (K+) channels (GIRK) (Sun et al.,
2001; Acuna-Goycolea et al., 2005). The Y1R can also couple
to mobilization of intracellular Ca2+ stores depending on the
cell type (Aakerlund et al., 1990; Herzog et al., 1992) via a Gq-
phospholipase C (PLC) dependent pathway (Del Puy Heredia
et al., 2005). The IP3 dependent mobilization of intracellular
Ca2+ can have a positive inotropic or vasoconstrictive effect,
provoke contractile sensitisation, neurological functions such as
learning and memory, immune regulation, lipid metabolism,
and transcriptional regulation via the Ca2+-binding messenger
calmodulin (CaM) (Troke et al., 2013; Lecat et al., 2015).
The multi-functional effect of the Ca2+/CaM complex may be
induced by the activation of CaM kinases such as Ca2+/CaM-
dependent protein kinase II (CaMKII) and myosin light chain
kinase (MLCK) (Leonard et al., 1999; Anderson, 2005). For
instance, activation of CaMKII can influence ion channel activity,
intracellular calcium handling and arrhythmogenesis, and can
also induce the activation of neurotransmitter secretion, glycogen
metabolism and transcriptional regulation (Anderson, 2005).
On the other hand, MLCK performs a more specific action,
phosphorylating the regulatory light chain of myosin (MLC20)
to stimulate smooth muscle contraction (Tansey et al., 1994)
(Figure 1). PLC signaling via diacylglycerol (DAG) and protein
kinase C (PKC) can also inhibit and stimulate L-type Ca2+

current (Mccullough et al., 1998) and the transient outward K+

current (Ito), respectively (Heredia et al., 2002). NPY signaling
targeting Ca2+ and K+ current as well-intracellular calcium
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TABLE 1 | The characteristics of neuropeptide Y receptors.

NPY

receptor

Central and peripheral

localisation

Peptide preference Functional effect Associated pathology References

Y1 Central: Cerebral cortex; brainstem

and thalamus

Peripheral: Vascular smooth muscle;

immune cells; osteoblasts; heart and

gastrointestinal system

NPY, [Leu31, Pro34] NPY, PYY

> NPY3−36, PP

Food intake regulation;

anxiolysis; regulation of

neurotransmitter release;

vasoconstriction;

anti-depressant and bone

metabolism

Cardiovascular morbidities

including hypertension,

cardiac hypertrophy, heart

failure, ischemia and

circadian disorders

(Larhammar, 1996; Herzog,

2003; Pedrazzini et al.,

2003; Brothers and

Wahlestedt, 2010; Troke

et al., 2013)

Y2 Central: Hippocampus; brainstem

and hypothalamus

Peripheral: Autonomic nerves;

immune cells endothelial cells;

adipocytes; heart and

gastrointestinal system

NPY, NPY3−36, NPY13−36,

NPY2−36, PYY >

[Leu31,Pro34]NPY,

[Leu31,Pro34]PYY, PP

Neurotransmitter

(glutamate) inhibition;

learning and memory;

inhibition of norepinephrine

release; gastrointestinal

motility; angiogenesis; blood

pressure regulation and

adipogenesis

Cardiovascular morbidities;

circadian disorders; cancer;

and intestinal disease.

(Balasubramaniam, 1997),

(Pedrazzini et al., 2003;

Gehlert, 2004; Abe et al.,

2007; Brothers and

Wahlestedt, 2010; Troke

et al., 2013)

Y5 Central: Hippocampus; olfactory

bulb; suprachiasmatic nucleus;

arcuate nucleus

Peripheral: Vascular smooth muscle;

immune cells; heart and

gastrointestinal system

NPY, PYY, [Leu31, Pro34] NPY,

NPY2−36, NPY3−36 > PP

Food intake regulation;

anxiolysis; antidepressant;

angiogenesis

Cardiovascular disease and

cancer

(Silva et al., 2002; Pedrazzini

et al., 2003; Brothers and

Wahlestedt, 2010; Hirsch

and Zukowska, 2012)

FIGURE 1 | Intracellular signaling cascades for Neuropeptide Y receptors. Neuropeptide Y (NPY) receptor is a G-protein coupled receptor (GPCR) that is activated by

specific peptides such as NPY, peptide YY (PYY) or pancreatic peptide (PP). The activated GPCR enhances the Gi signaling cascade where the G-protein complex

inhibits adenylyl cyclase and cAMP/PKA stimulation of L-type Ca2+ current (ICaL). In neurons, direct G-protein coupling can also inhibit N-type Ca2+ current (ICaN)

and neurotransmission. The G-protein complex can stimulate the inwardly rectifying potassium (GIRK) current. Mitogen-activated protein kinase/extracellular

signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase/ protein kinase B (PI3K/Akt) signaling cascades are also activated. The Y1 receptor (Y1R) can

also promote a Gq signaling cascade to stimulate Ca2+ release from the sarcoplasmic reticulum via inositol triphosphate (IP3). Elevation of intracellular Ca2+ activates

