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Major histocompatibility complex (MHC) genes, also known as human leukocyte antigen
genes (HLA) in humans, are the prevailing contributors of genetic susceptibility to autoim-
mune diseases such asType 1 Diabetes (T1D), multiple sclerosis, and rheumatoid arthritis,
among others (1–3). Although the pathways through which MHC molecules afford autoim-
mune risk or resistance remain to be fully mapped out, it is generally accepted that they
do so by shaping the central and peripheral T-cell repertoires of the host toward autoim-
mune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both
spare autoreactive thymocytes from central tolerance and bias their development toward a
pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central
deletion of autoreactive thymocytes and skew their development toward non-pathogenic
phenotypes. This interpretation of the data is at odds with two other observations: that
in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is
difficult to understand how deletion of one or a few clonal autoreactive T-cell types would
suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive
T-cell specificities.This review provides an update on current advances in our understanding
of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility
and/or resistance and attempts to reconcile these seemingly opposing concepts.

Keywords: MHC class II, autoimmune diseases, susceptibility genes, resistance genes, type 1 diabetes, autoreactive
T cells,T regulatory cells

INTRODUCTION
Major histocompatibility complex (MHC) class II molecules are
surface heterodimers expressed by thymic epithelial cells and pro-
fessional antigen-presenting cells (APCs) that present antigenic
peptides to T-cell receptors (TCR) on cognate T-cells. A devel-
oping thymocyte first encounters a highly heterogeneous array of
endogenous (self) peptide-MHC (pMHC) complexes on thymic
APCs. Combinations of self-peptides and MHC molecules instruct
thymocytes to either survive or perish, based on the affinity/avidity
with which their TCRs bind pMHC. Through processes referred
to as thymic positive and negative selection, thymocytes that bind
self pMHCs with either intermediate-to-low or high avidity are
instructed to survive or perish, respectively (4). As a result, the
peripheral T-cell repertoire is largely composed of T-cells capa-
ble of recognizing foreign peptides in the context of self MHCs
or self pMHCs that are expressed exclusively in peripheral tis-
sues. This forms the basis of self vs. non-self discrimination in
adaptive immunity, ensuring that the peripheral immune system
is populated by a diverse repertoire of T-cells capable of mounting
immune responses against an essentially limitless universe of for-
eign antigens, while minimizing the risk of causing autoimmunity.
Nonetheless, thymic negative selection is not an “air-tight” process
and, as a result, some autoreactive specificities evade negative selec-
tion and populate the periphery (5, 6). As they possess the potential
to cause autoimmunity, additional regulatory mechanisms have

evolved to keep them in check, such as the induction of anergy
or activation-induced cell death by tolerogenic APCs (7, 8), or
suppression by regulatory T-cells (Tregs). The latter can dampen
autoimmune responses through several mechanisms, including
direct inhibition of APCs (9–14).

MHC POLYMORPHISMS AND AUTOIMMUNITY
Antigenic peptides are embedded in the peptide-binding groove
of the MHC class II molecule, which consists of two flanking alpha
helices atop a beta-pleated sheet. With some exceptions, these pep-
tides are anchored onto the MHC class II binding cleft through
their amino acid side chains at four positions, termed pockets 1, 4,
6, and 9. Interestingly, autoimmune disease-promoting MHC class
II alleles often differ from disease-non-promoting ones by only
a few amino acids that are primarily located at the TCR-MHC
interface or in the peptide-binding groove, at times adjacent to
key anchoring pockets (15, 16). This has suggested that MHC-
linked disease risk is associated with differences in the repertoire
of self-peptides that are presented to T-cells. Indeed, substan-
tial evidence from different autoimmune diseases supports this
possibility. For instance, HLA-DRB1 alleles affording susceptibil-
ity to Rheumatoid arthritis (RA) share a conserved sequence of
amino acids at residues 67–74 of the DRβ chain (17), which is
situated on one of the alpha helices flanking the peptide-binding
groove. Genome-wide SNP analyses of seropositive RA patents
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vs. healthy controls confirmed the genetic contribution of two
of these residues, 71 and 74, as well as three others, all of them
located in the peptide-binding groove, to RA susceptibility (18).
Available peptide-binding data from RA-predisposing DRB1∗0401
and ∗0404 vs. RA-protective ∗0402 alleles revealed an association
between the repertoire of bound peptides and polymorphisms
at position 71 (19), although it remains to be determined how
these associations contribute to autoreactivity. Of note, DRB1
residues 71 and 74 appear to be a hotspot for other autoimmune
disease-associated polymorphisms as well, including autoimmune
thyroiditis (20) and Multiple Sclerosis (MS) (21), owing to their
vicinity to the P4 pocket.

