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Abstract N6-methyl-adenosine (m6A) is one of the most common and abundant modifications on

RNA molecules present in eukaryotes. However, the biological significance of m6A methylation

remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation

ofm6Amayhave a profound impact on gene expression regulation. Them6Amodification is catalyzed

by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3

(METTL3).m6Amodification onmessengerRNAs (mRNAs)mainly occurs in the exonic regions and

30-untranslated region (30-UTR) as revealed by high-throughput m6A-seq. One significant advance in

m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-

associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an a-ketoglutarate
(a-KG)- and Fe2+-dependent manner. Recent studies in model organisms demonstrate that

METTL3, FTOandALKBH5play important roles inmany biological processes, ranging fromdevel-

opment andmetabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the

disturbed expression of thousands of genes at the cellular level, implicating a regulatory role ofm6A in

RNAmetabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of

basic life processes inmammals, the dynamic and reversible chemical m6Amodification onRNAmay

also serve as a novel epigenetic marker of profound biological significances.
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Introduction

More than 100 modifications have been identified in native cel-
lular RNAs including mRNAs, tRNAs, rRNAs, small nuclear
RNA (snRNAs) and small nucleolar RNAs (snoRNAs) [1,2].

As one of the most common modifications, methylation occurs
on either nitrogen or oxygen atoms at the post-transcriptional
level with S-adenosylmethionine (SAM, Adomet) serving as

the methyl donor for m6A formation [3–6]. The most prevalent
methylated nucleoside in eukaryotic mRNA is N6-methyl
ademy of Sciences and Genetics Society of China. Published by Elsevier Ltd
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Figure 1 Reversible m6A methylation in mRNA

METTL3-containing methyltransferase complex catalyzes m6A methylation with SAM as a methyl donor. FTO and ALKBH5

demethylate m6A in an iron and a-ketoglutarate-dependent manner.
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adenosine (m6A) (Figure 1), which accounts for more than
80% of all RNA base methylations and exists in various spe-

cies [7–15]. m6A modification is not susceptible to chemical
modifications like bisulfate treatment for 5-mC detection
[16]. It cannot affect the base pairing ability either [17,18].

Therefore, although having been identified for 5 decades, the
biological functions of m6A modification remain elusive due
to limited detection strategies [19–22]. Recently, an antibody-

based affinity approach was developed to identify the tran-
scriptome profile of m6A sites in combination with next-gener-
ation sequencing (NGS) techniques. Around 7000 mRNAs
have been found to possess m6A sites in both human and

mouse cells [23,24]. Furthermore, two novel mRNA m6A
demethylases have been identified recently confirming the dy-
namic regulation of m6A [25,26]. Given that the recent major

progress of m6A research is related to mRNA metabolism,
we hereby discuss m6A modification in mRNAs in the hope
of elucidating its novel epigenetic regulatory functions.

Distribution of m
6
A along mRNAs

To understand the fundamental roles of m6A in mRNAs, it is

necessary to determine the positions of m6A in the gene tran-
scripts. The m6A-containing consensus sequence is different
from other RNA regulatory elements such as AU-rich ele-

ments or poly(A) signal, suggesting that it may have different
regulatory functions from those known elements. Traditional
strategies such as thin layer chromatography (TLC) and

HPLC have been utilized to study the distribution of m6A in
several well-known m6A-containing mRNAs [12,27,28]. Fur-
thermore two lines of independent transcriptome analysis have
revealed that m6A modification occurs in mRNAs with a fre-

quency of 1 m6A per 2000 ribonucleotides on average [23,24].
m6A modification was found to occur in highly-conserved re-
gions with a consensus sequence identified as: RRACH

(R = G or A; H = A, C or U) [10,29–33]. Mutation from
GAC to GAU in Rous sarcoma virus mRNA effectively abol-
ished the m6A modification [34]. In addition, motif search

from m6A peaks enriched in both human and mouse cells also
pointed to the tendency for m6A to occur in this consensus se-
quence [23,24]. However the frequency of this consensus se-

quence in the genome is much higher than the frequency of
m6A occurrence, therefore additional sequences or RNA struc-
tures may also play a role in determining the methylation sites.