Ca2+/ calmodulin-dependent kinase (CaMK) and protein kinase C (PKC). PKC activation is further enhanced via diacylglycerol (DAG), formed

post-phosphatidylinositol 4,5-bisphosphate (PIP2) cleavage via phospholipase c (PLC). Initiation of these cellular pathways has a cell-dependent multitude of effects in

the regulation of ion channels, calcium handling and transcription factors that hold the basis for the short and long term physiological effects of NPY. ATP, Adenosine

5
′

-triphosphate; cAMP, cyclic adenosine monophosphate; PDE, phosphodiesterase; AMP, adenosine monophosphate; PKA, protein kinase A; CREB, cAMP

response element binding protein.
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handling, is likely to explain its actions on neurotransmission,
vascular reactivity, and cardiac excitability.

In addition, these receptors mediate the transactivation
of insulin growth factor (IGF) receptor, the activation of
mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK) and phosphatidylinositol-3-kinase (PI3K)
signaling cascades that are important regulators of cellular
growth, survival, proliferation, differentiation, and motility
(Zhou et al., 2008; Lecat et al., 2015). Among the three main
cardiac NPY receptors, Y5R phosphorylation is mediated by
protein kinase C (PKC) to promote intracellular Ca2+ release
(Herzog, 2003; Gehlert, 2004) (Figure 1).

The Neuropeptide Y1 Receptor
Peripherally, Y1R modulates macrophage immunity, Ca2+

cycling, vasomotion, appetite, and anxiolysis (Gehlert, 2004;
Jacques et al., 2006; Troke et al., 2013). The activation of Y1R
within the cardiovascular system contributes to the sympathetic
stimulation that accelerates NE-induced vasoconstriction (Troke
et al., 2013; Saraf et al., 2016). These were further validated in
studies that utilized a Y1R agonist and antagonist that induced
direct vasoconstriction in kidneys and spleen and inhibited
spontaneous vascular contraction, respectively (Saraf et al., 2016;
Oki et al., 2017). Y1R-mediated vasoconstriction exhibits a
gender-specific effect, as a more pronounced effect is observed in
males rather than females due to the testosterone-induced NPY
gene upregulation (Zukowska-Grojec et al., 1991). In addition,
Y1R activation stimulates protein degradation, mitogenesis
and migration of vascular smooth muscle cells (VSMCs) and
endothelial cells (Movafagh et al., 2006; Li et al., 2011). In the
heart, myocyte Y1R stimulation may exert a positive inotropic
action through increased sarcoplasmic reticulum calcium release
(Del Puy Heredia et al., 2005).

The Neuropeptide Y2 Receptor
Peptide activation of Y2R can stimulate endothelial proliferation,
adhesion and migration, thereby promoting angiogenesis
(Wahlestedt and Reis, 1993; Gehlert, 2004; Troke et al., 2013).
The NPY potent angiogenic property has been shown via
the activation of Y2Rs in various conditions ranging from
tumorigenesis and tissue ischemia, in part due to release of
vascular endothelial growth factor (VEGF) (Lee et al., 2003; Li
et al., 2011; Tilan et al., 2013). Furthermore, loss or inhibition
of Y2Rs and DPP-4 severely impedes vascular angiogenesis
in those circumstances (Tilan et al., 2013). These effects can
also be confounded by age, as aged mice have compromised
angiogenesis that is accompanied with a loss of Y2R and
DPP-4 expression (Kitlinska et al., 2005). In addition, Y2R
is involved in fine-tuning NE secretion in the periphery and
myocardium at the presynaptic level (Zukowska et al., 2003b).
The Y2R is also involved in the crosstalk between sympathetic
and parasympathetic neurotransmission (Yang and Levy, 1992;
Ilebekk et al., 2005; Herring et al., 2012). The exogenous
NPY binds to Y2R that is present on the parasympathetic
nerve terminals, to inhibit acetylcholine (ACh) release and
vagal bradycardia in mammalian hearts, including human

(Schwertfeger et al., 2004), canine (Ilebekk et al., 2005), and
guinea pigs (Herring et al., 2008).