A similar phenomenon may underlie the MHC-T1D associ-
ations. By comparing disease-promoting and -protective class II
molecules in mice and humans, it was found that polymorphisms
at DQβ chain positions 56 and 57, located on one of the two alpha
helices flanking the peptide-binding groove, strongly correlated
with both disease susceptibility and resistance (22, 23). Alleles that
encode Asp at position 57 in humans (or Pro56 and Asp57 in mice)
afford protection, whereas those that encode Ser or Ala (or His56
and Ser57 in mice) at these positions afford risk (22, 23). In fact,
an alignment of protective murine I-Aβ chains with their diabeto-
genic I-Aβg7 counterpart reveals a striking consensus sequence
spanning residues 56–67. The I-Aβg7 His56 and Ser57 residues,
unlike the disease-protective Pro56 and Asp57 residues, fail to form
a salt bridge and neutralize the positive charge imparted by Arg76
on the I-Aαd chain, resulting in a positively charged P9 pocket
that favors the binding peptides carrying acidic amino acids at
the C-terminus (24, 25). This positive charge results in the unsta-
ble binding of many self-peptides to I-Ag7 and presumably the
presentation of a narrower range of epitopes (15, 26–30). Simi-
larly in humans, the predisposing class II variants, DQ2 and DQ8,
carry an Ala at the beta chain position 57 and exhibit preference for
binding peptides carrying acidic residues at their carboxyterminus
(31, 32).

MHC POLYMORPHISM AND POSITIVE/NEGATIVE SELECTION
A direct consequence of altered peptide presentation is the under-
mining of a number of MHC class II-mediated processes. For
example, MHC class II molecules that afford autoimmune suscep-
tibility would promote positive selection of pathogenic autoreac-
tive thymocytes in the cortex while failing to trigger their subse-
quent deletion in the medulla. On the other hand, protective class
II would select a repertoire of T-cells endowed with decreased
pathogenicity (33). Another process that likely bears the brunt of
such alteration is negative selection; this is supported by observa-
tions made in animal studies comparing disease-promoting MHCs
to their disease-protective counterparts differing by only a few
amino acids at positions located in the peptide-binding groove. In
these studies, protective class II molecules curbed autoimmunity
by promoting the negative selection of certain, in this case class II-
promiscuous, autoreactive T-cell specificities (34–38). The latter
observations brought forth the idea that protective class II poly-
morphisms located at or near the peptide-binding groove may be
recognized by certain MHC-promiscuous autoreactive TCRs with
an avidity and/or affinity above the threshold required for neg-
ative selection. We have recently shown that dendritic cells play

FIGURE 1 | MHC class II polymorphisms afford autoimmune disease
resistance through shaping the T cell andTreg repertoire. MHC class II
molecules that afford disease risk allow the escape of pathogenic
autoreactive T cells from central tolerance, while protective MHC class II
molecules confer disease resistance through promoting negative selection
as well as autoreactive Treg development. We propose that these
processes are governed by the affinity/avidity with which pMHCs are bound
by TCRs. Disease-protective pMHC interact with MHC-promiscuous,
autoreactive thymocytes with increased affinity/avidity (top and middle
panels), leading to enhanced negative selection and agonist selection of
Tregs, which then dampen the autoimmune response through various
mechanisms. In the bottom scenario, low affinity/avidity interaction
between pMHC and autoreactive TCRs leads to defective negative
selection and Treg development, with the net result of autoimmunity.

a key role in this process (38, 39). Figure 1 depicts the proposed
relationship between pMHC:TCR interaction strength and its out-
come in terms of the selection of pathogenic vs. regulatory T cell
clonotypes, and how MHC polymorphisms play into this selective
process.

