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Members of the genus Bifidobacterium are among the first microbes to colonize the

human gastrointestinal tract and are believed to exert positive health benefits on their

host. Due to their purported health-promoting properties, bifidobacteria have been

incorporated into many functional foods as active ingredients. Bifidobacteria naturally

occur in a range of ecological niches that are either directly or indirectly connected

to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and

sewage. To be able to survive in these particular ecological niches, bifidobacteria must

possess specific adaptations to be competitive. Determination of genome sequences

has revealed genetic attributes that may explain bifidobacterial ecological fitness, such

as metabolic abilities, evasion of the host adaptive immune system and colonization of

the host through specific appendages. However, genetic modification is crucial toward

fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and

beneficial properties. In this review we provide an up to date summary of the general

features of bifidobacteria, whilst paying particular attention to themetabolic abilities of this

species. We also describe methods that have allowed successful genetic manipulation

of bifidobacteria.
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INTRODUCTION

The past 20 years has seen a research focus on those members of the gut microbiota that
exhibit health-promoting or probiotic effects such as protection of the host against pathogens by
competitive exclusion (Bernet et al., 1994; Hooper et al., 1999), modulation of the immune system
(O’Hara and Shanahan, 2007), and provision of nutrients through the breakdown of non-digestible
dietary carbohydrates (Roberfroid et al., 1995; Leahy et al., 2005). Furthermore, compositional
alterations of the gastrointestinal tract (GIT)microbiota have been linked to certain gastrointestinal
diseases such as inflammatory bowel disease (Ott et al., 2004) and necrotizing enterocolitis (De La
Cochetiere et al., 2004). Particular interest has focused on members of the genus Bifidobacterium,
some of which have been included as live components in a variety of so-called functional foods
(Ventura et al., 2004). Bifidobacteria were first isolated from the feces of breast-fed infants in 1899
by Tissier and since then bifidobacteria have been isolated from a range of different ecological
niches such as the oral cavity, sewage and the insect gut, the GIT of various mammals and more
recently from water kefir (Klijn et al., 2005; Ventura et al., 2007; Laureys et al., 2016).

Although, it has been well established that bifidobacteria confer positive health benefits to the
human host, there is a clear lack of knowledge concerning the molecular mechanisms that explain
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these probiotic traits of Bifidobacterium (Cronin et al., 2011).
Deciphering whole genome sequences can shed light on the
genetic basis of the probiotic action of bifidobacteria, or
indeed the associated molecular adaptations that allow this
gut commensal to take up residency in its highly competitive
ecological niche (Ventura et al., 2014). Although, a significant
sequencing effort of bifidobacterial genomes has generated a very
extensive set of genomic data, yet this genomic information has
hardly been explored at the functional level due to a lack of tools
tomake bifidobacteria genetically accessible (Serafini et al., 2012).

GENERAL FEATURES OF
BIFIDOBACTERIAL GENOMES

Since the publication of the first bifidobacterial genome in
2002, there has been a steady increase in the number of
publicly available bifidobacterial genome sequences (Lee et al.,
2008). The NCBI data base currently (April 2016) holds 254
publicly available bifidobacterial genome sequences, of which
sixty one represent complete genome sequences (Table 1, source;
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id
=1678NCBI, April 2016). Three or more complete genome
sequences are available for certain bifidobacterial species, such as
for B. adolescentis, B. animalis, B. breve, B. bifidum, B. longum,
and B. angulatum (Table 1).

The average size of a bifidobacterial genome is 2.2 Mb,
although there is considerable size variation, for example
B. indicum LMG11587 harbors a genome with a size of 1.73
Mb, wheras B. scardovii JCM12489 possesses a genome of 3.16
Mb in length. Bifidobacterial genomes typically encode 52–58
tRNA genes per genome, although there are exceptions, e.g., the
genome of B. longum subsp. infantis ATCC15697 encompasses
79 tRNA-encoding genes. The number of rRNA operons within
bifidobacterial genomes typically ranges from two to five, and it
has been suggested that the number of rRNA operons present on
a genome is correlated to the adaptation of a particular species to
environmental conditions (Klappenbach et al., 2000). The G+C
content of complete bifidobacterial genomes ranges from 59.2%
(B. adolescentis) to 64.6% (B. scardovii), while the average gene
number contained by a bifidobacterial genome is 1825 (Table 1).
The three species B. indicum, B. coryneforme, and B. animalis
possess the lowest number of genes, consistent with their small
genome size (Lee et al., 2008; Ventura et al., 2014).

IMPACT ON HEALTH AND DISEASE

A diverse microbial community has evolved to adapt and
survive in the human GIT and is commonly referred to as
the gut microbiota (Guarner and Malagelada, 2003). The large
intestine can contain up to 1012 bacterial cells/g of luminal
content making this the most densely populated area of the
gastrointestinal tract (Simon and Gorbach, 1984). Members
of the gut microbiota interact with their (human) host in a
variety of ways, thereby making them innocuous commensals,
opportunistic pathogens or health-promoting or probiotic
micro organisms (Guarner and Malagelada, 2003). Probiotics

are defined as “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(FAO/WHO, 2001; Hill et al., 2014), and research into the
activities of purported health-promoting bacteria has increased
substantially over the last 20 years (Leahy et al., 2005). Probiotic
agents have been investigated inmany clinical and animal model-
based studies; however, we will summarize just a limited number
of studies that specifically relate to bifidobacteria. Bifidobacteria
have been commercially exploited as probiotic agents due to their
associated health benefits and GRAS (Generally Recognised As
Safe) status (Picard et al., 2005).

Bifidobacteria and Colorectal Cancer
Several studies have investigated the potential of bifidobacteria
to prevent and/or treat colorectal cancer. The majority of
studies base their findings on murine models, and results
suggest that a combination of prebiotics and bifidobacteria
may reduce the occurrence of carcinogen-induced cancerous
cells in mice (Sekine et al., 1985; Rowland et al., 1998;
Rafter et al., 2007; Le Leu et al., 2010). For example, it was
shown that B. animalis displays anti-mutagenic activity during
growth in MRS broth thereby antagonizing the action of the
carcinogen 2-amino-3-methylimidazo [4, 5-f] quinolone (Tavan
et al., 2002). It has also been demonstrated under in vivo

and in vitro conditions that a B. longum and a B. breve
strain provide protection of DNA from induced damage by
carcinogens, and inhibit the genotoxic effect of two different
carcinogens when tested in a rat model (Pool-Zobel et al.,
1996).

Bifidobacteria and Diarrhoea
The use of bifidobacteria to treat various gastrointestinal
disorders has also been reported. For example, successful
treatment of diarrhea following administration of B. longum
subsp. infantis CECT 7210 and B. breve K-110 was found
to be due to inhibition of rotavirus, the predominant cause
of sporadic diarrhea in infants (Bae et al., 2002; Chenoll
et al., 2015). Another example involves a double-blind study
investigating whether oral treatment with a commercial probiotic
formula containing B. bifidum and Streptococcus thermophiles
would reduce antibiotic-associated diarrhea in infants. This
study found that there was a significant reduction in incidences
of diarrhea for those infants fed the probiotic supplemented
formula supplemented (Corrêa et al., 2005).

Bifidobacteria and Necrotizing Entercolitis
A recent study reported lower incidences of necrotizing
enterocolitis in preterm neonates following routine
administration of B. breve M-16V (Patole et al., 2016).
Administration of B. breve M-16V in association with breast-
feeding was shown to be associated with a lower incidence
of necrotising enterocolitis in neonates born before 34 weeks
gestation, and, although not statistically significant, a lower
incidence in this disease was reported for neonates born at a
gestation age of less than 28 weeks (Patole et al., 2016).
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TABLE 1 | Summary of all completely sequenced bifidobacterial genomes.