m6A also occurs in rRNA [35], tRNA [36] and snRNA [19],

but not within the same consensus motifs as it does in mRNA.
An in vitro analysis using U6 snRNA as substrate showed that
a 30-stem loop structure was necessary for m6A formation [37],
suggesting that different from other RNA species, m6A in

mRNA may perform specific functions.
m6A is mainly enriched in mature mRNAs as immunoblot-

ing analysis revealed that m6A was only detected in polyaden-

ylated RNAs. However, m6A does not exist in the poly(A) tail
since depletion of the poly(A) tail from mRNA does not re-
duce the level of m6A in mRNA [23]. Previous studies at the

single gene level revealed that there is a high abundance of
m6A in the 30-terminal region of bovine prolactin (bPRL)
mRNA [32,33]. Later on, m6A-immunoprecipitation combined
with high-throughput analysis confirmed that, for most genes,

the m6A modification tends to mainly occur in intragenic re-
gions including coding sequences (CDS), stop codon flanking
regions and 30-UTR, especially the 30-end of CDS and the first

quarter of the 30-UTR [23,24]. Besides, m6A is also enriched
near transcription starting sites (TSS) [24]. m6A sites do not
spread along the transcript randomly, but is always clustered

in adjacent regions along the transcript. Collectively, these
data suggest a potential functional significance for m6A in
RNA. The molecular mechanisms involved in what determines
the m6A methylation sites along these consensus motifs in

mRNAs remain to be further elucidated.

m
6
A methyltransferase

Tounderstand this important biological modification, unveiling
the methyltransferase complex responsible for catalyzing m6A

formation in RNA remains one of the top priorities. An
in vitro methylation system has been established to investigate
the mRNA m6A modification as it occurs in vivo [38]. Since
HeLa cell nuclear extracts are capable of catalyzing the forma-

tion of m6A in vitro using an in vitro transcribed or synthetic
mRNA substrate, the extracts were further fractionated to iden-
tify individual components responsible for m6A methylation

activity. Three fractions termed MT-A1, MT-A2 and MT-B
were initially screened and demonstrated to be parts of a meth-
yltransferase complex [39,40]. Later on MT-A1 was shown not

to be essential, thereforeMT-A (200 kDa, previously designated
asMT-A2) andMT-B (800 kDa) are generally considered as the
two key multi-component factors of the whole methyltransfer-

ase complex responsible for complete m6Amethylation activity.
Subsequently a 70-kDa Adomet-binding subunit termed meth-
yltransferase like 3 (METTL3) was identified from MT-A [41].
Two functional domains responsible for methylation activity

have been identified in human METTL3 including consensus
methylation motif I (CM I), which is the Adomet-binding
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Figure 2 Schematic functional domains of m6A methyltransferases and demethylases

A. Structural alignment of human METTL3 and its homologues in S. cerevisiae, D. melanogaster, and A. thaliana. Orange box represents

motif I, which is a potential Adomet binding domain. Red box represents motif II, which is a potential catalytic domain. Individual

protein size (aa) and position of functional domains are shown as indicated. B. Structural alignment of m6A demethylases. Both FTO and

ALKBH5 belong to the AlkB family. Individual protein size (aa) and positions of conserved iron-binding domain, substrates and

a-ketoglutarate interaction motifs are shown as indicated.
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domain, and CM II that contains catalytic residues for methyl-
ation activity (Figure 1; Figure 2A). Two isoforms of METTL3
have been discovered and the ratio of their expression varies

greatly among tissues or cell types, suggesting distinct biological
functions for each of them [42].