The Neuropeptide Y5 Receptor
With slight structural alterations, Y5R comprises an additional
100 amino acid and extended third cytoplasmic loop as compared
to other NPY receptors (Gehlert, 2004). The role of Y5R is
elusive and has been shown to perform a synergistic function
with not only Y1R to modulate vasomotion and mitogenesis
of VSMCs (Zukowska-Grojec et al., 1998a; Nicholl et al.,
2002; Herzog, 2003), but also with Y2R to promote vascular
angiogenesis and arteriogenesis (Herzog, 2003; Li et al., 2003;
Pons et al., 2003; Troke et al., 2013). A study conducted by
Li et al. demonstrated the synergistic effects of Y2R and Y5R
in ischemia revascularization in hindlimb ischemia of rats (Lee
et al., 2003). In fact, Movafagh et al. revealed Y5R activity as an
enhancer which markedly enriched endothelial cell proliferation,
migration and tube formation alongside Y1R and Y2R (Movafagh
et al., 2006).

NEUROPEPTIDE Y AS AN IMPORTANT
MEDIATOR OF CARDIOVASCULAR
DISEASE

Several studies have identified NPY as a functional cardiac
regulator via direct and indirect cardiac nerve interactions
(Zukowska-Grojec et al., 1998b). NPY displays a dual-opposing
effect in cardiovascular tissues, including acting as a cardio-
depressant, and a cardiac stressor (Pons et al., 2003). These
contradictory effects of NPY are largely dependent on the pattern
of the NPY receptor expression, ligand concentration, DPP-4
activity, and adrenergic activity (Pons et al., 2003; Kitlinska et al.,
2005). The cardiac-related NPY receptors, Y1R, Y2R and Y5R
have been commonly implicated in pathological states and have
been suggested to be prominent players in the pathogenesis of
cardiovascular diseases including hypertension, atherosclerosis,
myocardial ischemia/infarction, diabetic, stress and hypertrophic
cardiomyopathies, and heart failure (Zukowska-Grojec et al.,
1991; Lee et al., 2003; Jacques and Abdel-Samad, 2007; Luo et al.,
2015) (Figure 2).

Neuropeptide Y and Hypertension
Highly expressed in sympathetic nerve endings around the
vasculature, NPY acts as a potent vasoconstrictor alongside
NE (Dumont et al., 1992; Han et al., 1998). The circulating
baseline plasma levels are relatively low in healthy individuals
(Lunderberg et al., 1982; Renshaw and Hinson, 2001), but
are significantly increased during conditions of sympathetic
activation observed in stressful situations such as exercise (Lewis
et al., 1993; Nickel et al., 2012), hypoxia (Kaijser et al., 1990),
and cold (Han et al., 1998; Li et al., 2005). Plasma levels of
NPY and NE are also increased in hypertensive patients and
rats, suggesting enhanced sympathetic activity (Howe et al.,
1986; Erlinge et al., 1994; Thulin and Erlinge, 1995; Velkoska
et al., 2005). The increase in circulating NPY is observed
and mediated by the peripheral nerves and adrenal medulla
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FIGURE 2 | Neuropeptide Y signaling cascade in cardiovascular tissues during physiological (A) and pathological (B) conditions. (A) Under physiological conditions,

autocrine and paracrine effects of NPY modulate cardiac contractibility, protein degradation and proliferation in the cardiomyocytes. Exogenous NPY expression via

the cardiac sympathetic nerves can bind to the Y2 receptor (Y2R) on the parasympathetic nerve to inhibit acetylcholine (ACh) release and its binding to the muscarinic

2 receptor (M2R), limiting cardiac relaxation and bradycardia. Circulatory platelet NPY can regulate immune processes such as platelet aggregation, leukocyte

activation and cytokine production. In the vessels, NPY activation can stimulate vasoconstriction, mitogenesis, and induce production of vascular endothelial growth

factor (VEGF) and nitric oxide (NO) to promote angiogenesis. Furthermore, activation of NPY can inhibit the functional effects of anti-angiogenic factors (angiostatin

and endostatin) and vasodilators such as substance P (SP), vasoactive intestinal peptide (VIP) and ACh. (B) Under pathological conditions, NPY production, receptor

expression and dipeptidyl peptidase-4 (DPP-4) are increased in the cardiovascular tissues. These cause an imbalance of the sympatho-vagal interaction, cardiac

contraction, cardiac remodeling, enhanced angiogenesis and proliferation and inflammation-induced endothelium dysfunction within the cardiac tissues. As such,

altered NPY levels and activities underline the pathogenesis of various cardiovascular morbidities such as cardiac hypertrophy, arrhythmias, heart failure,

arteriosclerosis, ischemia and hypertension. HMGB1, high mobility group protein B1.