These observations are compatible with the idea that low-
avidity presentation of self-peptides by disease-promoting MHCs
to potentially pathogenic autoreactive thymocytes would con-
tribute to autoimmune disease susceptibility by impairing their
negative selection without compromising positive selection, as
the affinity/avidity thresholds for these processes are different
(40). Exposure to increased antigenic loads and/or differentially
processed epitopes in the periphery (41) could then suffice to
fuel the activation of these thymic escapees and their recruitment
into an autoimmune response. Our studies with the diabetogenic,
MHC-promiscuous (but I-Ag7-restricted) 4.1-TCR are entirely
compatible with this view (34–36, 38, 39).

Nevertheless, not all protective class II molecules are equally
effective at eliciting central tolerance of diabetogenic TCRs (33, 36,
38, 39, 42), indicating that class II-associated resistance to autoim-
munity cannot be solely accounted for by this process (deletion of
key autoreactive T-cell specificities). Furthermore, it is difficult to
understand how deletion of one or a handful of autoreactive T-
cell types might be able to blunt autoimmune responses involving
many other specificities. One could argue that enhanced negative
selection of a key immunodominant specificity playing a critical
role in disease initiation would be sufficient. However, without
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knowing if a given specificity is capable of singularly initiating
disease or swaying its outcome, the consequences of its deletion
are hard to predict. Most likely, deleting any single or combination
of T-cell specificity(ies) will not alter the course of a disease that is
mediated by a polyclonal T-cell repertoire, as we have previously
demonstrated (43).

MHC POLYMORPHISM AND TREG DEVELOPMENT
It is therefore likely that enhanced central tolerance of autore-
active T-cells by protective class II molecules cannot be the only
mechanism underlying the MHC-associated autoimmune disease
resistance. Engagement of pMHCs expressed on thymic medullary
epithelial cells or bone marrow-derived APCs by thymocytes can
yield different outcomes, depending on the avidity of the interac-
tion. Although the most avid pMHC:TCR interactions invariably
promote thymocyte apoptosis, strong interactions that fall below
the threshold for deletion can result in an alternative outcome – the
generation of Treg cells. This process, also referred to as “agonist
selection” of regulatory T-cells (44), occurs within a window of
affinity/avidity that spans the thresholds of positive and negative
selection (45).

Since many of the early mechanistic studies on this topic pre-
dated the discovery of Treg cells by as long as a decade (46),
the potential effects of autoimmune disease-associated class II
polymorphisms on Treg cell development and/or function were
not investigated in detail. However, some of these early studies
showed that protective MHC class II molecules induced dominant,
T-cell-transferrable tolerance (47, 48).

The observation that certain (albeit not all) protective class
II molecules lost their anti-diabetogenic effects in monoclonal
(RAG-deficient) autoreactive TCR-transgenic mice led us to sus-
pect a contribution by endogenous (non-TCR-transgenic) autore-
active T-cells to this process (38, 39). We measured the fre-
quency and function of Treg cells in TCR-transgenic and non-
transgenic NOD mice co-expressing T1D-protective class II alleles
(38, 39). Autoreactive TCR-transgenic NOD mice co-expressing
anti-diabetogenic class II alleles harbored increased numbers of
autoreactive Treg cells that had superior regulatory activity as com-
pared to Treg cells arising in mice only expressing wild-type H-2g7.
In non-TCR-transgenic animals expressing protective class II alle-
les, increases in Treg numbers were restricted to the target organ
and local draining lymph nodes, where there was an enrichment
for autoreactive specificities. These observations suggested that
protective class II molecules promote the differentiation of poten-
tially pathogenic autoreactive thymocytes into Treg cells, which
would then be able to effectively blunt all other autoreactive T-cell
responses by suppressing autoantigen presentation in the draining
lymph nodes (38, 39). Furthermore, consistent with the model of
agonist selection, such increases in MHC class II-induced autore-
active Treg selection coincided with the up-regulation of CD5,
CD69, and Nur77 on thymocytes, which are induced by high
affinity pMHC:T-cell interactions (49),and were paralleled by neg-
ative selection (38). Expression of sub-tolerogenic, but still anti-
diabetogenic class II variants in these autoreactive TCR-transgenic
NOD mice promoted increases in the in vivo regulatory capacity of
the peripheral Treg cell pool, owing to increases in the peripheral
frequency of autoreactive regulatory T-cell specificities, further
substantiating the above observations (39). Remarkably, all these

