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Abstract

The long lasting debate initiated by Gilovich, Vallone and Tversky in 1985 is revisited: does a ‘‘hot hand’’ phenomenon exist
in sports? Hereby we come back to one of the cases analyzed by the original study, but with a much larger data set: all free
throws taken during five regular seasons (2005=6{2009=10) of the National Basketball Association (NBA). Evidence
supporting the existence of the ‘‘hot hand’’ phenomenon is provided. However, while statistical traces of this phenomenon
are observed in the data, an open question still remains: are these non random patterns a result of ‘‘success breeds success’’
and ‘‘failure breeds failure’’ mechanisms or simply ‘‘better’’ and ‘‘worse’’ periods? Although free throws data is not adequate
to answer this question in a definite way, we speculate based on it, that the latter is the dominant cause behind the
appearance of the ‘‘hot hand’’ phenomenon in the data.
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Introduction

Current information era, brings with it exciting opportunities

for exploring old and new research fields using extensive data sets

that are easily accessible nowadays. It allows scientists to explore

many topics on a larger scale and in a more precise quantitative

way. Sports is a great example of how one can take advantage of

large data sets that are available in a digital format and address

interesting questions in a variety of contexts (eg. [1–6]). Hereby,

we study a large data set from the world of basketball: any person

who ever watched a basketball match is likely to be familiar with

terms like ‘‘hot hand’’, ‘‘on fire’’, ‘‘in the zone’’, ‘‘on a roll’’ etc.

These terms are intended to describe the belief that an individual’s

performance temporarily increases significantly beyond his or her

normal rate. The ‘‘hot hand’’ phenomenon has generated a huge

interest in the past 25 years since Gilovich, Vallone and Tversky

[7] published their pioneering paper in Cognitive Psychology. The

original motivation of their paper was to study how human

subjects misperceive random sequences and tend to attribute non-

random patterns to completely random data. For that purpose

they analyzed three types of data coming from the world of

basketball. They claimed that the observed patterns could have

been produced by random as well and hence the fact that people

relate ‘‘temperature’’ inspired adjectives to players in different

times is connected to the way human beings perceive the random

world surrounding them and not to the objective features of

reality. Since this provoking work many people have analyzed

basketball and other sports looking for evidence of deviations from

random patterns (see the reviews of [8], [9] and the website [10]).

However, since data is inconclusive in most cases [8] and evidence

for clear deviations from random patterns are rare (e.g. [5,6,11]),

the question of what type of deviation from the random pattern

was hardly addressed. In particular, the nature of deviation from

the base rate could be attributed to sequential dependence

between events (‘‘success breeds success’’ and ‘‘failure breeds

failure’’) or to non-stationary probability of success (‘‘better’’ and

‘‘worse’’ periods). The psychology of the player underlining each

type of deviation is completely different and in principal could be a

very interesting research topic by its own conditioned that such

deviation exists.

Since the illuminating work of Wardrop [12], it is clear that if

one is interested in the individual level one should not analyze the

aggregated data because strange effects due to Simpson’s paradox

[13] sometimes referred to as ‘‘the fallacy of the averages’’ [14]

might change the results dramatically. Later on, Wardrop [15] did

find traces of deviation from the repeated independent Bernoulli

hypothesis also in the individual level by analyzing 2000 shots of

one player (Katie Voigt, who took 100 throws each day for 20
days); the results, however, weren’t conclusive as they were based

on one individual only, the nature of deviation from the null

hypothesis wasn’t clear (dependency or non-stationarity) and the

setup was controlled and wasn’t part of an ongoing basketball

game. In the current paper a large amount of data is analyzed: all

free-throw sequences extracted from play by play data of five

regular seasons of the NBA (data is available at www.nba.com).

Indeed, it is shown that there is a dramatic difference in the

results if one looks at the aggregated data or the individual level

data. Nevertheless, even after taking the effect caused by different
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individual levels properly into account, we were still able to find

‘‘hot hand’’ traces in the individual level. We argue that this

finding is mainly due to time fluctuations of the probability of

success and does not necessarily imply that there is a psychological

process that influences the performance of a player based on his

previous results.