(Pedrazzini et al., 2003; Baltatzi et al., 2008). Elevated sympathetic
activity at the level of the cardiac post-ganglionic neuron is also
observed in the spontaneously hypertensive rat before the onset
of hypertension (Li et al., 2012; Shanks et al., 2013) where it also
gives rise to elevated NPY levels (Shanks et al., 2013). NPY can
promote Ca2+/CaMmediatedMLCK phosphorylation of MLC20

to initiate vasoconstriction (Dumont et al., 1992). In addition,
via inhibiting adenylyl cyclase NPY impedes the action of several
vasodilators including substance P, acetylcholine and vasoactive
intestinal peptide (VIP) (Servin et al., 1989; Dumont et al., 1992).

More recently, elevated NPY levels have been observed
in hypertensive pregnancies (preeclampsia) in humans (Paiva
et al., 2016) and rodent models (Zhang et al., 2015a; Yi et al.,
2018). Preeclampsia is a pregnancy complication that involves
hypertension and vasculature remodeling (Lazdam et al., 2012).
Zhang et al. underlined that pregnant hypertensive rats display
elevated circulating NPY levels (Zhang et al., 2015a). An increase
in circulating NPY promotes VSMC proliferation and migration
through the activation of Y1R and Y5R in vitro and in vascular
tissues via Y5R in vivo (Zhang et al., 2015a). Pathophysiological
vasculature remodeling in hypertensive pregnancies is regulated
through several signaling pathways, including signal transducer
and activator of transcription 3 (STAT3), c-FOS, MAPK, and

Ca2+ signaling via GPCR (Zhang et al., 2015a; Yi et al., 2018).
As the physiological and molecular mechanisms of hypertensive
pregnancy are highly complex (Davis et al., 2012), further
observational and mechanistic studies will be required to validate
the specific role of NPY on blood pressure regulation in this
condition.

Neuropeptide Y and Atherosclerosis
Atherosclerosis is one of the leading cardiovascular diseases, with
high global mortality rates. It involves complex molecular and
cellular responses comprising of inflammation, proliferation, and
matrix modification, following endothelial dysfunction which
is a critical atherosclerosis-initiating factor (Jiang et al., 2017).
Endothelial dysfunction enhances endothelium permeability and
promotes leukocyte adhesion, lipid aggregation, macrophage-
induced foam cell formation and platelet aggregation. It
also modulates endothelial cell gene expression and VSMC
proliferation and migration, thereby facilitating the formation
of atherosclerotic plaque (Burnstock, 1976; Dzau et al., 2002;
Li et al., 2003, 2011; Zukowska et al., 2003a; Zhu et al., 2016).
Studies have highlighted the association of atherosclerotic burden
and vulnerability with enhanced NPY activation in patients
with arterial disease (Li et al., 2005, 2011). NPY interacts
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with receptors on endothelial cells, VSMCs, macrophages, and
platelets (Li et al., 2011), (Racchi et al., 1997; Li et al., 2005).
Under pathological conditions such as vascular endothelium
injury, elevations in sympathetic glial-derived and platelet NPY
and its receptors have been shown in mammalian (human and
animal) studies (Burnstock, 1976; Ghersi et al., 2001; Li et al.,
2003; Legein et al., 2013; Zhu et al., 2016; Jiang et al., 2017).

Synergistic activation of Y1R and Y5R in endothelial cells
and VSMCs increases the intracellular Ca2+, PKC and MAPK
activities that enhance NE-induced vasoconstriction, resulting
in blood pressure elevation, local vascular spasm, stenosis and
endothelial cell/VSMC retraction and discontinuity (Burnstock,
1976; Lundberg et al., 1986; Racchi et al., 1997; Aizawa-Abe
et al., 2000; Ghersi et al., 2001; Li et al., 2005; Jacques and
Abdel-Samad, 2007; Ruohonen et al., 2009). The activation of
endothelial cell and VSMC Y1Rs and Y5Rs can also trigger
cellular proliferation that contributes to the progression of intima
thickening (Zukowska-Grojec et al., 1998a, Pons et al., 2003;
Li et al., 2005). Increases in NPY and Y1R and Y5R are also
associated with platelet aggregation and adhesion following
thrombosis (Ruohonen et al., 2009). Zhou et al. showed that
binding of NPY to Y1R on macrophages promotes the synthesis
and production of pro-inflammatory highmobility group protein
B1 (HMGB1) via a PKC/ERK dependent pathway, which can
damage endothelium integrity (Zhou et al., 2013).

