
W16–W21 Nucleic Acids Research, 2016, Vol. 44, Web Server issue Published online 3 May 2016
doi: 10.1093/nar/gkw387

PHASTER: a better, faster version of the PHAST phage
search tool
David Arndt1, Jason R. Grant1, Ana Marcu1, Tanvir Sajed1, Allison Pon1, Yongjie Liang1 and
David S. Wishart1,2,3,*

1Department of Computing Science, Edmonton, AB T6G 2E8, Canada, 2Department of Biological Sciences,
University of Alberta, Edmonton, AB T6G 2E9, Canada and 3National Institute for Nanotechnology, 11421
Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada

Received January 30, 2016; Revised April 15, 2016; Accepted April 27, 2016

ABSTRACT

PHASTER (PHAge Search Tool – Enhanced Release)
is a significant upgrade to the popular PHAST web
server for the rapid identification and annotation of
prophage sequences within bacterial genomes and
plasmids. Although the steps in the phage identifica-
tion pipeline in PHASTER remain largely the same as
in the original PHAST, numerous software improve-
ments and significant hardware enhancements have
now made PHASTER faster, more efficient, more vi-
sually appealing and much more user friendly. In par-
ticular, PHASTER is now 4.3× faster than PHAST
when analyzing a typical bacterial genome. More
specifically, software optimizations have made the
backend of PHASTER 2.7X faster than PHAST, while
the addition of 80 CPUs to the PHASTER compute
cluster are responsible for the remaining speed-
up. PHASTER can now process a typical bacterial
genome in 3 min from the raw sequence alone, or in
1.5 min when given a pre-annotated GenBank file. A
number of other optimizations have also been imple-
mented, including automated algorithms to reduce
the size and redundancy of PHASTER’s databases,
improvements in handling multiple (metagenomic)
queries and higher user traffic, along with the
ability to perform automated look-ups against 14
000 previously PHAST/PHASTER annotated bacte-
rial genomes (which can lead to complete phage
annotations in seconds as opposed to minutes).
PHASTER’s web interface has also been entirely
rewritten. A new graphical genome browser has been
added, gene/genome visualization tools have been
improved, and the graphical interface is now more
modern, robust and user-friendly. PHASTER is avail-
able online at www.phaster.ca.

INTRODUCTION

Bacterial genomes and plasmids can contain a large fraction
(>20% in some cases) of functional and non-functional bac-
teriophage genes (1). Indeed, these non-bacterial, prophage
sequences likely account for a significant proportion of the
variation within bacterial species or clades. The fact that
phages and prophages allow bacteria to acquire antibiotic
resistance, to adapt to new environmental niches or to be-
come pathogenic has led to renewed interest in identifying
and annotating prophage sequences in bacterial genomes.
As a result, prophage finding programs and web servers
have become integral to many bacterial genome annotation
pipelines. One of the first web servers to be developed for
phage identification and annotation was PHAST (PHAge
Search Tool). First published in 2011 (2), PHAST has be-
come one of the most popular tools for prophage identifi-
cation in bacterial genomes. To date, the PHAST paper has
received more than 400 citations and the PHAST website
receives up to 7300 job submissions per month with up to
30% of these coming through its web API (Application Pro-
gramming Interface). The popularity of the server appears
to be due to a number of factors, such as its speed, accu-
racy, visually appealing output and the fact that it appeared
just as NextGen sequencing of bacterial genomes started to
‘take off” (3).

The PHAST prophage analysis pipeline is relatively
straightforward. In particular, PHAST accepts both Gen-
Bank and FASTA formatted genomic sequence data,
and performs BLAST (4) searches against a custom
prophage/phage database that combines protein sequences
from the National Center for Biotechnology Information
(NCBI) phage database and the prophage database de-
veloped by Srividhya et al. (5). Phage-like genes are then
clustered into prophage regions using DBSCAN (6). Non-
phage genes in these identified regions are annotated by a
second BLAST search against a non-redundant bacterial
protein database, and the prophage regions are assigned a
completeness score based on the proportion of phage genes
in the identified region. All of the annotated prophage data

*To whom correspondence should be addressed. Tel: +1 780 492 0383, Fax: +1 780 492 1071; Email: david.wishart@ualberta.ca

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

http://www.phaster.ca


Nucleic Acids Research, 2016, Vol. 44, Web Server issue W17

is then displayed on the web through a variety of hyper-
linked tables and colored chromosomal maps.