effects were driven by protective class II types expressed exclusively
in DCs, therefore suggesting that class II-driven autoreactive Treg
formation occur in the thymic medulla (38, 39). Figure 2 high-
lights the proposed interactions between disease-promoting and
protective MHC class II molecules on thymic APCs and autoreac-
tive TCRs on thymocytes. The nature of such interaction will be
further discussed below.

These observations help us understand how a single class II
molecule can blunt an autoantigenically complex T-cell response:
agonist-induced development of autoreactive Tregs from thymo-
cytes expressing MHC-promiscuous autoreactive TCRs (Figures 1
and 2). Still, several questions remain as to how protective class II
molecules manage to do so. What are the changes in the bound
peptide repertoire, and/or the overall pMHC structure that pro-
mote enhanced Treg selection? Studies using H-2DM-deficient
mice predicted that such a process is peptide-dependent but not
necessarily peptide-specific, suggesting a dominant role for MHC
residues, as opposed to peptide residues, in driving this outcome
(35). Another observation that provides useful insights is the
requirement for endogenous TCRs in protective MHC-induced
autoreactive Treg formation. Looking at the three different autore-
active TCR/MHC class II combinations that were explored, we
can conclude that not all autoreactive TCRs are overtly MHC-
promiscuous or promiscuous for all protective MHC types and
therefore capable of engaging protective MHC (38, 39). Instead,
we hypothesize that the endogenous autoreactive thymocyte reper-
toire (positively selected and restricted by disease-promoting
MHC types) is inherently promiscuous for other (suppressing or
even non-disease-promoting) MHC types, and that only those
TCRs that can engage the latter with an affinity/avidity above
the threshold required for agonist-induced Treg formation will
contribute to disease suppression. In other words, MHC alleles
affording dominant resistance to a given autoimmune disease are
those capable of harnessing the intrinsic MHC promiscuity of
pathogenic TCRs to generate autoreactive Treg cells.

Since class II molecules are expressed on all professional APCs,
one has to wonder if protective class II types also contribute
to autoimmune disease suppression by shaping the post-thymic
peripheral T-cell repertoire. It is well accepted that disease-
predisposing class II molecules are responsible for presenting self
epitopes to autoreactive T-cells, leading to their activation and
therefore exerting a direct impact on the effector phase of the
autoimmune response. Through antigen presentation, predispos-
ing class II molecules have also been proposed to contribute to
autoimmune inflammation by modulating the cytokine milieu
produced by T-cells (50). The contribution of disease-protective
class II in the periphery, however, is less clear. Certain stud-
ies implicated protective class II molecules in mechanisms such
as “determinant capture” that would interfere with or compete
against self-antigen presentation by disease-predisposing MHCs
(51–53). These mechanisms, although plausible, were countered
by other reports (54–56). Although we find that autoreactive Treg
cells need not have to engage protective pMHC class II com-
plexes in the periphery to effect disease suppression (38, 39),
it remains to be determined whether protective MHC class II
play a role in their homeostatic survival. Repeated encounters
with disease-promoting pMHC in the periphery (57, 58) may be
sufficient for both survival and suppression.
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FIGURE 2 | Protective MHC class II molecules mediate central and
peripheral tolerance by targeting MHC-promiscuous autoreactive
TCRs. Positive selection on I-Ag7 in the thymic cortex determines the
MHC restriction of thymocytes (A). In the absence of protective MHC
molecules, negative selection is defective and fail to purge the repertoire
of pathogenic autoreactive thymocytes (not shown) (B). Transgenic
expression of disease-protective MHC class II molecules on dendritic
cells leads to enhanced negative selection and clonal anergy of