In rats, an angioplasty injury model of carotid arteries
has demonstrated that NPY stimulates the formation of
atherosclerotic plaque lesions, accompanied with increased
Y1R and Y5R expression, proliferation of VSMC and
neovascularization of plaque (Li et al., 2005; Ruohonen
et al., 2009). These not only intensify plaque growth but also
enhance the risk of plaque rupture and hemorrhage (Li et al.,
2005; Ruohonen et al., 2009). The NPY-induced effects on
atherosclerotic lesions can be abolished by a Y1R antagonist
(Li et al., 2005). Activated Y2R on endothelial cells and VSMCs
promote the secretion of NO and VEGF, inhibiting anti-
angiogenic endostatin and angiostatin, to facilitate proliferation,
migration, and angiogenesis (Erlinge et al., 1994; Kitlinska
et al., 2005; Zhu et al., 2016). The ischemic and inflamed
atherosclerotic tissue triggers an elevation in DPP-4 secretion
within the endothelium to increase cleavage of NPY1−36 to
NPY3−36 (Ghersi et al., 2001). The peptide NPY3−36 has a
higher binding affinity for Y2R and Y5R, thereby shifting NPY
activity toward a pro-angiogenic profile, further enhancing
vascularization and lesion vulnerability (Li et al., 2011).
Nonetheless, some studies have underlined the gender-specific
effects of the positive relationship of NPY and atherosclerotic
plaque neovascularization upregulation in males only, suggesting
a potential androgen-dependent effect (Zukowska-Grojec et al.,
1991; Li et al., 2011).

Neuropeptide Y and Myocardial
Ischemia/Infarction
Animal studies suggest that cardiac NPY is released from
sympathetic nerves during experimentally induced myocardial
infarction (Han et al., 1989) although its role in this context is

still unclear. Several studies have underlined the benefits of the
pro-angiogenic properties of NPY in an ischemic environment,
including hindlimb ischemia (Lee et al., 2003; Tilan et al., 2013),
and chronic myocardial ischemia (Robich et al., 2010; Matyal
et al., 2012). Robich et al. demonstrated that 3 weeks of NPY
treatment enhanced arteriole formation via the upregulation
of DPP-4, Y1R and pro-angiogenic factors including VEGF,
endothelial nitric oxide synthase (eNOS) and platelet-derived
growth factor (PDGF) in a porcine model of myocardial ischemia
(Robich et al., 2010).

Despite these potential beneficial effects, however, other
studies have suggested detrimental actions of NPY in relation
to myocardial ischemia. A study conducted in dogs found that
intra-coronary administration of low dose NPY over 5min was
sufficient to reduce blood flow in the coronary artery by 39%,
with unaltered aortic pressure and heart rate (Maturi et al.,
1989). The vasoconstrictive effects of NPY in the coronary
arteries results in ST-T wave alterations and reduction in intra-
myocardial pH and left ventricle ejection fraction, inducing
myocardial ischemia in dogs (Maturi et al., 1989). Clarke et al.
demonstrated that administration of NPY can induce myocardial
ischemia in humans via the initiation of abnormal microvascular
vasoconstriction (Clarke et al., 1987). More recently, Rosano
et al. (2017) outlined similar effects of NPY-induced transient
myocardial ischemia in patients with microvascular angina. This
was despite similar vasoconstrictive effects of exogenous-NPY
on epicardial coronary artery in patients from both groups.
Nonetheless, some argued that the observations obtained in this
study could be confounded by the small sample size, gender, age
and individual biochemistry profile including blood glucose, LDL
and some inflammatory biomarkers (Zhao et al., 2017).

Clinical studies before the advent of percutaneous coronary
angiography and modern medical treatment have also shown
that peripheral venous “NPY-like activity” is elevated during
myocardial infarction and left ventricular failure and correlates
with 1-year mortality (Hulting et al., 1990; Ullman et al., 1994a).
More recently, we have shown that peripheral venous levels of
NPY are significantly elevated in patients undergoing primary
percutaneous intervention following ST-elevation myocardial
infarction and remain high for at least 48 h (Cuculi et al.,
2013). Moreover, venous NPY levels correlated with indices of
reperfusion and microvascular resistance. It may be that after
placement of a stent in an epicardial coronary artery, local
cardiac NPY release limits microvascular flow and leads to
larger myocardial infarctions and a worse prognosis. Peripheral
venous sampling is likely to be less accurate in determining
cardiac NPY release though as hepato-mesenteric release also
contributes significantly to circulating levels (Morris et al., 1997).
Whilst NPY produces vasoconstriction in canine (Tanaka et al.,
1997) and human (Franco-Cereceda et al., 1985; Tseng et al.,
1988) epicardial coronary arteries directly and by potentiating
norepinephrine mediated vasoconstriction, it has not been
directly shown whether NPY vasoconstricts small arteries and
arterioles in the coronary microvasculature (which lack alpha1
adrenergic receptors).