PHAST was introduced at a time of increasing inter-
est in prophage identification, which had already seen
the development of several stand-alone phage search pro-
grams, namely Prophage Finder (7), Phage Finder (8) and
Prophinder (9). Since PHAST’s original release, phage find-
ing has continued to develop, and several other high quality
phage identification tools have since been published. Some
of the newer phage and prophage identification tools in-
clude PhiSpy (10) and VirSorter (11). PhiSpy, in addition
to performing sequence similarity-based searches, analyzes
several other sequence-based statistics to help identify novel
phages that are not represented in existing phage databases.
VirSorter is geared towards more specialized applications
such as finding phages in draft genomes and Single-cell Am-
plified Genomes (12,13). VirSorter also handles fragmented
metagenomic data as well as whole genomic data.

In addition to the appearance of new algorithms for
phage searching and new kinds of user demands by phage
scientists (i.e. handling metagenomic data), other impor-
tant developments in the field have taken place. These in-
clude the rapid growth in the number of sequenced bacte-
rial and phage genomes. Since 2011, the size of the NCBI
phage/prophage database has grown by a factor of four
while the number of sequenced bacteria has grown by nearly
five fold. This has led to a massive increase in both database
sizes and search times. Likewise, the ease with which bacte-
rial genomes are now sequenced has led to a 12× growth in
the number of queries being handled by PHAST (and other
phage searching programs) over the past five years. In the
last year alone, visits to PHAST have increased by ∼60%
and the server now processes one job every ∼6 min.

These rapid developments in both bacterial genomics and
the phage/prophage field led us to revisit PHAST and to ac-
tively explore methods to enhance and upgrade the PHAST
server. These efforts led to the creation of PHASTER
(PHAge Search Tool – Enhanced Release), a faster, bet-
ter, more modern version of PHAST. To improve PHAST’s
processing speed, we made a number of algorithmic (soft-
ware) and hardware improvements. We also expanded and
enhanced the way PHAST’s phage and bacterial databases
are prepared, read and handled. Improvements were also
made to the user interface to make the website more visu-
ally appealing and far more convenient to use. Further, by
rewriting much of the PHAST codebase, we were able to
make the website easier to maintain into the future. These
and other improvements are described in more detail below.

WHAT’S NEW

Software upgrades and optimizations

Phage and prophage searching is a computationally inten-
sive task with most of the time and computational resources
being consumed with large scale sequence comparisons and
alignments. The original version of PHAST used an older,
legacy version of BLAST that was both slower and less able
to handle large numbers of query sequences. By upgrading
to the latest version of BLAST (known as BLAST+, version
2.3.0+ (14)) we were able to overcome a number of previous
limitations and improve PHAST’s overall performance. In

particular, BLAST+ is specially designed to handle longer
and greater numbers of sequences more efficiently and to do
its alignments more quickly than earlier versions of BLAST.
Although much faster alternatives to BLAST exist, they
are generally less sensitive. Tests with one such alternative,
RAPSearch2 (15), led to a ∼7% loss in sensitivity (data not
shown). Upgrading to BLAST+ maintained prediction ac-
curacy while achieving a 15–25% speedup to the server’s
BLAST search phases.

BLAST search speeds were further improved through
various computing cluster optimizations. The old PHAST
employed a grid scheduler but with only minimal optimiza-
tions, resulting in frequently idle CPU cores. PHASTER
now prepares input to its grid scheduler such that all CPU
cores are used much more efficiently, particularly in cases
when the cluster is handling a single user submission and
must complete it as quickly as possible. PHASTER now di-
vides its bacterial database into several parts, allowing com-
puting nodes to specialize in particular sub-databases. In
PHASTER, each query sequence is now searched against
each sub-database component, and the results are subse-
quently combined, with appropriate adjustments made to
the BLAST expectation values (e-values) for the true to-
tal size of the database searched. Each database component
can be handled by multiple cluster nodes, providing flexibil-
ity to the cluster’s job scheduler, and ensuring redundancy
in case of hardware failure. In addition, the set of query se-
quences is partitioned evenly into a small number of sub-
groups, such that the sum of the sequence lengths in each
sub-group is approximately the same, and each sub-set is
run separately. With these optimizations, smaller individual
BLAST+ jobs can be more readily distributed to available
CPU cores as they become available. The optimal number
of CPU cores per individual BLAST job and the number
of groups into which to partition the query sequences were
determined through careful parameter optimization. It is
also important to note that the improved runtimes and en-
hanced parallelism did not compromise the accuracy of the
prophage identifications (see below).