Northern blot analysis revealed that METTL3 is ubiqui-

tously expressed in human tissues but at a much higher level
in testis [41]. METTL3 knockdown in HepG2 cells resulted
in increased apoptosis. Meanwhile gene ontology analysis of
differentially-expressed genes before and after METTL3

knockdown in HepG2 cells also indicated an enrichment of
the p53 signaling pathway [24]. Immunofluorescence analysis
showed that METTL3 is localized in nucleoplasm with strong

staining in nuclear speckles that are enriched with mRNA pro-
cessing factors [41]. These results are consistent with the recent
finding that m6A may regulate spermatogenesis by interfering

with RNA metabolism [26].
Besides mammalian cells, METTL3 homologues have also

been identified in Saccharomyces cerevisiae, Drosophila mela-

nogaster and Arabidopsis thaliana [43]. All these proteins pos-
sess the two consensus methyltransferase motifs CM I and
CM II (Figure 2A). Inducer of Meiosis 4 (IME4, also termed
as SPO8) is the m6A methyltransferase found in S. cerevisiae

[44], which is a key player involved in regulating meiosis and
sporulation in yeast [15,45]. Inactivation of the IME4-
encoding gene leads to the loss of m6A in the mRNA of yeast
mutants as well as sporulation defects. Similarly, the homolog
of METTL3 in A. thaliana, MT-A, is mainly expressed in
dividing tissues, particularly in reproductive organs, shoot

meristems and emerging lateral roots [7]. Inactivation of
MT-A led to deficiency of m6A modification and subsequent
failure of the developing embryo to progress beyond the glob-

ular stage. Dm ime4 is another homolog of METTL3 in D.
melanogaster, which is mainly expressed in ovaries and testes
[46]. These data indicate an evolutionarily conserved function
for this enzyme in gametogenesis that is dependent on Notch

signaling pathway [46].
Since the methylation activity exists only when both MT-A

and MT-B complexes are present, it has been speculated that

METTL3 exert its methylation activity with the assistance of
additional factors. The complexity of m6A methyltransferase
is unique compared with other methyltransferases identified

so far. Nucleolar 20-O-methyltransferase [47], N7-methyltrans-
ferase [48] and N2-guanine tRNA methyltransferase [49] are all
purified as single active components and are able to exploit

their enzymatic activity independently. Components besides
METTL3 in the methyltransferase complexes still remain to
be discovered. The fact that neither nuclease treatment nor
anti-methylguanosine depletion could affect the methylation

activity of HeLa cell nuclear extract indicates that RNA is
not an essential component of the enzyme [31,39]. MT-A in
A. thaliana was shown to interact in vivo with At FIP37, which
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is a plant homolog of the gene female-lethal(2)d (FL(2)(D)) in
D. melanogaster and Wilms’ tumor-associated protein (WTAP)
in human [7]. Disruption of At FIP37 in A. thaliana also results

in an embryo-lethal phenotype with developmental arrest at the
globular stage [7]. Together with the evidence that METTL3
mRNA expression level changes during the embryo develop-

ment [50], m6A may play a role in regulating development.

m
6
A demethylases

m6A methylation is a dynamic RNA modification as observed
by monitoring m6A levels throughout brain development [23].
Similar to the reversible methylations of DNA and histones

catalyzed by methyltransferases and demethylases, it has been
speculated that RNA demethylases should also exist to remove
the methyl group from the m6A base. Consistent with this

speculation, FTO gene and ALKBH5 have been demonstrated
to function as the first two RNA m6A demethylases both
in vitro and in vivo [25,26].

FTO and ALKBH5 belong to the AlkB family owing to the
conserved iron binding motif and a-ketoglutarate interaction
domain [51–54] (Figure 1; Figure 2B). Although FTO has been
known for its critical function in human obesity and energy

homeostasis, its physiological substrates as a demethylase have
been obscure [55–58].The discovery of its m6A demethylation
activity will pave the way to understanding molecular mecha-

nisms and pathways mediated by FTO.
In contrast to FTO, very little information was available for

the biological functions of ALKBH5. A photocrosslinking-

based mRNA-bound proteomics analysis has identified
ALKBH5 to be an mRNA-binding protein [59], which is con-
sistent with our finding of ALKBH5 as demethylase of m6A in

mRNA [26]. ALKBH5-deficiency has been shown to increase
m6A modification levels in mouse tubular mRNA, resulting
in testis atrophy and reduction of sperm numbers and motility
[26]. This indicates that ALKBH5 regulates spermatogenesis

via demethylation of m6A in mRNAs. Interestingly, ALKBH5
gene expression can be regulated by either protein arginine
methyltransferase 7 (PRMT7) upon genotoxic stresses or hy-

poxia stimulation [53,60], suggesting a broad role of ALKBH5
in distinct biological processes.