Overall, NPY therefore seems to play a dual-role in
worsening ischemia in the short term but potentially promoting
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angiogenesis in the longer term. Elucidating the receptor
signaling pathways behind these responses therefore warrants
further study.

Neuropeptide Y and Cardiac Remodeling
Uncontrolled hypertension is a major contributor to the
development of more profound cardiovascular diseases, for
which initial responses include cardiac remodeling of the left
ventricle (left ventricular hypertrophy; LVH) via attenuation of
the extracellular matrix and hypertrophic processes (Mcdermott
and Bell, 2007). The vasoconstrictive and pro-angiogenic
properties of NPY have been found to perform compensatory or
detrimental myocardial remodeling in response to hemodynamic
overload and ischemia (Zukowska-Grojec et al., 1998a; Ghersi
et al., 2001; Mcdermott and Bell, 2007). NPY-receptor specific
effects may play a consistent or opposing role on cardiac
hypertrophy depending on the circumstances (Erlinge et al.,
1994; Zhang et al., 2015b).

Zhang et al. have demonstrated that long-term subcutaneous
administration of NPY results in increased systolic blood
pressure and hypertension-induced cardiac hypertrophy (Zhang
et al., 2015b). Several studies have identified the activation of
Y1R and Y2R in ventricular cardiomyocytes to be a consistent
player involved in the pathogenesis of cardiac hypertrophy
(Nicholl et al., 2002; Allen et al., 2006; Callanan et al., 2007).
Y1R and Y2R activity will potentiate elevations in intracellular
Ca2+/CaMK andMAPK signaling, triggering VSMCmitogenesis
and migration and regulating protein turnover and gene
expression in hypertrophying cardiomyocytes (Li et al., 2011;
Zhang et al., 2015b; Medzikovic et al., 2017). Recent studies have
highlighted that NPY-induced Ca2+/CaMK and p38 signaling
cascades mediate compromised cell viability, energy metabolism
and mitochondrial membrane potential integrity in cultured rat
cardiomyocytes (Luo et al., 2015; Hu et al., 2017).

Genetic variations in Y2R have been implicated in
cardiovascular metabolism, systolic blood pressure variability
and LVH (Arnett et al., 2009; Saraf et al., 2016). Y5R synergises
with other receptors and has been shown to potentiate MAPK
activation (Pellieux et al., 2000) and cardiomyocyte hypertrophic
responsiveness in a hypertensive rat model (Bell et al., 2002).

NPY and Ventricular Arrhythmias
Increased cardiac sympathetic drive is pro-arrhythmogenic in the
context of acute ischemia and chronic heart failure, via increased
Ca2+ influx (Opie and Clusin, 1990), and this is particularly
true in the presence of an already pro-arrhythmogenic substrate
(Zipes et al., 2018). However, in addition to the effect of NE
there is evidence that NPY released during high level sympathetic
stimulation may also increase rates of ventricular arrhythmia.
NPY receptors are present on rat and human myocytes (Jonsson-
Rylander et al., 2003; Dvorakova et al., 2008), and can affect Ca2+

cycling in rat and guinea pig myocytes, although actions do seem
to vary depending on species (Millar et al., 1991; Bryant and Hart,
1996; Del Puy Heredia et al., 2005). Furthermore, NE lowers the
ventricular fibrillation threshold (VFT) in a Langendorff perfused
rat heart model with intact innervation; an effect blocked by
metoprolol as expected. However, metoprolol does not have

this effect in the presence of high frequency stellate ganglion
stimulation (Herring, 2015). This may be caused by the co-release
of NPY, as exogenous NPY also lowers VFT, and lowered VFT
due to stellate stimulation is abrogated by the combined use of
Metoprolol and an NPY antagonist.