PHASTER now provides the option to search for phage
regions in contigs assembled from metagenomic data. In
this mode, complete and partial genes are predicted us-
ing FragGeneScan (16), and the predicted prophages are
arranged by contig in the presented results. We assessed
contigs of various lengths derived from a test genome (Es-
cherichia coli O157:H7, GenBank accession NC 002655)
to determine both the minimum and the optimal contig
lengths for detecting prophages in metagenomic data. We
found that a small number of phage regions (∼15%) could
be identified in contigs as short as 2000 bp, while ∼90%
of prophages could be identified in contigs >20 000 bp
long. Based on these data we set a threshold minimum con-
tig length of 2000 bp (although we obviously recommend
longer contig lengths, if available). The full set of contig per-
formance data are available on the PHASTER website.

Database preparation

As noted earlier, the rapidly growing size of both bacte-
rial and phage/prophage sequence databases resulted in
substantial increases in the runtimes for PHAST’s BLAST



W18 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Figure 1. A screenshot montage of the upgraded PHASTER user interface.

searches. For instance, the number of bacterial prophage se-
quences has increased from around 45 000 as of January
1, 2011 to over 187 000 today. In addition, the bacterial
sequence database, which is used in PHAST’s annotation
step, has grown by a factor of nearly 5X since PHAST was
first released. The latest version of the bacterial sequence
database consists of >16 million protein sequences from
RefSeq (17). However, the bacterial sequence database has
a high degree of sequence redundancy with many of the in-
dividual gene sequences being very similar to one another.
This sequence redundancy adds little value to the anno-
tation process while needlessly slowing down the BLAST
searches. For PHASTER, we reduced the size of the bacte-
rial sequence database by removing sequences with >70%
sequence identity to any other sequence in the database, us-
ing CD-HIT (18). The resulting database now contains just
under nine million bacterial protein sequences, or 55% of
the pre-filtered database size. This database reduction led
to a two-fold reduction in the search time for this phase of
the PHASTER annotation pipeline.

A surprisingly high percentage of queries submitted to
PHAST consist of genomes that had been previously an-
notated by PHAST. Rather than treating each query as

a completely novel sequence and spending several min-
utes repeating the same annotation process that had been
completed previously, we have implemented a ‘quick query
check”. With this new checking routine in place, sequences
or sequence files that are submitted to PHASTER are
rapidly compared against a local database of >14 000 non-
redundant, previously annotated (via PHAST) bacterial or
plasmid genomes. In the quick query check the query se-
quence’s nucleotide frequencies and total sequence length
are computed and rapidly matched against a database of
these same statistics for all cached sequences. Potential se-
quence matches are isolated (usually just one, if any) and
then aligned against the query sequence to ensure that only
exact sequence matches are used. Having identified a query
that is identical to an entry in PHASTER’s database, the
annotations are transferred and the result is returned to the
user in a few seconds. As a result, while the average de novo
query to PHASTER may take 2–3 min, a significant num-
ber of queries can be returned in 2–3 s.



Nucleic Acids Research, 2016, Vol. 44, Web Server issue W19

Table 1. Detail of PHASTER’s performance upgrades, and a comparison of their impact on runtimes for a 5.5 Mbp test genome (Escherichia coli O157:H7,
GenBank accession NC 002655)

Cumulative set of performance enhancements
BLAST versus viral

DB runtime (s)
BLAST versus bacterial DB

runtime (s)
Total runtime on GenBank

annotated genome (s)
Total runtime on unannotated

genome (s)

PHAST (baseline) current DBs, no other upgrades 191 576 270 899
PHASTER (upgrade 1) – filter bacterial DB 191 309 270 632
PHASTER (upgrade 2) – cluster upgrade 88 166 167 386
PHASTER (upgrade 3) – BLAST+ 77 132 156 341
PHASTER (upgrade 4) – partition query sequences evenly 47 103 126 282
PHASTER (upgrade 5) – bacterial DB, optimize parameters 47 48 126 227
PHASTER (upgrade 6) – faster front-end server 47 48 100 205