Microorganism Genome Size (Mb) Number of genes G+C content (%) tRNA rRNA GenBank

B.actinocoloniiforme DSM 22766 1.83 1502 62.7 47 6 CP011786.1

B.adolescentis ATCC 15703 2.09 1721 59.2 54 16 AP009256.1

B.adolescentis 22L 2.2 1798 59.3 54 13 CP007443.1

B.adolescentis BBMN23 2.17 1812 59.3 55 13 CP010437.1

B.angulatum DSM20098 2.02 1615 59.4 53 12 AP012322.1

B.angulatum GT102 2.06 1651 59.3 53 3 CP014241.1

B.animalis subsp. lactis AD011 1.93 1615 60.5 52 7 CP001213.1

B.animalis subsp. lactis BI-04 1.94 1608 60.5 52 12 CP001515.1

B.animalis subsp. lactis DSM10140 1.94 1607 60.5 51 12 CP001606.1

B.animalis subsp. lactis BB-12 1.94 1611 60.5 52 12 CP001853.1

B.animalis subsp. lactis V9 1.94 1610 60.5 52 12 CP001892.1

B.animalis subsp. lactis CNCM I-2494 1.94 1611 60.5 52 12 CP002915.1

B.animalis subsp. lactis BLC1 1.94 1608 60.5 52 12 CP003039.2

B.animalis subsp. animalis ATCC25527 1.93 1583 60.5 52 11 CP002567.1

B.animalis subsp. lactis B420 1.94 1610 60.5 52 12 CP003497.1

B.animalis subsp. lactis Bi-07 1.94 1608 60.5 52 12 CP003498.1

B.animalis subsp. lactis BI12 1.94 1608 60.5 52 12 CP004053.1

B.animalis subsp. lactis ATCC27673 1.96 1624 60.6 52 12 CP003941.1

B.animalis RH 1.93 1606 60.5 52 8 CP007755.1

B.animalis subsp. lactis KLDS2.0603 1.95 1610 60.5 52 15 CP007522.1

B.animalis A6 1.96 1623 60.5 52 16 CP010433.1

B.animalis subsp. lactis BF052 1.94 1608 60.5 52 12 CP009045.1

B.asteroides PRL2011 2.17 1727 60.1 45 6 CP003325.1

B.bifidum PRL2010 2.21 1791 62.7 52 9 CP001840.1

B.bifidum S17 2.19 1819 62.8 53 9 CP002220.1

B.bifidum BGN4 2.22 1832 62.6 52 9 CP001361.1

B.bifidum ATCC29521 2.21 1838 62.7 54 6 AP012323.1

B.bifidum BF3 2.21 1813 62.6 52 9 CP010412.1

B.breve UCC2003 2.42 2049 58.7 54 6 CP000303.1

B.breve ACS-071-V-Sch8b 2.33 1956 58.7 53 9 CP002743.1

B.breve 12L 2.24 1883 58.9 52 6 CP006711.1

B.breve JCM7017 2.29 1916 58.7 54 6 CP006712.1

B.breve JCM7019 2.36 2045 58.6 56 6 CP006713.1

B.breve NCFB2258 2.32 1946 58.7 53 6 CP006714.1

B.breve 689b 2.33 1970 58.7 53 6 CP006715.1

B.breve S27 2.29 1926 58.7 53 9 CP006716.1

B.breve DSM20213 2.27 1973 58.9 53 6 AP012324.1

B.breve BR3 2.42 2232 59.1 54 9 CP010413.1

B.catenulatim DSM16992 2.08 1717 56.2 55 16 AP012325.1

B.coryneforme LMG18911 1.76 1423 60.5 46 9 CP007287.1

B.dentium Bd1 2.64 2177 58.5 56 13 CP001750.1

B.dentium JCM1195 2.64 2177 58.5 56 13 AP012326.1

B.indicum LMG11587 1.73 1403 60.5 47 9 CP006018.1

B.kashiwanohense PV20-2 2.37 2007 56.1 58 16 CP007456.1

B.kashiwanohense JCM15439 2.34 1965 56.3 54 16 AP012327.1

B.longum NCC2705 2.26 1797 60.1 57 12 AE014295.3

B.longum DJO10A 2.38 1998 60.1 58 12 CP000605.1

B.longum subsp. infantis ATCC15697 2.83 2594 59.9 79 12 CP001095.1

B.longum subsp. longum JDM301 2.48 2062 59.8 55 9 CP002010.1

B.longum subsp. longum BBMN68 2.27 1873 59.9 54 9 CP002286.1

B.longum subsp. longum JCM1217 2.39 2001 60.3 73 12 AP010888.1

(Continued)
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TABLE 1 | Summary of all completely sequenced bifidobacterial genomes.

Microorganism Genome Size (Mb) Number of genes G+C content (%) tRNA rRNA GenBank

B.longum subsp. infantis 157F 2.4 2044 60.1 59 12 AP010890.1

B.longum subsp. longum KACC91563 2.39 1979 59.8 56 9 CP002794.1

B.longum BXY01 2.48 2065 59.8 55 9 CP008885.1

B.longum subsp. longum GT15 2.34 1947 60 56 14 CP006741.1

B.longum 105-A 2.29 1874 60.1 56 12 AP014658.1

B.longum subsp. infantis BT1 2.58 2399 59.4 56 9 CP010411.1

B.longum BG7 2.45 2116 60 57 9 CP010453.1

B.longum subsp. longum NCIMB8809 2.34 1959 60.1 56 9 CP011964.1

B.longum subsp. longum CCUG30698 2.45 2106 60.2 57 6 CP011965.1

B.pseudocatenulatum DSM20438 2.31 1864 56.4 54 19 AP014658.1

B.pseudolongum PV8-2 2.03 1704 63.3 53 12 CP007457.1

B.scardovii JCM12489 3.16 2418 64.6 56 9 AP012331.1

Bifidobacteria and Inflammatory Bowel
Disease
Although, the exact mechanism of action is not understood,
reduction in the symptoms of inflammatory bowel disease
following treatment by probiotic strains has been reported
(Venturi et al., 1999). Patients suffering from ulcerative
colitis were given a probiotic preparation that includes three
Bifidobacterium strains, four Lactobacillus strains and one S.
thermophilus strain. Fifteen out of the 20 patients remained in
remission throughout the trial, suggesting that administration of
this bacterial cocktail is beneficial in maintaining remission from
ulcerative colitis (Venturi et al., 1999; Gionchetti et al., 2000).

Bifidobacteria and Colon Regularity
A number of studies have reported improvements in colon
regularity following ingestion of fermented milk products that
contain B. animalis (Marteau et al., 2002; Guyonnet et al.,
2007; Meance et al., 2011). Two studies have associated
the administration of certain bifidobacterial strains with the
alleviation of constipation (Kumemura et al., 1992; Kleessen
et al., 1997). However, further investigation is needed in order
to identify the precise mechanism(s) of action elicited by
bifidobacteria in the prevention and treatment of constipation
(Leahy et al., 2005).

Bifidobacteria and Competitive Exclusion
Bifidobacteria have also been reported to prevent gastrointestinal
infections by competitive exclusion of pathogens based on
common binding sites on epithelial cells (Duffy et al., 1994a,b;
Perdigon et al., 1995; Picard et al., 2005; Gueimonde et al., 2007).
Administration of high levels of bifidobacteria was shown to
decrease the viable counts of Clostridium perfringens, a known
producer of undesirable toxins (Tanaka et al., 1983).

BIFIDOBACTERIA AND FUNCTIONAL
FOODS

The inclusion of micro-organisms in the human diet has
been on-going for thousands of years (Leahy et al., 2005).