Both FTO and ALKBH5 are ubiquitously expressed pro-

teinswithm6Ademethylase activities.Nonetheless, their biolog-
ical functions are distinct from each other. This might be
attributed to their differential expression profiles in different tis-

sues. For instance, FTO is highly expressed in brain and muscle
[58], whileALKBH5 is highly expressed in testis and lung [26]. In
addition, to constrain their potential redundancy, FTO and
ALKBH5 and additional RNA demethylases may catalyze dif-

ferent mRNA substrates in a cell-/tissue-specific context.

Effect of m
6
A on RNA metabolism

The relative abundance of m6A mRNA transcripts varies a lot
in different types of mRNA. For instance, prolactin mRNA

has only one m6A site [33,61]; Rous sarcoma virus mRNA
has seven methylation sites [62]; the dihydrofolate reductase
(DHFR) transcript has three m6A sites [40], SV40 mRNA
may have more than 10 m6A sites [10], whilst histone and glo-

bin mRNA do not have m6A modifications [61,63]. A detailed
analysis at transcriptome level shows that 46% of mRNAs
contain only one m6A peak, 37.3% have two peaks and the
remaining have more than two peaks [23]. This indicates that

m6A itself may have a regulatory role in RNA metabolism.
The primary knowledge about m6A function is mainly ob-

tained from chemical methylation inhibitors. RNA metabo-

lism, including mRNA transcription, splicing, nuclear export,
translation ability and stability, has been examined by using
at least one of the three classical methylation inhibitors: cyclo-

leucine [64], neplanocin A (NPC) [65] and S-tubercidinylhomo-
cysteine (STH) [66]. SAM is a primary biological methyl donor
that extensively contributes to DNA/RNA/protein methyla-
tion [67]. Cycloleucine is a competitive and reversible inhibitor

of methionine adenosyltransferase (MAT), which catalyzes
SAM synthesis during methionine metabolism [68]. Cycloleu-
cine can inhibit both 50-terminal 20-O-methyl ribose and inter-

nal m6A modifications, but not the 50-terminal m7G
modifications of mRNA. NPC is a cyclopentenyl adenosine
analogue which exhibits antiviral activity against a wide vari-

ety of viruses, including vaccinia virus, vesicular stomatitis
virus, reovirus and measles virus [69,70]. NPC can inhibit cel-
lular S-adenosylhomocysteine (SAH) hydrolase. Intracellular

accumulation of SAH inhibits methyltransferases which use
SAM as a methyl donor. Therefore, NPC treatment can block
the formation of methyl-6-adenosine and 20-O-methylation.
STH is another such inhibitor of m6A and 20-O-methylation

due to its structural similarity to SAH. It mainly affects meth-
ylation of mRNA but not rRNA [66].

From the analysis of cellular phenotypes observed after

treatment with methylation inhibitors, it is found that m6A
modification is involved in almost all aspects of RNA metabo-
lism. Nuclear speckle staining of FTO and ALKBH5 also sug-

gests a close relation between mRNA demethylation and
mRNA splicing [25,26]. In addition, gene ontology analysis of
m6A-containing genes also revealed that the most correlated

functional pathways are related to RNA metabolism [24]. The
role of m6A in RNA metabolism is summarized and discussed
below.

mRNA transcription

As described before, m6A modification also exists in the
mRNAs of various kinds of viruses, such as influenza virus,

Rous sarcoma virus and simian virus [10,11,28]. Occurrence
of m6A in viral mRNA was shown to enhance the priming effi-
ciency of mRNA. Consistently, when influenza virus-infected

CHO cells were treated with NPC, viral mRNA accumulation
was greatly reduced [71]. Additionally, in an attempt to iden-
tify the biological function of ALKBH5, the effect of
ALKBH5-deficiency on gene expression was evaluated using

RNA-seq. As a result, several thousand genes showed either
up- or down-regulated expression, similar to that seen in
FTO knockdown cells via a cDNA expression microarray

analysis [72]. In addition, when METTL3 was knocked down
in HepG2 cells, the expression levels of nearly 2000 genes were
affected, especially those having m6A modification [24]. These

results suggest that m6A modification may be potentially in-
volved in gene expression regulation.