Hardware upgrades

There is only so much software optimization that can be
performed before one reaches a point of diminishing re-
turns. As a result, a number of hardware upgrades had
to be made to the PHASTER server. In particular, we
have expanded the number of CPU cores in the comput-
ing cluster available from 32 (in the original PHAST) to
112 (in PHASTER). The PHASTER cluster now has 32 In-
tel Xeon 5150 @ 2.66 GHz, 32 AMD Opteron 6320, and
48 AMD Opteron 6348 processing cores. To further en-
hance PHASTER’s performance, we have removed a num-
ber of other web servers from the PHASTER cluster. This
has freed up more CPU cycles to accommodate the server’s
heavy daytime use. All of PHASTER’s gene prediction and
BLAST+ search analyses are now run on this 112 core clus-
ter. In addition, the front-end for the PHASTER website
has been installed on a much quicker virtual server which
is leased through the Google Compute Engine. This front-
end server features 2 Intel Xeon CPUs @ 2.30GHz and
a local solid-state drive. The front-end performs many of
PHASTER’s other computations, and now does so ∼50%
faster. Moreover, because PHASTER now has a dedicated
front-end server, it is able to accommodate two jobs simul-
taneously for the most memory-intensive portions of the
pipeline. This provides faster results during periods of heav-
ier use.

User interface enhancements

The original PHAST web interface, while very functional
and utilitarian, was actually quite rudimentary and re-
lied on a number of web technologies that are no longer
current. PHASTER has a much more modern and user-
friendly interface. PHAST’s front-end, which was imple-
mented using Perl and CGI, has been completely re-written
for PHASTER using Ruby on Rails. PHASTER’s graphi-
cal genome viewer has also been completely rewritten and
modernized. The old genome viewer in PHAST provided
circular and linear genome browsers implemented in Adobe
Flash. Flash is a technology that is slowing being phased
out by many websites and is not available on most mo-
bile devices. As a result, PHASTER’s interactive phage
viewer has now been re-done using JavaScript, using An-
gularPlasmid (http://angularplasmid.vixis.com) for the cir-
cular genome view and D3 (http://d3js.org) for the linear
genome view. As a result, PHASTER’s graphical user in-
terface is faster, more robust and better-looking (Figure 1).
A more robust, threaded queuing system has also been im-
plemented using Sidekiq (http://sidekiq.org). Another in-
terface upgrade involved the reformatting of PHAST’s vast

collection of pre-computed prophage predictions for over
14 000 different bacterial genomes. PHAST presented these
data in a single static table that was becoming increasingly
slow and unwieldy to view or search. In PHASTER this
database is now fast-loading, paginated and dynamically
searchable.

PHASTER also allows visitors to optionally save their
searches using a cookie-based storage mechanism by click-
ing on the appropriate check box. This will work for anyone
returning to the PHASTER website using the same browser
on the same computer, provided that the browser has cook-
ies enabled. Previously submitted jobs saved in this way will
be available under the new ‘My Searches” section, without
any need to log in. This feature is optional, and users can
still bookmark their results pages instead.

PERFORMANCE AND FEATURE EVALUATION
Comparisons of typical runtimes between PHAST and
PHASTER are provided in Table 1. Note that PHAST
(which is still operational) runs on 32 CPU cores while
PHASTER runs on 112 CPU cores. Table 1 highlights the
speed-ups obtained for each of the six different optimiza-
tions made, from the redundancy reduction of the bacterial
genome database to the implementation of BLAST+ to the
addition of another 80 CPU cores. In particular, reducing
the bacterial database’s redundancy nearly halved search
times for that database, increasing the number of comput-
ing cluster cores to from 32 to 112 improves BLAST run-
times to ∼6 min for an unannotated genome, upgrading to
BLAST+ further improves the total time by ∼20%, parti-
tioning the query sequences more evenly via total amino
acid count offers a ∼40% overall BLAST speed improve-
ment, and the division of the bacterial database into sepa-
rate parts to be searched separately more than halved the
bacterial database search time, reducing it to just 48 sec-
onds on average. Using a faster, dedicated front-end server,
allowed processing times to be reduced from approximately
72 to 45 s. With all these enhancements, PHASTER’s total
runtime is now ∼210 s for a typical raw genome sequence
and ∼100 s for pre-annotated GenBank input. All run times
quoted in Table 1 were measured using the same test genome
(E. coli O157:H7, with GenBank accession NC 002655).