Throughout history the most common form of administration
of microorganisms was through fermented dairy products and
this is still the case today (Leahy et al., 2005). Certain lactic
acid bacteria, in particular certain members of the genus
Lactobacillus, and members of the Bifidobacterium genus make
up the vast majority of the functional ingredients present in
currently commercialized probiotic food products (Salminen
and Wright, 1998; Ouwehand et al., 2002). Prebiotics have
been defined as “selectively fermented ingredients that allow
for specific changes, both in the composition and/or activity of
the gastrointestinal microflora that confer benefits upon host
well-being and health” (Hijova et al., 2009). This definition has
been revisited several times since it was first introduced in
1995, although these alternative definitions are in agreement
that prebiotics need to be “specific” or “selective” (Gibson and
Roberfroid, 1995; Roberfroid et al., 2010; Rastall and Gibson,
2015). In a recent review the definition of prebiotics was
revisited and proposed as follows: “a prebiotic is a non-digestible
compound that, through its metabolisation by microorganisms
in the gut, modulates composition and/or activity of the gut
microbiota, thus conferring a beneficial physiological effect on
the host” (Bindels et al., 2015).

The newly proposed definition moves away from the
requirement of “specific effect” and puts forward the arguments
that: (i) our knowledge does not allow for a reliable differentiation
between beneficial and detrimental members of the microbiota,
(ii) a diverse community is essential for intestinal homeostasis
and host physiology, (iii) the metabolic benefits assigned
to prebiotics do not require a “selective” fermentation, and
(iv) community-wide molecular approaches have revealed that
established prebiotics are not as specific as previously assumed
(Bindels et al., 2015).

One outcome from the fermentation of prebiotics by the
gut microbiota is the production of short chain fatty acids
(SCFAs), such as acetate, butyrate and propionate (Broekaert
et al., 2011). SCFA production in the GIT results in a lower pH,
improved availability of calcium and magnesium, and inhibition
of potentially pathogenic bacteria (Teitelbaum andWalker, 2002;
Wong et al., 2006). Both bifidobacteria and lactobacilli produce
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acetate (and lactate), thus contributing to the SCFA-mediated
health effects of prebiotics, although these two microorganisms
do not produce butyrate and/or propionate (Fukuda et al., 2011;
Bindels et al., 2015). The latter SCFAs are produced by members
of the Bacteroides phylum and the Clostridium clusters XIVa
and IV (Louis et al., 2010; Reichardt et al., 2014; Bindels et al.,
2015). Furthermore, a recent study has demonstrated that acetate
produced by B. longumNCC2705 acts as an essential co-substrate
for butyrate production and growth by Eubacterium rectale
ATCC 33656 (Rivière et al., 2015).

Non-digestible oligosaccharides (NDOs), typically obtained
from complex carbohydrates or enzymatically produced from
disaccharides, represent a group of glycans that include various
prebiotics (Grootaert et al., 2007). Examples of this are fructo-
oligosaccharides (FOS) and galacto-oligosaccharides (GOS),
which are among the best documented and most commonly used
prebiotics on the European and Japanese markets (Grootaert
et al., 2007). The prebiotic effects of FOS, GOS, inulin and
lactulose have been thoroughly assessed in human trials and
many studies suggest that these carbohydrates are selective by
increasing bifidobacterial numbers and decreasing the numbers
of E. coli and enterococci (Menne et al., 2000; Kolida et al.,
2002; Bosscher et al., 2006; Kapiki et al., 2007; Davis et al., 2010;
Veereman-Wauters et al., 2011; Walton et al., 2012).

Due to the professed prebiotic effects of arabinoxylan (AX)
and its derivatives arabinoxylo-oligosaccharides (AXOS) and
xylo-oligosaccharides (XOS), these carbohydrates have in recent
times enjoyed increasing scientific interest (Broekaert et al.,
2011). The bifidogenic effect of AX has been confirmed in a
number of in vitro studies (Van Laere et al., 2000; Crittenden
et al., 2002), while the ability of bifidobacteria to metabolize
XOS and AXOS in pure culture has also been demonstrated
(Jaskari et al., 1998; Van Laere et al., 2000; Crittenden et al.,
2002; Palframan et al., 2003; Moura et al., 2007). AXOS
consumption amongst members representing eleven different
bifidobacterial species suggests that AXOS metabolism is strain
dependent and rather complex (Riviere et al., 2014). In this
study, five different AXOS utilization clusters were identified
based on principal component analysis of the different arabinose
substituent and/or xylose backbone consumption patterns. The
first and largest cluster (Cluster I) was composed of 15 different
strains representing seven different species (B. adolescentis,
B. angulatum, B. bifidum, B. breve, B. dentium, B. longum, and
B. thermophilum). Strains within this cluster were unable to
utilize the substitutions or xylan backbone of AXOS, although
some strains were able to utilize the monosaccharides xylose
and arabinose. Cluster II was composed of eight B. longum
strains that were unable to utilize the xylan backbone, yet
were able to utilize the arabinose substitutions on AXOS (both
mono- and di-substituted), as well as the arabinose and xylose
monosaccharides. Members of the third cluster (Cluster III),
encompassing 10 strains representing six different species (B.
adolescentis, B. angulatum, B. longum, B. animalis, B. gallicum,
and B. pseudolongum), were shown to metabolize the xylan
backbone of AXOS, albeit only up to xylotetraose, while eliciting
no or limited utilization of the AXOS substitutions. Cluster
IV contains two B. longum strains that share the ability to

completely utilize AXOS, whereas the only member of Cluster
V, B. catenulatum LMG 11043, was shown to display non-
preferential degradation of XOS and a broad degradation
pattern of arabinose substitutions (Riviere et al., 2014). A study
investigating the in vitro fermentation of wheat-derived AX (AX-
W) by human fecal microbiota reported that fermentation of
AX-W was associated with the proliferation of bifidobacteria,
lactobacilli and eubacteria (Hughes et al., 2007).

Several in vivo studies have also confirmed the bifidogenic
effect of AX. An in vivo study in humanized rats demonstrated
that long chain AX specifically stimulates the abundance
of several different bacterial species in the cecum (relative
bifidobacterial abundance in the cecum of the control group
was 0.03 ± 0.01%, compared to 2.81 ± 1.46% in the group
that were fed long chain AX; Van Den Abbeele et al., 2011).
The findings of this latter study were validated by a recent
study which detected the presence of two different B. longum
species during the fermentation of long chain AX in an in vitro
model of the proximal colon (Truchado et al., 2015). Another
in vivo study found that when (high-fat) diet-induced obese
mice were fed an AX-supplemented diet, a significant increase
in caecal bifidobacterial numbers was observed (Neyrinck et al.,
2011). Along with this increase in caecal bifidobacteria, AX
supplementation restored (some of) the high-fat diet-induced
changes to the microbial community.

Synbiotics are mixtures of one or more probiotics combined
with one ormore prebiotics (Patel and Dupont, 2015). Numerous
in vivo studies have been conducted aimed at investigating
the efficacy of bifidobacteria-based synbiotics in the treatment
of gastrointestinal diseases and conditions. One such study
investigated the synbiotic effect of B. animalis subsp. lactis B94 in
combination with inulin on acute infectious diarrhea in children.
Patients were administered the synbiotic agent once a day for
five days and stool was examined for infectious agents such as
rotavirus, Salmonella, Shigella, Campylobacter, Cryptosporidium,
Adenovirus, Entamoeba histolytica, and Clostridium difficile. A
marked decrease in the number of diarrhea stools was reported
after 3 days of administration for the synbiotic group as
compared to the control group, particularly for patients with
rotavirus infection (Islek et al., 2014). A clinical trial investigated
the effects of consumption of a synbiotic on the symptoms of
Crohn’s disease (Steed et al., 2010). The synbiotic, comprised of
B. longum, inulin, and oligofructose, was consumed by patients
twice daily over a 6 month period, and significant improvements
in clinical outcomes were reported including a reduction in
some activity indices of Crohn’s disease (Steed et al., 2010).
As a third example, the beneficial effect of a B. breve strain
plus GOS synbiotic was investigated with regards to ulcerative
colitis. The bifidobacterial strain was ingested three times a
day whereas GOS was consumed once a day for 1 year. The
clinical status of the treatment group significantly improved
such as a marked improvement in colonoscopy scores and
significant decreases in inflammatory markers. Furthermore,
although no significant change in bifidobacterial numbers for
those consuming the symbiotic was noticed, reduced fecal counts
of Bacteriodaceae and reduced fecal pH was noted (Ishikawa
et al., 2011).
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BIFIDOBACTERIAL CARBOHYDRATE
METABOLISM

The human genome is predicted to encode just eight glycosyl
hydrolases (GHs) that are directly linked to carbohydrate
digestion. Therefore, many complex dietary carbohydrates
remain un-digested and end up in the colon where they may be
degraded by members of the microbiota (El Kaoutari et al., 2013).