However, whether m6A does have an effect on mRNA tran-

scription remains controversial. For example, when SV40-in-
fected BSC-1 cells were treated with NPC, no change was
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detected with the transcription of SV40 mRNA [73]. In HeLa
cells treated with STH, nascent mRNA synthesis did not alter
significantly when compared to untreated samples [66]. Cyclo-

leucine treatment of CHO cells did not affect the biosynthesis
of mRNA either [68]. It has to be pointed out that since these
inhibitors also target other methylation besides m6A, further

evidence is required to clarify the specific role of m6A in
mRNA transcription.

On the other hand, besides transcription efficiency, tran-

scription kinetics are also likely affected by m6A modification.
Consistent with this speculation, although efficiency of nascent
RNA synthesis is not greatly affected, the speed of synthesis is
accelerated in m6A demethylase ALKBH5 deficient cells [26],

indicating that methylation levels of m6A-containing mRNA
transcripts may have a regulatory role in the control of
RNA synthesis kinetics.

mRNA splicing

Pre-mRNA splicing is an essential step in gene expression. It

involves precise excision of introns and joining of exons from
primary transcripts in the nucleus to generate mature mRNA
[74]. Emerging evidence supports the correlation of m6A with

RNA splicing, although the precise mechanism remains un-
clear. For instance, there is a significant accumulation of pre-
mature mRNA but decrease of mature mRNA in cycloleucine-
treated avian sarcoma virus-affected cells [75]. In addition to

its impact on global mRNA splicing, impact of m6A on specific
mRNA splicing has also been determined. Quantitative S1
nuclease mapping of nuclear bPRL revealed that NPC-treated

CHO cells contained 4–6-fold more bPRL precursor in the nu-
cleus than control cells [61]. In cycloleucine-treated CHO cells,
the average size of heterogeneous nuclear RNA (hnRNA) also

shifted significantly from low to higher molecular weight [68].
Similar results have also been observed with SV40 RNA after
NPC treatment [73], indicating that m6A modification favors

the progression of RNA splicing.
Interestingly, numerous genes, especially the methylated

genes, showed differential expression at isoform levels but
not gene levels as shown from m6A-IP/RNA-seq data analysis

of METTL3-knockdown HepG2 cells. Meanwhile, spliced
exons and introns were significantly enriched with m6A peaks,
indicating an intrinsic connection between m6A and alternative

splicing of mRNAs [24].
The mechanism of m6A regulation on splicing remains

poorly understood. We speculate that occurrence of methyla-

tion may interfere with the interaction between splicing factors
and mRNA. m6A clusters may serve as docking sites for cer-
tain kinds of RNA-binding proteins; alternatively, since A-U
base pairing may be destabilized by m6A [76,77], RNA second-

ary structure might be affected as well. As aforementioned,
MT-A interacts with At FIP37 [7], which is an RNA binding
protein involved in regulating RNA splicing [78]. Therefore

another possible mechanism might be through the interacting
partners of methyltransferases or demethylases. A recent study
of ALKBH5 raised another possibility that m6A levels may af-

fect gene expression or nuclear speckle assembly of splicing
factors [26]. Immunofluorescence analysis showed that
ALKBH5-deficiency significantly affected nuclear speckle

staining of several splicing factors including SC35, ASF/SF2
and SRPK1. Since expression and phosphorylation levels of
these factors are closely related with their activities in the reg-
ulation of pre-mRNA splicing, alternative splicing would be
affected as a consequence. Taken together, m6A may play a

regulatory role in pre-mRNA splicing, but further experimen-
tal evidence is required to consolidate this connection.