autoreactive, MHC-promiscuous thymocytes, and promotes
autoreactive Treg differentiation and functional development (C). Thymic
derived Tregs then exit into the periphery and suppress the activation of
pathogenic T cells by directly acting on autoantigen-loaded APCs. This
step does not require protective MHC class II molecules, although a role
of protective MHC class II molecules, expressed on peripheral APCs, in
perpetuating autoreactive Tregs or enhancing their homeostasis cannot
be ruled out (D).

HOW AUTOREACTIVE TCRs BIND PROTECTIVE VS.
DISEASE-PROMOTING MHCs
The above interpretation of the data implies that certain autore-
active T-cell specificities have the capacity to recognize more than
one peptide in the context of more than one type of class II mol-
ecule (Figure 2). In fact, it has been established that individual
TCRs have the potential to recognize a surprisingly wide array of
peptides in the context of a single MHC molecule (59), or multiple
MHC molecules presenting one or more peptide(s) (60, 61). Fur-
thermore, we and others have provided evidence that pathogenic

autoreactive TCRs are inherently “MHC-promiscuous” (34, 62–
64). In this context, MHC diversity, we propose, can be viewed as
nature’s guard against T-cell-driven autoimmunity. By exploiting
their tendency to “stick” to certain class II molecules, protective
MHC types can either eliminate autoreactive T-cells at the get-
go and/or, most importantly, instruct them to join the ranks of
regulatory T-cells. The molecular basis underlying the interaction
between autoreactive TCRs and protective MHCs remains as yet
undefined. Structural studies of autoreactive TCRs cloned from
relapsing-remitting MS patients or animals induced to develop
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a similar demyelinating disease (EAE) revealed anomalous char-
acteristics of pMHC binding by these autoreactive TCRs, which
engage cognate peptide in the context of disease-predisposing
class II molecules in an atypical manner that is distinct from
the binding topology of conventional TCRs on foreign pMHC
complexes (65–67). Altered binding appeared to be associated
with fewer contacts between the TCR and the peptide. In some
cases, the TCR/pMHC interaction leaned toward the N-terminal
end of the bound peptide, and in others the TCR/pMHC con-
tact was weakened by the altered peptide docking on the MHC,
due to the partial occupancy of the peptide-binding groove (65).
Whether a pathogenic autoreactive TCR behaves differently in the
presence of a disease-protective MHC remains to be determined.
As we inferred from functional studies, protective MHC mole-
cules may be recognized by a given autoreactive TCR with higher
affinity/avidity than a disease-promoting MHC type, thereby cor-
recting deficiencies in negative selection or Treg development. We
propose that disease-protective class II molecules signal the dele-
tion of autoreactive thymocytes as well as their development into
Tregs by taking advantage of the atypical binding characteristics of
certain autoreactive TCRs, i.e., their intrinsic MHC promiscuity.

CONCLUDING REMARKS
The implications of MHC polymorphism evolution vis-à-vis
health and disease are manifold. Polymorphic class I and II
molecules endow the adaptive immune system with the flexibility
to recognize a wide array of pathogens, in terms of both selecting

a diverse T-cell repertoire in the thymus, and enabling their acti-
vation in the periphery through antigen presentation. In close
association to their function in generating TCR diversity through
thymic education, MHC molecules also have the important role of
discouraging T-cells from brewing autoimmunity. MHC polymor-
phisms affect the outcome of this educational process, with pro-
tective MHC purging harmful clonotypes and disease-promoting
MHC permitting their escape. Furthermore, a previously unappre-
ciated role of protective class II molecules in autoimmune disease
resistance has been identified: mobilization of self-reactive Treg
cells to fight harmful self-reactivity. We propose that protective
class II molecules do so by engaging MHC-promiscuous, autore-
active thymocytes in a manner that promotes Treg formation, and
that future work on elucidating the interaction between autoreac-
tive TCRs and protective class II molecules will shed light on this
very important issue.
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