The human GIT is home to complex microbial community
that encompasses approximately 100-fold more genes than the
number of genes present in the host genome (Backhed et al.,
2005). Colonization of the human GIT, which is believed to occur
immediately after birth, is influenced by various factors such as
the method of delivery (i.e., vaginal or cesarean), type of feeding
(breast-fed or formula-fed), exposure to antibiotics, frequency,
and nature of diseases and hygiene conditions (Fanaro et al.,
2003). Bifidobacteria dominate the total gut bacterial population
in healthy breast-fed infants (Harmsen et al., 2000; Favier et al.,
2002; Leahy et al., 2005), although this dominance decreases
following weaning (Ventura et al., 2004). During adult life the
bifidobacterial population stabilizes to represent 3–6% of the total
gut microbial population, whereas in elderly (>65 years) the
bifidobacterial numbers usually decline with age (Hopkins et al.,
2001; Satokari et al., 2003).

The abundance and make-up of the gut microbiota is (among
others) dependent on the diet of its host, and members of the
microbiota have evolved effective mechanisms to utilize available
nutrients (Vaughan et al., 2005; Ju-Hoon and O’Sullivan, 2010).
Digestible and simple sugars such as lactose and sucrose
are metabolized in the upper gut by the host and bacteria
such as lactobacilli, a prevalent inhabitant of the upper GIT
(Ganong, 2005; Vaughan et al., 2005). A diverse set of non-
digestible carbohydrates are metabolized in the lower gut,
including complex plant-derived polysaccharides (e.g., pectin,
gums, hemicellulose, and xylans), host-derived carbohydrates
(such as mucin and glycosphingolipids), and extracellular
polysaccharides that are produced by members of the gut
microbiota (Hooper et al., 2002; Korakli et al., 2002; Pokusaeva
et al., 2011a). It is therefore not surprising that on average
more than 12% of the annotated open reading frames within
bifidobacterial genomes is predicted to encode enzymes involved
in carbohydrate metabolism (Milani et al., 2014). In fact a recent
study performed on the genome sequences from the type strains
of each of the 47 Bifidobacterium (sub)species found that 5.5% of
the core bifidobacterial genomic coding sequences (BifCOGs) is
associated with carbohydrate metabolism (Milani et al., 2015).

Bifidobacteria present in the infant gut are presumed to
metabolize human milk oligosaccharides (HMOs), and the
genomes of B. bifidum and B. longum subsp. infantis are indeed
tailored towardHMOmetabolism (Sela et al., 2008; Duranti et al.,
2015). However, other bifidobacterial species such as B. breve
and B. longum subsp. longum are also commonly present in
the infant gut. Although, they do not encode the same HMO
catabolic arsenal found in B. bifidum and B. longum subsp.
infantis, they can degrade certain HMOs and may also scavenge
on carbohydrates that are released by other (bifido)bacteria (Egan
et al., 2014a; Chaplin et al., 2015). After weaning the composition

of the bifidobacterial population changes toward species capable
of adapting to the metabolism of plant-derived sugars. For
example, B. longum subsp. longum and B. adolescentis can utilize
such diet-derived carbohydrates, while B. bifidum may shift its
HMO-metabolic abilities towardmucin degradation (Schell et al.,
2002; Turroni et al., 2010; Sela, 2011; Duranti et al., 2014; Egan
et al., 2014a).

Prediction of the number of complete pathways used by
bifidobacteria to degrade simple and complex sugars has been
performed. The species B. biavatti specifies the largest number
of pathways (14 complete pathways), whereas members of the
species B. bombi, B. crudilactis, B. longum subsp. infantis,
B. minimum, and B. ruminantium specifying just nine complete
pathways (Milani et al., 2015). Bifidobacteria lack a number
of key enzymes involved in the Emden-Meyerhof Parnas
(EMP) pathway, instead, bifidobacteria metabolize hexose sugars
through a metabolic pathway named the “bifid shunt” which
is centered around the key enzyme, fructose-6-phosphoketolase
(EC 4.1.2.2) (Figure 1; De Vries and Stouthamer, 1967; De Vuyst
et al., 2014). Furthermore, the action of additional enzymes
allows for a variety of carbon sources (including pentose sugars)
to be channeled through this pathway (Pokusaeva et al., 2011a).
Fermentation through the bifid shunt is quite advantageous
for bifidobacteria as this pathway allows for the production of
more energy from carbohydrates compared to that produced
by the EMP fermentative pathway (Salminen and Wright, 1998;
Palframan et al., 2003). The bifid shunt theoretically yields 2.5
ATP moles from every 1 mole of glucose fermented, as well as
1.5 mole of acetate and 1 mole of lactate (Palframan et al., 2003).
The ratios of acetate to lactate can be influenced, however, by the
particular carbohydrate being fermented as well as the growth
phase and bifidobacterial species being examined (Palframan
et al., 2003). Furthermore, rapid consumption of an energy source
was shown to result in the production of large amounts of lactate
and low amounts of acetate, ethanol and formate, whereas less
lactate is produced along with an increase in production of
acetate, formate and ethanol when the energy source is consumed
at a slow(er) rate (Figure 1; Van Der Meulen et al., 2004, 2006a,b;
Falony et al., 2009).

Carbohydrate Uptake Strategies by
Bifidobacteria
Bifidobacteria internalize carbohydrates by ATP-dependent ABC
transporters, proton symporters or phosphoenolpyruvate-
phosphotransferase systems (PEP-PTS) (Turroni et al.,
2012). ABC transporters couple ATP hydrolysis to efficient
internalization of sugars and appear to represent the primary
carbohydrate transport systems for bifidobacteria (Ventura et al.,
2007; Davidson et al., 2008; Jojima et al., 2010). PEP-PTS systems
allow the concomittant transport and phosphorylation of
carbohydrates, while they may also be involved in the regulation
of various metabolic pathways (Postma et al., 1993). The PTS
component of the system is involved in the internalization and
concomitant phosphorylation of carbohydrates, while PEP acts
as the (indirect) phosphate donor to the recipient carbohydrate
(Ventura et al., 2007). These systems are found in many bacteria
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FIGURE 1 | A schematic representation of carbohydrate degradation through the “bifid shunt” in bifidobacteria. Abbreviations: AckA, acetate kinase;

Adh2, Aldehyde-alcohol dehydrogenase 2; Aga, α-galactosidase; Agl, α-glucosidase; AraA, L-arabinose isomerase; AraB, Ribulokinase; AraD,

L-ribulose-5-phosphate 4-epimerase; Bgl, β-glucosidsae; Eno, enolase; GalE1, UDP-glucose 4-epimerase; GalK, galactokinase; GalM, glactose mutarotase; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase C; GlkA, glucokinase; Gnt, 6-phosphogluconate dehydrogenase; Gpi, glucose 6-phosphate isomerase; Gpm,

phosphoglycerate mutase; FrK, frucktokinase; F6PPK, fructose-6-phodphoketolase; FucI, L-fucose isomerase; FucK, L-fuculose kinase; FucA,