Previous comparisons of PHAST to other prophage iden-
tification software have shown that PHAST’s accuracy is ei-
ther superior or comparable to other leading tools when an-
alyzing complete genomic sequence data (2,11). Tests on a
set of 54 bacterial genomes in 2011 showed that PHAST
achieved a sensitivity of 79.4% and positive predictive value
(PPV) of 86.5% on unannotated DNA sequences, and a
sensitivity of 85.4% and PPV of 94.2% on GenBank an-

http://angularplasmid.vixis.com
http://d3js.org
http://sidekiq.org


W20 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Table 2. A feature comparison between PHAST and PHASTER

Feature PHAST (as of January 2011) PHASTER

Viral sequence database ∼45 000 sequences ∼187 000 sequences
Bacterial sequence database ∼4 million sequences ∼9 million sequences, streamlined through CD-HIT filtering
Computing cluster 32 CPU cores 112 CPU cores
BLAST Legacy version 2.2.16 BLAST+ version 2.3.0+
Cluster use optimization Rudimentary Smart partitioning of query sequences and target bacterial

DB; optimized execution parameters
Front-end server Shared, single CPU 50% faster, dedicated
Front-end website Perl and CGI Ruby on Rails
Genome viewer Adobe Flash JavaScript, AngularPlasmid and D3
Queuing system Flat file Uses Sidekiq for threading submissions
Recall previous user submissions Bookmark page ‘My Searches’ feature or bookmark
Pre-computed genome results for quick
query searching

0 >14 000

Retrieve previously annotated genome
results

GenBank accession or GI number only GenBank accession, GI number, or full sequence

Metagenomic data handling NA Supported for contigs >2000 bp

notated genomes (2). Since PHAST’s original publication,
larger phage databases and small refinements to PHAST’s
phage identification routines have led to improved accu-
racy. In response to user feedback, slight parameter adjust-
ments have also been made to increase the algorithm’s sen-
sitivity so that more prophages can be identified. Tests on
the same set of 54 bacterial genomes (1) used for evalu-
ation in 2011 show that PHASTER now achieves a >5%
higher sensitivity of 85.0% (versus 79.4% for PHAST) on
unannotated genomes, with a slightly improved PPV of
87.3% (versus 86.5% for PHAST). On GenBank annotated
genomes, PHASTER has a superior sensitivity of 86.9%
(versus 85.4% for PHAST), and a PPV of 91.0% (versus
94.2% for PHAST). Because of the parameter adjustments
made to increase PHASTER’s sensitivity, the latest scores
show a slight increase in the number of false positives.
However, given that the ‘gold standard’ annotations used
for evaluation are now 13 years old (1), many prophages
identified as ‘false positives’ relative to this standard are
likely to be true prophages. Indeed, manual inspection of
PHASTER’s predictions reveals many with highly signif-
icant hits to telltale phage genes or clusters of predicted
phage genes from the same species, suggesting that 40–
50% of these ‘false positive’ predictions are in fact true
prophages. If these corrections to the gold standard anno-
tations were included in our calculations, PHASTER’s per-
formance would be even better. Further evaluation details
are posted on the PHASTER website.

Table 2 highlights some of the main feature differences
between PHAST and PHASTER. In this table we see that
PHAST takes 899 s for a typical genome/phage annotation
while PHASTER takes 205 s for the same genome. PHAST
only uses 32 cores, while PHASTER uses 112 cores, PHAST
uses BLAST while PHASTER uses BLAST+, PHAST
does not handle metagenomic data while PHASTER eas-
ily handles assembled contigs from metagenomic data,
PHAST lacks a ‘quick query check’ look-up feature while
PHASTER has quick query check capabilities, PHAST was
coded in Perl and CGI while PHASTER was coded in Ruby
on Rails, PHAST uses Adobe Flash for visualization while
PHASTER uses more modern JavaScript tools for visual-
ization and finally both PHAST an PHASTER achieve the
same accuracy in prophage identification.

CONCLUSIONS

To handle the rapidly expanding databases sizes and in-
creasing popularity of PHAST we decided to undertake a
near complete back-end re-write and a near complete front-
end overhaul of the PHAST web server. This work led to
the creation of a new, enhanced release of PHAST called
PHASTER. In many respects, PHASTER is faster, better,
easier to use and more robust than PHAST. These per-
formance enhancements were achieved through code op-
timization, improved database preparation, and hardware
upgrades. We also made PHASTER’s web interface more
convenient, user-friendly, and substantially more robust in
terms of its ability to handle higher user traffic loads. Over-
all, PHASTER is 4–5× faster than PHAST and, in some
cases, it can be up to 400 times faster (if a previously anno-
tated genome is submitted). PHASTER is now capable of
handling assembled contig sets from metagenomic data and
it offers number of useful interface enhancements for view-
ing its output, testing its performance, and exploring previ-
ously annotated genomes. These improvements should not
only make PHASTER more appealing for users, they will
also make the server far easier to maintain and sustain into
the future.