As mentioned above, Wardrop [12] showed that the answer to

the question whether a ‘‘hot hand’’ exists in free throws data might

be different if one looks at the aggregated level or the individual

level. He argued that since the typical basketball fan does not hold

different data sets for each player, but rather one aggregated data

set for all free throws he had ever seen, the ‘‘hot hand’’

phenomenon that is perceived by the typical fan is real since it

is present in the aggregated data set. Wardrop concluded that

since data in the individual level didn’t show ‘‘hot hand’’ traces,

the conclusions of [7] still hold and each individual series of results

could be taken as a result of a random number generator of

independent Bernoulli trials with a constant probability of success

(p). Hereby, we reach a somehow different conclusion and show

that the collection of individual sequences is indeed biased toward

a hot hand tendency, which might explain Amos Tversky’s (who

initiated the hot hand research) words: ‘‘I’ve been in a thousand

arguments over this topic, won them all, but convinced no one’’

[8].

Materials and Methods

The data
The NBA season is divided into two: regular season and

playoffs. In the regular season, each of the 30 teams plays 41 home

games and 41 away games, combined to a total of 1230 games in a

season. For each of these games a ‘‘play by play’’ data is collected

and is available through the NBA official website. This data lists all

the events that have an influence on the game such as throw

attempts, fouls, rebounds, assists, etc. along with the names of the

players involved and the time of the event.

There are three types of free throws in a basketball game - all

come after a foul was committed. The resulting penalty is a series

of either 1,2 or 3 consecutive free throws. A player which is

awarded a free throw, gets an uninterrupted attempt to score a

basket from a predetermined distance. Since this distance is the

same in all the basketball courts and the defending skills of the

opposing team and players do not affect the outcome, one is lead

to a conclusion that free throws outcome are a measure of the skill

of the individual player at that point in time. This makes free

throws an excellent candidate to find a ‘‘hot hand’’ provided that

such phenomenon exists. Since we were interested only in free

throws data the relevant information was extracted from the entire

database of five NBA regular seasons (2005=6{2009=10). The

data set used in our analysis after cleaning it for various items (see

next section), is constructed of a total of 308862 free throw

attempts consisting of 38441 single free throw attempts, 132917
pairs of free throw attempts taken by 712 different players and

1529 triplets of free throws attempts taken by 251 different players

from a total 6150 games over 5 consecutive seasons.

Cleaning the data. The first step in analyzing the data was to

clean it from all types of errors and inconsistencies:

N The data of 12 games (out of the 1230 games played in season

2008=2009) was not complete on the NBA website and

therefore was excluded.

N 540 records of the 267772 two throws data points had only one

entry (the first or second trial). Hence were suspected to be

typing errors and were moved into the single throw sets.

N In some cases two players from the same team share the same

last name. In most of these cases the player ID or the initial of

the first name helps in telling them apart but in several

individual cases the data was still ambiguous: in all of these

cases we simply ignored this data for the current analysis (sums

into 1693 throws out of the 310555 throws exist in the entire

data set, 1398 of them were part of two throws sets).

All together, less than 1% of all data points were ignored for the

current analysis. There is no reason to believe that the resulting

data is biased in any sense due to the cleaning procedure. The

cleaned data is available in Dataset S1.
Analyzing the data. As mentioned above there are three types

of of free throws sequences: a single attempt, a sequence of two

consecutive attempts and a sequence of three consecutive attempts.

For all the two attempts sequences of every player, i, we measured

the success rate for the first and second free throws attempts and

denoted them by pi(1,) and pi(,1) respectively. Throughout this text

lower case letters denote single individual properties. Then we

measured the conditioned success rate in the second free throw

attempt (conditioned the first throw went in/out) denoted by pi(1j0)
and pi(1j1) respectively. The average of the players success rates

and conditional probabilities were calculated and denoted by an

upper case letter using the same notation, P(1,), P(,1), P(1j1) and

P(1j0). We have also measured the success rates and conditional

success rates for the entire data set aggregated over all players and

denoted it by �PP(1,), �PP(,1), �PP(1j0), and �PP(1j1). An equivalent

procedure was done with the data of the three consecutive free

throw attempts.