L-fuculose-1-phosphate aldose; FucO, lactaldehyde reductase; Ldh2, lactate dehydrogenase; LNBP, lacto-N-biose phosphorylase; Pgk, phosphoglyceric kinase;

Pgm, phosphoglucomutase; Pfl, formate acetyltransferase; Pyk, pyruvate kinase; Rk, ribokinase; R5PI, ribose-5-phosphate isomerase; R5PE, ribulose-5-phosphate

epimerase; Tal, transaldase; Tkt, transketolase; TpiA, trisephosphate isomerase; UgpA, UTP-glucose-1-phosphate uridylyltransferase; XPPKT,

xylulose-5-phosphate/fructose-6-phosphate phosphoketolase; XylA, xylose isomerase; XylB, xylulose kinase; Zwf2, glucose-6-phosphate 1-dehydrogenase; Pi,

phosphate (based on a figure from a previous review Pokusaeva et al., 2011a).

and have also been identified in most, but not all, bifidobacterial
genomes (Postma et al., 1993; Pokusaeva et al., 2011a). The
action of the PEP-PTS system was demonstrated experimentally
in bifidobacteria whereby a PEP-PTS system from B. breve
UCC2003 was found to be involved in the internalization of
glucose (Degnan and Macfarlane, 1993). Since then a number
of PEP-PTS systems have been identified and investigated in
other bifidobacterial species (Lorca et al., 2007; Parche et al.,
2007; Barrangou et al., 2009; Turroni et al., 2012; O’Connell
Motherway et al., 2013).

The B. longum subsp. longum DJO10A and NCC2705
genomes are predicted to represent 10 and 13 different
ABC transporters, respectively, responsible for the uptake of
carbohydrates, while they each encode just a single glucose-
specific PEP-PTS system (Lorca et al., 2007; Parche et al.,
2007). Analysis of the B. bifidum PRL2010 genome sequence
revealed that this strain encodes two ABC transporters, four PEP-
PTS systems and four secondary transporters that are expected
to transport mono- and disaccharides (Turroni et al., 2012).
Transcriptional analysis revealed that one ABC transporter

and two of the PEP-PTS systems are associated with the
internalization of degradation products of host-derived glycans,
in particular those that are found in mucin. The ABC
transporters identified in B. bifidum PRL2010 were found to
be linked to the uptake of monosaccharides such as glucose,
ribose, fructose and galactose or disaccharides such as turanose
(Turroni et al., 2012). Like B. bifidum PRL2010, B. breve
UCC2003 is also predicted to encode four PEP-PTS systems
and it has been shown experimentally that one system in B.
breve UCC2003 is a fructose-inducible fructose/glucose uptake
system (O’Connell Motherway et al., 2013). However, B. breve
UCC2003 typically employs ABC-type transporters for the
uptake of carbohydrates (Pokusaeva et al., 2011a, O’Connell
Motherway et al., 2013; Egan et al., 2014b). In contrast, the
strain B. animalis subsp. lactis B1-04 does not possess any PEP-
PTS system and only encodes two copies of an ATP-binding
protein linked to carbohydrate internalization (Barrangou et al.,
2009). This low number of carbohydrate uptake systems may
be a reflection of genome decay due to the commercial
exploitation of B. animalis subsp. lactis, for which purpose it
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is extensively cultivated in nutritionally rich media (Lee et al.,
2008).

Bifidobacterial Glycosyl Hydrolases
Carbohydrates can be modified by a range of different enzymes
including hexosyl- and phosphotransferases, hydrolases and
isomerizes (Pokusaeva et al., 2011a). In the presence of water,
glycosyl hydrolases (GHs) hydrolyse the glycosidic bond between
two or more sugars or alternatively between a carbohydrate
and a non-carbohydrate moiety (Pokusaeva et al., 2011a).
GHs are assigned the enzyme commission or EC number EC
3.2.1x whereby the first three numbers indicate that these
particular enzymes cleave glycosyl linkages, with the assignment
of the final number being based on the target substrate or
mechanism of action displayed by the enzyme. Members of one
GH family may not only exhibit different substrate specificity,
but may also exhibit a different mode of action (Van Den
Broek et al., 2008). Classification of GHs can be found at
http://www.cazy.org/Glycoside-Hydrolases.html (Lombard et al.,
2014). For bifidobacteria GHs are the most prevalent group of
carbohydrate-modifying enzymes and since the publication of
the first bifidobacterial genome more information on these GHs
has become available (Van Den Broek et al., 2008).

None of the carbohydrate active GHs encoded by the human
genome appear to be involved in the breakdown of FOS, GOS,
XOS, inulin, or arabinoxylan (Guarner and Malagelada, 2003; El
Kaoutari et al., 2013). A recent study investigated the distribution
of different carbohydrate-active enzymes among 177 bacterial
genomes of the human microbiome, including genomes of 12
members of the Actinobacteria phylum, half of which were
bifidobacteria (El Kaoutari et al., 2013). Polysaccharide lyases
and GHs accounted for 59% of all carbohydrate-active enzymes
identified. From these observations it can be said that the
microbiota endows metabolic activities that make up for the
paucity of GHs encoded by the human genome (El Kaoutari et al.,
2013).

According to the current GH classifications, B. scardovii
and B. indicum LMG11587 are predicted to encode the
highest (126 GHs) and lowest number of GHs (25 GHs),
respectively, among the currently sequenced bifidobacterial
genomes (Table 2). Classification according to the Carbohydrate
Active Enzymes (CAZy) system revealed that 3385 genes
belonging to the bifidobacterial pan-genome are predicted to
represent carbohydrate active enzymes, including members of 57
GH families, 13 GT families and 7 carbohydrate esterases (Milani
et al., 2015). Those enzymes belonging family GH13 are the
most commonly found in bifidobacterial genomes and are known
to be active against a wide range of carbohydrates including
the plant-derived carbohydrates starch and related substrates,
trehalose, stachyose, raffinose, and melibiose (Pokusaeva et al.,
2011a; Milani et al., 2015). The bifidobacterial glycobiome
contains a large number of enzymes belonging to the families
GH29, GH95, GH20, GH112, GH38, GH125, GH101, and
GH129 which are involved in the degradation of host-
derived glycans. Members of the B. scardovii, B. longum
subsp. infantis, and B. bifidum species in particular encode
the most extensive set of enzymes active against host-derived

glycans (Milani et al., 2015). Unlike other species, those
bifidobacterial species isolated from honey/bumblebees encode
a very limited set of GH13 representatives. However, these
species specify a larger set of GH43 and GH3 enzymes. These
families are active against plant-derived polysaccharides, such are
arabino(xylan), (arabino)galactan, and cellodextran (Milani et al.,
2015). Furthermore, a substantial number of genes encoding
putative arabino(xylan)-degrading enzymes are present in certain
bifidobacterial genomes, for example B. longum subsp. longum
NCC2705, hinting at the importance of these enzymes toward
the colonization of these microorganisms in the GIT (Schell et al.,
2002; Van Den Broek et al., 2008).

Enzymes active against such arabinose- and xylose-containing
carbohydrates have been characterized from B. longum,
B. adolescentis, B. animalis subsp. lactis, and B. breve, and were
first described in B. adolescentis (Van Laere et al., 1997; Lagaert
et al., 2011). Seven bifidobacterial arabinofuranosidases have
currently been characterized belonging to the families GH43
and GH51, five of which are produced by B. adolescentis, while
two originate from B. longum (Van Laere et al., 1999; Margolles
and De Los Reyes-Gavilan, 2003; Lagaert et al., 2010; Lee et al.,
2011; Suzuki et al., 2013). Five intracellular xylanases have been
characterized in bifidobacteria to date for both B. breve and
B. adolescentis (Lagaert et al., 2007, 2011; Hyun et al., 2012;
Amaretti et al., 2013). It is worth noting that all of the 14
currently characterized bifidobacterial arabino(xylan)-degrading
enzymes are (predicted to be) intracellular. Due to their sizes,
arabino(xylan)s cannot be transported inside the cell and the
lack of extracellular enzymes specified by these bifidobacterial
strains hints that they may rely on the extracellular hydrolytic
activity of other members of the gut microbiota. Furthermore,
the degradation of arabino(xylan) by extracellular enzymes
has been observed previously for some bifidobacterial strains,
and such extracellular enzymes may therefore be of significant
interest as they are expected to provide an ecological advantage
in the GIT (Riviere et al., 2014).