A direct action on cardiomyocytes does not appear to be the
only mechanism by which NPY could be pro-arrhythmogenic.
Inhibition of vagally mediated bradycardia by sympathetic nerve
stimulation was first found to be potentially mediated by NPY
by Potter (Potter, 1985), and was subsequently shown to be
mediated by the Y2R through the use of a Y2R antagonist (Smith-
White et al., 2001; Herring et al., 2012) and Y2 receptor knock-
out (Smith-White et al., 2002). Y2Rs are found on cholinergic
vagal neurons in the guinea pig right atrium and around the
sino-atrial node, and exogenous NPY limits bradycardia in
response to vagus nerve stimulation but not an acetylcholine
analog (Herring et al., 2008). This appears to be via a Y2R and
PKC-dependent mechanism reducing acetylcholine release and
provides evidence of sympatho-vagal cross talk. The protective
effect of vagal stimulation (Myers et al., 1974; Nash et al., 2001;
Ng et al., 2007; Kalla et al., 2016) may therefore be limited by
the co-release of NPY during high-level sympathetic activation.
However, in a rat model of acute myocardial infarction, use of
an Y2R antagonist did not reduce rates of ventricular arrhythmia
compared to placebo (Omerovic et al., 2007). Similarly, rates
of ventricular arrhythmia in a porcine ischemia-reperfusion
model were not significantly different in animals infused with
a Y2R antagonist (Ilebekk et al., 2006). However, the efficacy
of Y2R blockade is likely to depend on the size of infarction
and subsequent level of sympathetic hyperactivity and NPY
release. Certainly in a clinical ST elevation myocardial infarction
(STEMI) population who underwent coronary revascularization,
high NPY levels appeared to be correlated with increased severity
of ventricular arrhythmias during inpatient admission, despite
similar left ventricular ejection fractions, troponin levels and
beta-blocker usage (Herring et al., 2016). This suggests that
NPY may have an important role in the pathogenesis of post-
myocardial infarction arrhythmias in a clinical population, and
is an area which warrants further investigation.

NPY and Heart Failure
Systolic heart failure is associated with increased sympathetic
nervous system activity and reduction in parasympathetic
activity (Oberhauser et al., 2001; Sheng and Zhu, 2018). Early
studies showed high baseline levels in heart failure patients
(Maisel et al., 1989; Hulting et al., 1990; Madsen et al., 1993;
Ullman et al., 1994b; Schwertfeger et al., 2004), and indeed there
is evidence that severity of heart failure may be correlated to NPY
level (Liu et al., 1994). The ability to further increase NPY release
in patients with heart failure, may be related to the severity of the
condition. In two studies which measured NPY levels in heart
failure patients post-exercise, one found no significant increase,
whilst one found an increase from 50+/−5 to 60+/−6 pmol/l
(Maisel et al., 1989; Ullman et al., 1994a). A more recent study
has also confirmed higher NPY levels in heart failure patients,
which correlated with BNP levels and echocardiographic markers
of heart failure severity (Ozkaramanli Gur et al., 2017).
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In a study of 9 patients admitted with acute heart failure,
elevated catecholamine and NPY levels were only observed in
the single patient who did not improve with treatment and
subsequently died (Missouris et al., 1998). Other small studies
have only found a trend for elevated NPY levels for example
in heart failure patients undergoing invasive haemodynamic
studies in response to dobutamine (Dubois-Rande et al., 1992),
and in response to exercise (Nicholls et al., 1992). It has been
postulated that these differences may be due to high NPY levels
only occurring when there is sustained and sufficiently high
sympathetic activation (Pedrazzini et al., 2003). As recently
discussed (Widiapradja et al., 2017), it should be noted that
there may also be differences between the plasma levels of
NPY measured in these studies, and actual cardiac tissue
concentrations. A high cardiac output model of heart failure
in the rat found high plasma levels but reduced tissue levels
in the heart (Callanan et al., 2007) although this may be as a
result of increased cardiac release of NPY. As well as changes
in NPY levels, the same study found a shift in mRNA from
the Y1R to the Y2R in heart failure, and this may represent
another way in which differential effects are mediated. This has
also been shown in humans, with lower levels of Y1R mRNA
in endomyocardial biopsies from end-stage heart failure hearts
at the time of transplant and in transplanted hearts 1 year post-
transplant, compared to control donor hearts prior to transplant
(Gullestad et al., 1998). It should, however, be noted that donors
were younger than the two patient groups in this case. Increased
NPY levels have also been specifically found in a rat model of
stress cardiomyopathy (Ananda et al., 2012), as well as in a case
report of a patient with stress cardiomyopathy (Szardien et al.,
2011).

Different mechanisms that may mediate the association
of dysregulated NPY signaling and heart failure have been
suggested. NPY has been found to damage mitochondrial
structure and decrease energy metabolism in neonatal rat
cardiomyocytes (Luo et al., 2015). In addition, there is evidence
that NPY activates rat cardiac fibroblasts (Zhu et al., 2015), an
effect blocked by Y1R antagonist, and cardiac fibroblasts are
known to be key to cardiac remodeling and fibrosis and are thus
central to the pathogenesis of heart failure (Brown et al., 2005).