mRNA nuclear export

After splicing, mature mRNA has to be exported out of nu-
cleus to be either translated or degraded in the cytoplasm. In

STH-treated HeLa cells, retention time of nuclear mRNA in-
creased by 40%, but there was no change to non-polyadeny-
lated RNA [66]. This suggests that m6A modification itself is

not utilized for nuclear export, but plays a regulatory role in
the nuclear export machinery. In ALKBH5-deficient cells that
have enhanced m6A levels, nascent synthesized RNA was
found mainly distributed in cytoplasm as observed via

5-bromouridine (BrU) incorporation analysis [26]. Further-
more, to clarify whether only mRNA was affected, poly(A)
RNA and rRNA specific FISH experiments have been per-

formed to monitor the dynamics of nuclear export of mRNA
and rRNA, respectively. The results confirmed that nuclear
retention time of mRNA only was decreased when the m6A

level was enhanced as a result of ALKBH5 deficiency.
However, cycloleucine was found to affect nuclear retention

time of rRNA in CHO cells [64,79]. Considering that cycloleu-
cine inhibits both m6A and 20-O-methylation to the same ex-

tent, and 20-O-methylation is abundant in rRNA, it is
possible that rRNA nuclear export was suppressed via the
pathway mediated by 2-O-methylation instead of m6A.

It has been reported that different RNA species utilize dif-
ferent pathways for nuclear export through nuclear pore com-
plexes [80]. The TAP-P15 complex is the main exporter utilized

for mRNA export with the assistance of adaptor proteins, such
as ALY/REF adaptor, SR proteins and the TREX complex
[81,82]. Since phosphorylation levels of ASF/SF2 determine

its function in splicing or nuclear export, we speculate that de-
creased phosphorylation of ASF/SF2 conferred by ALKBH5-
deficiency would strengthen its interaction with the TAP/P15
complex, thereby leading to accelerated nuclear mRNA ex-

port. In contrast to mRNA, rRNA can recruit several different
pathways to make its export more efficient. The Ran system
and Crm1 export receptor bridged by Nmd3 adaptor are the

dominant export systems [83,84], while the TAP-p15 complex
[85] or Arx1 [86] are just auxiliary shuttling export receptors.
Therefore, rRNA nuclear export may not be significantly af-

fected by ALKBH5 deficiency. Interestingly ALKBH5-defi-
ciency also led to abnormal aggregation of SRPK1 protein
in cytoplasm [26]. SRPK1 is responsible for phosphorylation
of splicing factors to facilitate their involvement in splicing

of pre-mRNA [87]. Given the importance of the demethylation
activity of ALKBH5 on the cellular locations of some of these
mRNA processing factors, it is likely that the m6A methylation

status of mRNA transcripts targeted by ALKBH5 influences
the cellular dynamics of their processing factors. The detailed
pathways and mechanisms should be further investigated.

mRNA translation

Most m6A modification occurs in exons, thus m6A remains in

the mature mRNA after splicing. Therefore, m6A may also
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affect the translation of m6A-containing mRNA transcripts.
Mouse DHFR mRNA was in vitro methylated followed by
in vitro translation using rabbit reticulocyte system. A 1.5-fold

increase was detected when comparing the translation level of
methylated transcripts to that of unmethylated transcripts [88].
Similarly, when cytoplasmic transcripts purified from cycloleu-

cine-treated cells were in vitro translated, the amount of
DHFR protein produced from undermethylated mRNA was
20% less than untreated mRNA [89]. Although cycloleucine

can inhibit both 20-O-methylation and m6A methylation, 20-
O-methylation normally plays a negative effect on protein
translation; therefore the observed enhancement of translation
after cycloleucine treatment should be caused solely by m6A

modification.

mRNA stability

Regulation of mRNA decay is a major factor affecting overall
cellular mRNA abundance. Since m6A is not detected in the
poly (A) tail, we speculate that at least it is not involved in pol-

yadenylation-dependent mRNA decay. Camper SA et al. have
checked the effect on mRNA stability by treating of HeLa cells
with STH. They found that although m6A inhibition was al-

most complete in the presence of up to 500 lM STH, mRNA
stability was not greatly affected [66].