Investigations have been performed in order to determine
those bifidobacterial GHs that are expected to be either secreted
into the environment or associated with the cell surface. The
majority of GHs located within the bifidobacterial pan-genome
are predicted to be intracellular with 10.9% of GHs predicted
to be secreted. The members of the family GH13 represent the
largest proportion of such (predicted) secreted GHs, followed by
members of the GH43 and GH51 families (Milani et al., 2015).

CARBOHYDRATE CROSS-FEEDING BY
BIFIDOBACTERIA

Several recent studies have investigated the impact on the gut
microbiome by bifidobacterial cross-feeding of carbohydrates.
Various studies have demonstrated that some members of the
bifidobacterial community can co-operate in order to degrade
large and complex polysaccharides into more simple sugars
which are in turn then available to other members of the
gut microbiota (De Vuyst and Leroy, 2011). This has been
demonstrated for plant derived polysaccharides and also for
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host-derived carbohydrates such as mucin (Milani et al., 2014,
2015; Egan et al., 2014a,b; Turroni et al., 2016).

Bifidobacteria were found to shape the microbiome of the
murine gut either through direct action or by cross-feeding
activities (Turroni et al., 2016). This study demonstrated that
the addition of two or more bifidobacterial strains resulted in
the enhanced levels of persistence of such strains within the
murine cecum. Furthermore, members of this genus were capable
of modulating gene expression toward an increase in glycan
metabolism encompassing both host glycans and diet derived
carbohydrates. The bifidobacterial strains had a further influence
over the production of SCFAs (Turroni et al., 2016).

CONTROL OF BIFIDOBACTERIAL
CARBOHYDRATE METABOLISM

Carbon catabolite repression (CCR) is a regulatory system
present in many bacteria in which the expression or activity
of proteins involved in the utilization or uptake of available
carbon sources is inhibited by the presence of a preferred carbon
source (Postma et al., 1993; Saier and Ramseier, 1996). There is
evidence that a CCR mechanism is operating in bifidobacteria,
although as of yet a CCR-type regulatory system has not been
described for any member of this genus. The first report on CCR-
related metabolism in bifidobacteria was in B. animalis subsp.
lactis (Trindade et al., 2003). This study reported an induction
in sucrose metabolizing activities when this strain was grown on
sucrose, raffinose or oligofructose, whereas a repression in the
same metabolic activities was reported for growth on glucose
(Trindade et al., 2003). An apparent reverse CCR was reported
for B. longum NCC2705 in that glucose transport was repressed
when lactose was present in the growth medium (Parche et al.,
2006). There are two separate reports of CCR-like regulation in
B. breve UCC2003 (Ryan et al., 2005; Pokusaeva et al., 2010).
The first study reported that transcription of the rbs operon,
responsible for ribose metabolism, is induced when B. breve
UCC2003 is grown on ribose, whereas transcription of this
operon is not induced (or repressed) when the strain is grown
on a combination of ribose and glucose (Pokusaeva et al., 2010).
The second study on B. breve UCC2003 demonstrated that when
grown on sucrose or Actilight (a commercial source of short
chain FOS), transcription of the fos operon, which is involved in
the metabolism of FOS, is induced (Ryan et al., 2005). However,
this operon was not induced (or repressed) when B. breve
UCC2003 is grown on a combination of sucrose and glucose, or
sucrose and fructose (Ryan et al., 2005).

Transcriptional repressors, such as LacI-type transcriptional
regulators, are DNA binding proteins that physically interact
with a specific DNA sequence, called the operator, in the
vicinity of a regulated promoter, thereby preventing the binding
of an RNA polymerase and the initiation of transcription
(Ravcheev et al., 2014). Transcriptional repressors may also cause
a “road block” for the DNA polymerase thus preventing the
progression of transcription (Ravcheev et al., 2014). A substantial
number of these repressor proteins have been identified in
bifidobacterial genomes, e.g., B. longum NCC2705 is predicted

to encode 22 LacI-type transcriptional repressors. The presence
of a sugar-binding motif in each of these predicted 22 LacI-
type proteins indicates that they are predicted to be involved
in the regulation of carbohydrate metabolism (Schell et al.,
2002). Six different LacI-type regulators have been characterized
in B. breve UCC2003 and include LacIfos, GalR, CldR, and
RbsR, which regulate transcription of the fos operon, the
galactan utilization cluster, the cellodextrin utilization cluster,
and the ribose metabolism cluster, respectively (Ryan et al.,
2005; Pokusaeva et al., 2010, 2011b; O’Connell Motherway et al.,
2011a). More recently, two B. breveUCC2003-encoded LacI-type
transcriptional repressors, namedMelR1 andMelR2, were shown
to control the melezitose utilization cluster (O’Connell et al.,
2014).

Other carbohydrate-dependent regulatory systems exist, for
example, the RafR regulator is a transcriptional activator of
the raffinose metabolism gene cluster in B. breve UCC2003
(O’Connell et al., 2014), while in the same bacterium a GntR-type
transcriptional repressor was shown to control transcription of
the large nag/nan gene cluster, thereby regulating metabolism of
sialic acid (Egan et al., 2015).

BIOTECHNOLOGY OF BIFIDOBACTERIA

Research into bifidobacterial metabolism has led to the prebiotic
concept which in turn confers health benefits to the human host
by stimulating the metabolism and activity of bifidobacteria in
the GIT (Hijova et al., 2009). However, the actual mechanisms of
action that are responsible for such probiotic effects are far from
fully understood (Sun et al., 2012). The gold standard approach
to investigate the role of a single gene and its products is by
site-directed mutagenesis and subsequent phenotypic analysis
of the generated mutant(s) (Sun et al., 2012). Unfortunately,
bifidobacteria are rather recalcitrant to artificial DNA acquisition
methods which means that genetic modification of bifidobacteria
has up until recently proven to be impossible. This part of the
review will focus on genetic approaches and techniques aimed at
improving the genetic accessibility of bifidobacteria.

BIFIDOBACTERIAL MUTAGENESIS
STRATEGIES

There are a small number of reports on targeted gene inactivation
in bifidobacteria, although in recent years a number of techniques
have been developed resulting the successful inactivation of
genes in bifidobacteria. In this part of the review, we describe
the fundamental concept of each strategy and discuss some of
benefits and pitfalls associated with each.

Single-Crossover Plasmid Insertion
This method involves the use of a non-replicating plasmid to
select for homologous recombination events (Figure 2A). The
first successful mutation created in a bifidobacterial strain was
in the gene apuB using this single-crossover plasmid insertion
approach whereby a combination of plasmids facilitated the
conditional replication of the non-replicative plasmid pORI19
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FIGURE 2 | Schematic representation of targeted gene inactivation approaches. The targeted gene is indicated by an open arrow and homologous regions

are indicated as open squares and given the names G1 and G2. The antibiotic resistance gene is indicated as a black arrow with the letters AR. (A) represents the

single-crossover plasmid insertion, (B) illustrates the double-crossover gene disruption and finally (C) illustrates the double-crossover markerless gene deletion

approach. (Figure was adapted from Fukiya et al., 2012).

(Table 3; O’Connell Motherway et al., 2008). Although, it
successfully led to the inactivation of the apuB gene, this method
was quite time consuming and laborious (Fukiya et al., 2012).