In spite of this, increased NPY levels may also play a protective
role in heart failure. NPY has been shown to have diuretic and
natriuretic actions in the kidneys, despite reduced renal blood
blow (Allen et al., 1985). There is also evidence that it can reduce
renin levels in rat models (Pfister et al., 1986), including in a rat
model of heart failure (Zelis et al., 1994).

Neuropeptide Y and Diabetic
Cardiomyopathy
Diabetic cardiomyopathy is a recognized entity in diabetic
patients without overt coronary disease (Giles and Sander,
2004). Given the autonomic neuropathy associated with diabetes,
it has been postulated that diabetic cardiomyopathy may be
caused by dysregulated neuropeptide signaling and imbalance
of sympathetic-parasympathetic crosstalk in the myocardium
as a result of autonomic neuropathy (Ejaz et al., 2011). This

includes NPY, and indeed reduced NPY levels in response to
hypoglycaemia have been found in patients with autonomic
neuropathy as opposed to without (Bolinder et al., 2002). It has
even been suggested that basal NPY levels may be predictive of
sympathetic nerve failure in patients with autonomic neuropathy
(Sundkvist et al., 1992). Although plasma levels of NPY have
been found to be higher in patients with chronic type 2 diabetes
(Matyal et al., 2011), it has been postulated that this may be due
to a compensatory increase in extra-neuronal NPY (Ejaz et al.,
2011), and in the same study right atrial NPY mRNA expression
was reduced compared to non-diabetic patients, along with an
increase in Y2R and Y5R.

Neuropeptide Y and Genetic Polymorphism
Genetic polymorphism in NPY receptors (Y1, Y2, and Y5) have
been associated with cardiovascular dysfunction and predisposal
to early on-set cardiovascular risk (Arnett et al., 2009; Shah et al.,
2009). A common leucine7-to-proline7 polymorphism in the
single peptide of the NPY gene was found to be associated with
increased stress-induced plasma NPY levels, hyperlipidaemia,
compromised low-density lipoprotein cholesterol metabolism as
well as accelerated atherosclerosis, hypertension and coronary
heart disease (Niskanen et al., 2000; Karvonen et al., 2001).
Different NPY single nucleotide polymorphisms have also been
linked to higher plasma NPY levels and are reported to predict
early onset atherosclerosis in US populations (Shah et al.,
2009). In addition, a recent study by Chang et al. observed
an altered cardiac vagal outflow and perceived stress with a
NPY promoter polymorphism (rs16147), suggesting a potential
parasympathetic role for NPY in the modulation of stress (Chang
et al., 2016).

FUTURE DIRECTIONS

The wide range of involvement of NPY in cardiovascular disease
processes makes further study into its associations and actions an
exciting prospect. An initial way in which it may be incorporated
into clinical practice is as a marker of increased sympathetic
activity, and so clinical risk. For example, its apparent correlation
with post-myocardial ventricular arrhythmias (Herring et al.,
2016) could allow it to eventually be used to aid risk stratification
in this population.

As the specific roles of NPY in each disease process
are further elucidated, this will hopefully lead to therapeutic
pharmacological targeting of specific NPY receptors. Use of NPY
receptor antagonists could have significant future clinical use,
e.g., in the treatment of arrhythmias and ischemia. However,
further pre-clinical studies need to be done to clarify the
involvement of NPY, and the effects of specific antagonists, in
order to make this into a possibility.

CONCLUSION

Since its discovery in 1982, NPY has increasingly been found
to play a role in a wide range of physiological functions, across
a number of organ systems. In the cardiovascular system, it
has effects on blood pressure, vasoconstriction, atherosclerotic
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plaque formation, arrhythmia and angiogenesis, amongst others.
It therefore has the potential to be a key player in a number of
cardiovascular disease processes. However, the range of its effects
makes defining a predominantly cardio-protective or pathogenic
role extremely difficult. Indeed, it has been postulated that its
overall effect may be dose dependent, with protective effects
at low doses and pathogenic effects at higher doses. The exact
time point in the disease process may be therefore be key to
understanding its regulatory role. In addition to this, altered NPY
receptor sub-type expression has the ability to change the overall
influence of released NPY, again modulating its effects. Studies
may be further complicated by how NPY levels are measured,
as plasma and local tissue concentrations are likely to differ.
The high burden of cardiovascular disease, combined with the
pleiotropic influence of NPY, demonstrates the importance of

further elucidating the role of NPY in cardiovascular disease
processes. The potential to target NPY and its receptors tomodify
these processes is an important area for future research.
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