The results were then tested for statistical significance for two

measures:

N Non-stationarity (NS): the change in success rate as the

consecutive attempt number increases.

N Conditional probability (CP): the change in success rate of the

second attempt for a given results of the previous attempt (for a

sequence of three free throw attempts the same was done with

the third attempt as well).

Both of these measures can be studied with the aid of the

hypergeometric distribution. In order to test the NS one can think

of hits as ‘‘white balls’’ and misses as ‘‘black balls’’ and put them all

in one urn after labeling them as first or second attempt. Since the

null assumption is that there is no systematic deviation in the

probability of success between the first and the second attempts,

one can sample, without replacement, one half of the total number

of throws (first and second attempts combined) and check how

many hits (white balls) are in the sample. The null assumption

implies that the number of hits in the first or second attempt

should be consistent with a random sample from this hypergeo-

metric probability distribution function.

In the case of testing the change in CP one can think of putting

all the second attempts as balls in the urn (hits are the ‘‘white balls’’

and misses are the ‘‘black balls’’). This time the number of balls

that are drawn, without replacement, is the number of hits in the

first throw. Once again, the null assumption, which states that the

result of the second attempt is independent of the result of the first

attempt, implies that the number of times one gets hits in both

throws will agree with a random sample from this hypergeometric

distribution function.

We describe the hypergeometric distribution function with the

following parameters: W (number of white balls in the urn), B
(number of black balls in the urn), S (sample size) and w (the

number of white balls in the sample) and the data variables by

N11,N10,N01,N00,N as the number of times the results Hit-Hit,
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Hit-Miss, Miss-Hit, Miss-Miss, and the total number pairs

respectively.

Thus, the formulation of the NS hypergeometric distribution

function is,

WNS~2:N11zN10zN01

BNS~2:N00zN01zN10

SNS~
N11zN10zN00zN01

2

wNS~N10zN11

ð1Þ

while the formulation of the CP hypergeometric distribution

function is,

WCP~N11zN01

BCP~N00zN10

SCP~N11zN10

wCP~N11

ð2Þ

After calculating these measures, in principal, one can calculate

for each individual player, the p value resulting from an exact Fisher

test or an exact Bernard test. Both tests have their own disadvantages

in accuracy and more importantly, since the distributions are discrete

it is not so easy to analyze the collection of results for all individuals

and deduce from it a resulting ‘‘q value’’ or ‘‘p value of the p values’’

[16]. Hence, we decided to take two independent approaches to

estimate the probability of obtaining the observed collection of result

for all individuals just by chance (‘‘q value’’).

The first, computationally faster, approach involves estimating a

‘‘z value’’ for each individual player; the z value is the distance

(including sign) of the observed value, w, from the expected value,

m~SW=N, for the hypergeometric distribution in units of its

standard deviation,

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW (N{S)(N{W )=(N3{N2)

q
:

zNS=CP:
wNS=CP{mNS=CP

sNS=CP

ð3Þ

where the subscript is the notations we use to distinguish between

the two measures defined above (NS for non-stationarity and CP
for conditional probability).

When calculating for the aggregated data the total number of

free throw attempts is large enough and the distribution of �ZZ can

be approximated well by a normal distribution with zero mean

and a variance of 1, from which the resulting p value can be

extracted. In cases where we are interested in the statistical

significance of the collection of z values of the Np players, one can

look at their (the individual z’s) mean value: from the definition

(eq. 3), assuming the z’s of the different players are independent,

one should expect the mean value to be 0 and a variance to be
1

Np

.

Following this, we define Z~mean(z):
ffiffiffiffiffiffi
Np

p
which in turn can use

the normal approximation to obtain a ‘‘q’’ value by

q~2:(H(Z){erf Zð Þ) ð4Þ

where erf is the Gauss error function and H(x) is 1 for xw0 and 0

elsewhere. A positive value means ‘‘hot hand’’ while a negative

number indicates ‘‘cold hand’’. This approach is fast but rely on a

normal approximation.