As already discussed above, by-pass of native R-M systems
and the single-crossover plasmid insertion approach using a
non-replicating plasmid has been successfully and repeatedly
employed for mutagenesis (O’Connell Motherway et al., 2009,
2011b, 2013; Fouhy et al., 2013; Christiaen et al., 2014; Egan et al.,
2014a,b, 2015; O’Connell et al., 2014).

Double-Crossover and Double-Crossover
markerless Gene Deletion
Double-crossover gene disruption was first demonstrated in
B. longum NCC2705 (Table 3; Fukuda et al., 2011). This method
makes use of a non-replicating plasmid and a double-cross
over event in order to create a gene deletion (Fukiya et al.,
2012). The non-replicative vector harbors two homologous
regions of the target gene between which an antibiotic resistance
gene is inserted (Figure 2B). During the first crossover event,
homologous recombination occurs between one of the two
homologous regions on the vector and on the chromosome.
The second (desired) crossover occurs between the second
homologous region on the vector and the chromosome, and
results in the replacement of the wild-type allele with the
mutated one and an antibiotic marker (Figure 2B). In the
case of B. longum NCC2705, this approach allows for the

successful deletion of (part of) the gene BL0033, a solute binding
protein of an ABC transporter that is highly induced when
B. longum NCC2705 is grown on fructose (Fukuda et al.,
2011).

The double-crossover marker-less strategy has been patented
and draws some similarities to the double-crossover gene
disruption approach (Table 3, Figure 2C; Arigoni and Delley,
2013). Like the previous approach, a non-replicative plasmid
is used for the first crossover, however, in this case the
antibiotic marker is located beside the mutated targeted gene
(Figure 2C). The second crossover event occurs during long-
term sub-culturing of the first crossover integrants. As illustrated
in Figures 1, 2C and as described previously for the double-
crossover gene disruption, a markerless gene deletion can be
generated following a second crossover. An amended version of
this method was used to successfully create a marker-less gene
deletion in B. longum 105-A which involved the conditional
replication of a vector plasmid (Table 3; Hirayama et al., 2012).

The plasmid used for the homologous recombination events is
a conditionally replicating plasmid due to a deletion of the gene
encoding the replication protein RepA. This plasmid can only
replicate in bifidobacteria when the RepA protein is provided
in trans. The regions flanking the target gene to be deleted
are cloned into the conditional replication vector (Hirayama
et al., 2012). Once the plasmid has integrated into the target
gene via the first homologous recombination or cross-over
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TABLE 3 | Summary of bifidobacterial mutagenesis strategies.

Concept Benefits Pitfalls Example

SINGLE-CROSSOVER PLASMID INSERTION

• Non-replicative plasmid

insertion

• Reproducible • Prior knowledge of the strain is essential • Disruption of galA and apuB genes

in B. breve UCC2003 (O’Connell

Motherway et al., 2009)• Single cross-over homologous

recombination

• Requires only a single

transformation round

• Successful knock-outs left with antibiotic

marker

• Internal region of target gene

and marker

• Requires high transformation efficiencies

• Unstable mutations

DOUBLE-CROSSOVER GENE DELETION

• Non-replicative plasmid

insertion

• Stable mutation • Successful knock-outs left with antibiotic

marker

• Disruption of BL0033 in B. longum

NCC2705 (Fukuda et al., 2011)

• Double crossover homologous

recombination

• Gene target is deleted • Time-consuming and laborious- multiple

transformations and extensive screening

of transformants

• 5′ and 3′ regions of target

gene separated by marker

• Requires high transformation efficiencies

DOUBLE CROSS-OVER MARKER-LESS GENE DELETION

• Non-replicative plasmid

insertion

• Stable mutation • Time-consuming and laborious- multiple

transformations and extensive screening

of transformants

• Disruption of aga in B. longum

105-A (Hirayama et al., 2012)

• Double cross-over

homologous recombination

• Gene deletion

• 5′ and 3′ regions of target

gene adjacent to marker

• Successful knock-outs left without

antibiotic marker

• Marker-less gene disruption

TEMPERATURE SENSITIVE (TS) PLASMID FOR GENE DISRUPTION

• Ts plasmid unable to replicate

at high temperatures

• Does not require high

transformation efficiencies

• Time-consuming and laborious- multiple

transformations and extensive screening

of transformants

• Disruption of apuB in B. breve

UCC2003 (O’Connell Motherway

et al., 2008)
• Ts plasmid contains

homologous sequence and

marker

• Homologous recombination

TRANSPOSON MUTAGENESIS FOR GENE DISRUPTION

• Random mutagenesis with

Transposome complex

• Generation of a large mutant bank • Successful knock-outs left with antibiotic

marker

• Creation of a mutant library in

B. breve UCC2003 (Ruiz et al.,

2013)

• Large number of gene

disruptions

• High throughput screening of bank • Requires high transformation efficiencies

• Antibiotic marker

event, a second plasmid that encodes RepA is introduced which
induces the conditional replication of the integrated plasmid
(Figure 2C). During the second cross-over and excision, the
integrated plasmid is expected to be excised along with the target
gene. Second cross-over recombinants that lost the first plasmid
can be selected for using appropriate antibiotic markers as the
second plasmid is incompatible with the conditional replicating
vector (Hirayama et al., 2012).

The double cross-over approaches are more time consuming
due to multiple transformations and extensive screening for
positive mutants, although the improved double crossover gene
deletion system aims to address this (Table 3; Fukiya et al.,
2012). For single cross-overmutants it is theoretically possible for
additional cross-over events to occur between the homologous
regions left in the target gene thus resulting in the excision of the
integrated plasmid (Fukiya et al., 2012). It is also worth noting

that the marker-less method is a superior approach as it does not
leave an antibiotic resistance gene, the presence of which may
cause polar effects affecting genes down-stream of the mutated
gene (Table 3; Fukiya et al., 2012).

Homologous Recombination Mediated by
a Temperature Sensitive Plasmid
The temperature sensitive (Ts) plasmid strategy has been applied
successfully to various microorganisms in order to create gene
knock-outs (Hamilton et al., 1989; Maguin et al., 1992; Biswas
et al., 1993; Takamatsu et al., 2001; Fuchs et al., 2006; Chen et al.,
2011). The advantage of this approach over some of the other
strategies described above, is that Ts plasmids do not require
high transformation efficiencies. Therefore, this would be an ideal
and widely applicable approach for (transformation recalcitrant)
bifidobacterial strains (Table 3; Sakaguchi et al., 2012).
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The successful creation of insertion mutants using a Ts
plasmid has been achieved in B. breve UCC2003, B. longum
105-A and B. longum NCC2705 (O’Connell Motherway et al.,
2008; Sakaguchi et al., 2012). A plasmid harboring repA
was first introduced into B. breve UCC2003 followed by the
introduction of a non-replicating plasmid that harbored an
internal fragment of the target gene, apuB (Table 3, Figure 3;
O’Connell Motherway et al., 2008). Once both plasmids were
successfully introduced, growth of B. breve UCC2003 was
shifted to 42◦C, thus preventing further replication of the repA-
containing plasmid. As a consequence this also blocks the
replication of the pORI19-derivative. Selection on antibiotic
results in the integration of the pORI19-derivative into the B.
breve UCC2003 genome at the site of the apuB gene (Figure 3;
O’Connell Motherway et al., 2008). This temperature-sensitive
plasmid approach was also used to create insertion mutants in
B. longum 105-A and B. longum NCC2705 (Sakaguchi et al.,
2012).This method was applied to create an insertion mutant in
the strain B. longum 105-A using pyrR as the gene target and
was further validated by re-creating a gene deletion in the gene
BL0033 in the strain B. longum NCC2705 (Table 3; Sakaguchi
et al., 2012).