However, as identified by high throughput sequencing anal-
ysis, m6A is enriched in the 30-UTR region. 30-UTR contains

several important functional domains required for mRNA de-
cay, such as AU-rich element (ARE), iron-responsive element
(IRE) and cytoplasmic polyadenylation element (CPE) [90].

Meanwhile, 30-UTR is a region targeted by microRNAs (miR-
NAs) [91], therefore we cannot rule out the possibility that
m6A may be involved in regulation of mRNA stability. As

an example, ELAV1/HuR, a potential m6A-binding protein,
was able to bind to the ARE region and stabilize correspond-
ing transcripts [92].

The effect of ALKBH5 deficiency on overall RNA stability
has been evaluated, but only a verymodest decrease ofRNAsta-
bility was detected [26]. Since 5-ethynyluridine could be labeled
into all kinds of RNA, what is observed might be an effect on a

mixed RNA population. Thus it is difficult to draw conclusions
as to how mRNA stability is affected upon ALKBH5-defi-
ciency. The other possibility could be that the effect of m6A

on mRNA stability may be gene-specific, therefore a significant
change in global RNA stability is unlikely to happen.

m
6
A-binding proteins

Similar to 5-methylcytosine (5-mC), m6A itself may serve as a
docking site for RNA-binding proteins. Using an RNA affinity

chromatography approach, several potential m6A-binding
proteins have been suggested such as ELAV1, YTHDF2 and
YTHDF3 [24], although their individual biochemical features

remain to be further elucidated. m6A levels should be closely
related with the binding affinity of these proteins on mRNA.
Alternatively, occurrence of m6A may affect secondary struc-

tures of RNA and their accessibility by other RNA binding
proteins.

ELAV1 protein is one of the potential m6A-binding
proteins, which is highly expressed in cancer cells and also

gets involved in inflammation through regulation of mRNA
stability, splicing and translation [93]. ELAV1 regulates mRNA
stability by binding to ARE located in the 30-UTRs of the
mRNA [94]. As an example, ELAV1 can specifically bind to

the 30-UTRof c-mycmRNA [95].Meanwhile, m6A-IP-seq anal-
ysis reveals that the localization of destabilization element of c-
myc also overlaps with m6A peaks [24]. Therefore, we speculate

that m6A methylation levels may have some link with the
ELAV1 protein-mRNA interaction. There is also evidence sug-
gesting that regulation of ELAV1-bound transcripts is also

dependent on its interplay with miRNAs [96]. ELAV1 andmiR-
NA have both competitive and cooperative interactions since
they share the same target mRNAs [97,98]. A transcriptome-
wide analysis revealed that ELAV1-binding sites on mRNA

are in close proximity to miRNA-targeting sites, but they do
not overlap with each other [99]. As described before, m6A
methylation sites are also proximal but not overlapping with

miRNA targeting sites [24]. It may be worthwhile studying the
role of m6A in the functional interplay between ELAV1 and
miRNAs. Another potential candidate protein YTHDF2 is

found to be a translocation partner of RUNX1 in acute myeloid
leukemia patients [100]. The existence of m6A-binding proteins
may connect m6A to its vital functions in distinct basic life

processes.
Remarks

GO analysis of m6A-containing mRNA transcripts reveals that
m6A-containing transcripts are involved in many functional
categories, indicating that m6A has broad and fundamental

functions [24]. However there are numerous challenging issues
to be addressed before detailed elucidation of epigenetic regu-
latory roles of m6A in RNA metabolism.

The first issue is to explore a correlation of m6A position
along mRNA and its function. The 30-UTR region is impor-
tant for mRNA regulation through its influence on mRNA
stability, cellular localization, and translation efficiency via

its interaction with RNA binding proteins. Since transcrip-
tome-wide analysis revealed that m6A is enriched in the 30-
UTR region, it is possible that occurrence of m6A modification

may affect the docking of those RNA binding proteins on the
3’-UTR and their functions subsequently. Indeed it has been
reported that there is an overlap between known RNA regula-

tory elements and m6A peaks in certain kinds of mRNAs [24].
On the other hand, since m6A sites in the 30-UTR are proximal
to miRNA-targeting sites and there is an inverse localization

between miRNA targeting sites and m6A sites, it is also possi-
ble that m6A methylation may affect the targeting of mRNA
by specific miRNA, and consequently corresponding RNA
functions are negatively affected.