FUNDING

Canadian Institutes of Health Research (CIHR); Genome
Alberta, a division of Genome Canada. Funding for open
access charge: CIHR.
Conflict of interest statement. None declared.

REFERENCES
1. Casjens,S. (2003) Prophages and bacterial genomics: what have we

learned so far? Mol. Microbiol., 49, 277–300.
2. Zhou,Y., Liang,Y., Lynch,K.H., Dennis,J.J. and Wishart,D.S. (2011)

PHAST: a fast phage search tool. Nucleic Acids Res., 39,
W347–W352.

3. Schuster,S.C. (2008) Next-generation sequencing transforms today’s
biology. Nat. Methods, 5, 16–18.

4. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

5. Srividhya,K.V., Rao,G.V., Raghavenderan,L., Mehta,P., Prilusky,J.,
Manicka,S., Sussman,J.L. and Krishnaswamy,S. (2006) Database and
comparative identification of prophages. In: Huang,D-S, Li,K and
Irwin,GW (eds). Intelligent Control and Automation, Lecture Notes in
Control and Information Sciences. Springer, Berlin, Vol. 344, pp.
863–868.



Nucleic Acids Research, 2016, Vol. 44, Web Server issue W21

6. Ester,M., Kriegel,H., Sander,J. and Xu,X. (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: KDD-1996 Proceedings. AAAI Press, Menlo Park, pp.
226–231.

7. Bose,M. and Barber,R.D. (2006) Prophage Finder: a prophage loci
prediction tool for prokaryotic genome sequences. In Silico Biol.
(Gedrukt), 6, 223–227.

8. Fouts,D.E. (2006) Phage Finder: Automated identification and
classification of prophage regions in complete bacterial genome
sequences. Nucleic Acids Res., 34, 5839–5851.

9. Lima-Mendez,G., Helden,J.V., Toussaint,A. and Leplae,R. (2008)
Prophinder: a computational tool for prophage prediction in
prokaryotic genomes. Bioinformatics, 24, 863–865.

10. Akhter,S., Aziz,R.K. and Edwards,R.A. (2012) PhiSpy: a novel
algorithm for finding prophages in bacterial genomes that combines
similarity- and composition-based strategies. Nucleic Acids Res., 40,
e126.

11. Roux,S., Enault,F., Hurwitz,B.L. and Sullivan,M.B. (2015) VirSorter:
mining viral signal from microbial genomic data. PeerJ, 3, e985.

12. Kamke,J., Sczyrba,A., Ivanova,N., Schwientek,P., Rinke,C.,
Mavromatis,K., Woyke,T. and Hentschel,U. (2013) Single-cell
genomics reveals complex carbohydrate degradation patterns in
poribacterial symbionts of marine sponges. ISME J., 7, 2287–2300.

13. Kashtan,N., Roggensack,S.E., Rodrigue,S., Thompson,J.W.,
Biller,S.J., Coe,A., Ding,H., Marttinen,P., Malmstrom,R.R.,
Stocker,R. et al. (2014) Single-cell genomics reveals hundreds of
coexisting subpopulations in wild Prochlorococcus. Science, 344,
416–420.

14. Camacho,C., Coulouris,G., Avagyan,V., Ma,N., Papadopoulos,J.,
Bealer,K. and Madden,T.L. (2009) BLAST+: architecture and
applications. BMC Bioinformatics, 10, 421.

15. Zhao,Y., Haixu,T. and Yuzhen,Y. (2012) RAPSearch2: a fast and
memory-efficient protein similarity search tool for next-generation
sequencing data. Bioinformatics, 28, 125–126.

16. Rho,M., Tang,H. and Ye,Y. (2010) FragGeneScan: predicting genes
in short and error-prone reads. Nucleic Acids Res., 38, e191.

17. Pruitt,K.D., Brown,G.R., Hiatt,S.M., Thibaud-Nissen,F.,
Astashyn,A., Ermolaeva,O., Farrell,C.M., Hart,J., Landrum,M.J.,
McGarvey,K.M. et al. (2014) RefSeq: an update on mammalian
reference sequences. Nucleic Acids Res., 42, D756–D763.

18. Fu,L., Niu,B., Zhu,Z., Wu,S. and Li,W. (2012) CD-HIT: accelerated
for clustering the next-generation sequencing data. Bioinformatics,
28, 3150–3152.