Transposons for Mutagenesis in
Bifidobacteria
A recent study has described the creation of a mutant
library in B. breve UCC2003 using a Tn5-based transposon
mutagenesis system (Ruiz et al., 2013). This study is the

first to demonstrate the application of random-mutagenesis
technology in bifidobacteria (Table 3). This approach involved
the construction of a tetracycline-resistant Tn5 transposon and
preparation of a transposome complex that was subsequently
introduced into B. breve UCC2003 cells by electroporation
(Ruiz et al., 2013). Screening of the mutant bank led to
the identification of mutants that display defective growth on
selected carbohydrates, such as Bbr_0010 which encodes a
β-galactosidase involved in the metabolism of lactose (Ruiz et al.,
2013).

The benefit of this method is that it can be used for
high-throughput screening in order to identify genes that are
fundamental for a given phenotype (Judson and Mekalanos,
2000). However, similarly to targeted insertion mutant systems,
high transformation efficiencies are crucial for this system to be
effective (Ruiz et al., 2013).

CONJUGATION IN BIFIDOBACTERIA

Conjugation can also be used by bacteria to transfer genetic
material, as was first described in E. coli and involving cell-
to-cell contact (Lederberg and Tatum, 1946). Conjugation-
based techniques have been widely described for Gram-negative
bacteria, though less so for Gram-positive bacteria (Schroder and
Lanka, 2005).

Currently, transformation by electroporation is the
most popular method used to genetically manipulate
bifidobacteria. Shortfalls maybe overcome by the use of a

FIGURE 3 | Schematic representation of insertion mutagenesis using a temperature sensitive plasmid. The targeted gene is indicated by the text apuB in

the open gray box and the antibiotic resistance gene is indicated as a blue box with the letters AR. The black arrow represents the replication gene repA and the

red-cross indicates a gene that is non-functional. Step 1 illustrates the introduction of (a) the plasmid pTGB019 into B. breve UCC2003 followed by (b) the introduction

of the non-replicative plasmids pORI19-apuB. Step 2 illustrates a shift in temperature resulting in the blocked replication of pTGB019 and pORI19-apuB as a

consequence of a non-functional repA gene. Finally in Step 3, presence of antibiotic selects for integration of pORI19-derivatives into the desired site on the B. breve

UCC2003 genome.
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conjugation-based approach as it holds a number of advantages
over transformation (Dominguez and O’Sullivan, 2013). Firstly,
unlike electroporation, the size of the vector does not affect
conjugation efficacy (Szostková and Horáková, 1998; Isaacs et al.,
2011). Secondly, the presence of R-M systems is not an issue for
conjugative methods as during conjugation DNA is transferred
as a single strand from donor to recipient, in which form it is
insensitive to most R-M systems (Dominguez and O’Sullivan,
2013).

The first, though unsuccessful, attempt at conjugative transfer
in bifidobacteria was reported in 1998 (Shkoporov et al., 2008). A
recent publication describes a conjugative gene transfer method
and the first successful transfer of DNA between E. coli and
different Bifidobacterium species (Dominguez and O’Sullivan,
2013). Based on the RP4 conjugative machinery of E. coli
WM3064 (pBB109), the E. coli-Bifidobacterium shuttle vector
pDOJHR-WD2 was constructed. This plasmid was transformed
into E. coli WM3064 harboring pBB109. This latter plasmid
encodes the relaxase function to catalyze nicking at the oriT site
on pDOJHR-WD2, while RP4, which is integrated into the E. coli
WM3064 chromosome, specifies Tra functions (Dominguez and
O’Sullivan, 2013). Successful transfer of pDOJHR-WD2 from
E. coli to members of four different bifidobacterial species was
reported with an efficiency ranging from 1.8× 10−4 to 7.5× 10−6

transconjugants per recipient (Dominguez andO’Sullivan, 2013).
The recent sequencing of the B. breve JCM 7017 genome led

to the discovery of a 190 kb megaplasmid designated as pMP7017
(Bottacini et al., 2015). Analysis of the plasmid sequence led to the
identification of genes that are predicted to encode conjugative
machinery. Sequence analysis of pMP7017 led to the observation
that, although the overall G+C content is akin to that of its
host, it appears that this megaplasmid was formed from the co-
integration of two separate modules (Bottacini et al., 2015). The
functionality of the conjugative mechanism was demonstrated
by the successful transfer of pMP7017 from B. breve JCM7017
to B. breve and B. longum representatives (Bottacini et al.,
2015).

The recent development of conjugation-based gene transfer
systems and the discovery of the first native conjugative
bifidobacterial plasmid is quite significant (Dominguez and
O’Sullivan, 2013; Bottacini et al., 2015), and may assist
in future tool development for the genetic modification of
bifidobacteria.

MICROBE-HOST INTERACTIONS

Insertion mutagenesis has proven to be a fundamental tool
in the development of functional genomics in bifidobacteria.
Two studies in particular demonstrate how the use of insertion
mutagenesis can reveal how candidates genes are involved in the
beneficial effects conferred to the host by bifidobacteria (Fukiya
et al., 2012).

In the first example, Fukuda et al. combined comparative
genomics, gene expression profiling and gene knock-outs to
demonstrate that acetate production by the strain B. longum
subsp. longum JCM 1217 is linked to the protection of host

epithelial cells from lethal doses of the shiga toxin, Stx2 (Fukuda
et al., 2011). Early observations highlighted that germ-free mice
pre-colonized with B. longum subsp. longum JCM 1217 and
subsequently infected with enterohaemorrhagic E. coli O157:H7
(EHEC O157:H7), survived better than germ-free mice that were
infected with EHEC O157:H7. In contrast, the same survival
was not observed when, prior to infection with EHEC O157:H7,
mice were colonized with B. adolescentis JCM 1275. Comparative
genomic analysis performed between protective B. longum subsp.
longum and non-protective B. adolescentis implicated an ABC-
type transporter system being involved in protection, after which
a knock-out mutation was created in the gene encoding the
corresponding solute binding protein using a double crossover
gene disruption approach (Fukuda et al., 2011). Due to the
consequently lower levels of acetate produced, the mutant strain
was unable to protect mice from EHEC O157:H7 infection,
whereas when the non-protective B. adolescentis strain expressed
the ABC transporter cluster this resulted in moderate increases
in mouse survival following EHEC O157:H7 infection as well as
increased acetate production.

The second example of a functional microbe-host interaction
study is the identification of candidate genes directly responsible
for the colonization of B. breve UCC2003 in a murine
colonization model (O’Connell Motherway et al., 2011b).
Genome and in vivo transcriptome analyses of B. breve
UCC2003 revealed that a gene cluster, responsible for the
production of so-called type IVb or tight adherence (Tad) pili,is
required for host colonization (O’Connell Motherway et al.,
2011b).

As well as investigating candidate genes directly involved
in host-microbe interactions, insertion mutagenesis has also
been exploited in functional genomic studies investigating
the physiological characteristics of bifidobacteria, such as
carbohydrate metabolism (O’Connell Motherway et al., 2011a;
O’Connell et al., 2013, 2014; Egan et al., 2014b, 2015).

CONCLUSION

It is well established that bifidobacteria confer positive health
benefits to their host via their metabolic activities. The availability
of complete bifidobacterial genomes and corresponding
comparative analysis allows for the identification of mechanisms
underlying bifidobacterial metabolic activity. Carbohydrate
utilization studies and identification of metabolic pathways also
provides fundamental information allowing for the identification
of novel and effective prebiotic compounds.

Plant-derived and host derived carbohydrates have been
shown to stimulate the growth of some bifidobacterial
species. To identify and obtain full knowledge of the genes
implicated in carbohydrate degradation and utilization,
characterization and mutagenesis of candidate genes is required.
However, bifidobacteria are notoriously recalcitrant to genetic
modification.

It is therefore essential that future studies continue to address
the shortage of effective molecular tools. The development of
these tools is essential to unravel the underlying molecular
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mechanisms that explain how bifidobacteria interact with their
human host.
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