Human methyltransferase consists of MT-A and MT-B
complexes, but so far only a 70-kDa subunit METTL3 from
MT-A has been identified [41]. Therefore, the second crucial is-

sue is to identify additional methyltransferase components and
their biological functions. Transcription levels of METTL3 are
dependent upon intracellular levels of Adomet, which is regu-

lated by methionine availability. Interestingly, methionine
metabolism is closely associated with cancer [101]. Further-
more, higher m6A methyltransferase activity was detected in
transformed cells than in non-transformed cells, indicating

an intrinsic relationship between m6A methylation and cancer
[102]. Immunobloting analysis using m6A antibody confirmed



Figure 3 Working model of m
6
A in regulating mRNA metabolism

As a ubiquitous modification in mRNAs, m6A methylation occurs immediately after pre-mRNA transcription by METTL3-containing

methyltransferases; while FTO and ALKBH5 are responsible for m6A demethylation. Through mutual interplay between methyltrans-

ferases and demethylases, m6A level is kept in balance to form a docking site for m6A binding proteins and proper assembly of RNA

secondary structure. The mRNA transcripts with adequate m6A level can be properly spliced, transported, translated or degraded.

Unbalanced m6A regulation will cause defects in RNA metabolism at each step shown above. Functional studies on methyltransferase,

demethylases and potential m6A-binding proteins reveal that m6A in RNA may be involved in adipogenesis (FTO), spermatogenesis

(ALKBH5), development (METTL3, FTO and ALKBH5), carcinogenesis (YTHDF2), stem cell renewal and other unidentified life

processes.
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that m6A levels in mouse and rat also varied a lot throughout
brain development [23]. Coincidently, METTL3 is differen-
tially expressed during embryo development, suggesting that
m6A may be correlated with development as well [50].
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Another significant issue is to investigate m6A-mediated bio-
logical functions from the angle of RNA demethylases.
Although both belong to the AlkB family, FTO and ALKBH5

have been shown to have distinct biological functions so far.
This may be attributed to their different tissue-specific expres-
sion patterns and different substrate preferences. We speculate

that m6A plays a role in FTO-regulated homeostasis, however
the mechanism remains unclear. Additionally, the phenotype
of ALKBH5-deficient mice and increased m6A levels in testis

tubular mRNA suggests an essential regulatory role of m6A in
spermatogenesis. In addition, considering the ubiquitous distri-
bution and fundamental functions ofm6Amodification, we can-
not rule out the possibility that additional RNA demethylases

may exist and catalyze different RNA substrates including
mRNAs, rRNAs, tRNAs in a cell-/tissue-specific context. Sim-
ilar to 5-mC, m6A itself may serve as a docking site for RNA-

binding proteins. Furthermore, the identification and character-
ization of m6A-binding proteins is also vital to unveil the func-
tions of m6A modification in distinct basic life processes.

In conclusion, m6A methylation plays broad and important
roles through the functional interplay among m6A methylases,
demethylases and m6A binding proteins [103]. Abnormal m6A

methylation levels induced by defects in any factor in this net-
work may lead to dysfunction of RNA and cause diseases. The
5-mC modification of DNA is known to play dynamic roles in
epigenetic regulation in mammalian cells. Discovery and char-

acterization of the first two RNA demethylases FTO and
ALKBH5 indicates that, similar to the epigenetic regulatory
role of DNA methylation, the reversible m6A modification in

mammalian mRNA represents another novel epigenetic mar-
ker with broad roles in fundamental biological processes
including adipogenesis, spermatogenesis, development, carci-

nogenesis, stem cell renewal and other as yet uncharacterized
processes (Figure 3).
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