A more accurate, though computationally intensive, approach, is

permutation approach: first, we reshuffle the second throws of each

individual. After reshuffling, we calculate the zCP value for each

individual for the reshuffled data and record the mean ZCP value for

this reshuffled realization. Repeating this procedure many times

results in a collection of mean ZCP values (one for each realization/

reshuffle), each corresponds to independent second throws from the

first ones. The last step in order to estimate the correspondent q
value is to rank the results of the random reshuffles and see what

fraction of these show larger values than the actual observed value

from the original data. This fraction times two (since we are

calculating a two tailed test) is an estimate of the q value. In the

current analysis we have made 106 such realizations for each player

in each season.

Results

We start by verifying two observations already pointed out in

[12], but here they are observed on a much larger data set which

allows for detecting better more subtle effects: 1. Aggregation of

data over different players may skew and even reverse the results.

and 2. An increase in the success rate with the number of throws

attempts (NS). Following these two points, we describe the main

results reported here: 3. Even after taking the two previous effects

properly into account there is still a statistically significance

correlation between the results of consecutive free throw attempts.

In our notation P(1j1)wP(1j0), an increase in the conditional

probability (CP), which is usually referred to as a ‘‘hot hand’’. We

take, then, yet another step and propose that: 4. The increase in

the conditional probability is due to time fluctuations in the

probability of success rather than a causal connection between the

results of consecutive throws.

Effect of aggregation
A simple statistics artifact of aggregation, sometimes referred to

as ‘‘Simpson’s Paradox’’ [13,14] or the ‘‘fallacy of the averages’’

[17], can produce macroscopic biased patterns out of completely

random elements. Although Robert Wardrop [12] observed this

effect in a smaller data set he studied (one season of one team - the

Boston Celtics), it is instructive to show the presence of this effect

in the current data set as it is much more noticeable here and may

serve as an intermediate step for a better understanding of the

effects caused by time variations of the probability of success.

In order to illustrate the effect, let us look at the throw sequences

data of two individual players: Dwight Howard and Kevin Martin

from the 2008=2009 NBA season (summarized in Table 1).

While the individual zCP values (see eq. 3 in method section) of

both players for conditional probabilities have negative values:

zHoward
CP ~{1:83,zMartin

CP ~{0:9, which indicates ‘‘anti-correlation’’

for these players, the combined data and the corresponding �ZZCP value

shows the opposite trend (�ZZCombined
CP ~0:49), suggesting the combined

data shows ‘‘hot hand’’. According to [12], this might be the hot hand

that the typical basketball fan perceives as he/she cannot remember all

the individual sequences for each of the players separately but rather

one long combined sequence. As is evident from the data presented

above, Wardrop argued that observing a hot hand for the data

aggregated over all players doesn’t necessarily imply that the individual

sequences themselves will present such a pattern (see also Supporting

Information S1 for some examples of individual players values).

Yet another demonstration for this kind of bias due to

aggregation is presented in the Supporting Information S1 where

The Hot (Invisible?) Hand
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we show that if one takes a distribution of individual probabilities

of success each of which produces an uncorrelated random

sequence (that corresponds to the distribution of the different

players success rates), the pattern of the aggregated data shows

significant correlations in the data (i.e. a ‘‘hot hand’’) although

each individual sequence is uncorrelated by construction.

The results for the aggregated level data are presented at the top

part of Tables 2, 3 and in Figure 1 (a,b). The aggregated data is a

sum of all free throw attempts by all players for each of the

seasons. We see that both �ZZNS and �ZZCP (the Z values that

correspond to the aggregated data), are positive, suggesting that we

are observing the ‘‘hot hand’’. But, as we learned from the

Simpson’s Paradox, this alone is not enough to declare that there is

a tendency for a player to improve with consecutive free throw

attempts (NS) nor that there is a better chance to score after a

success in the previous attempt (CP). In order to be able to

correctly test for these features we need to look at the data at the

individual level: i.e. calculate the level of non-stationarity and

conditional probability for each of the players.

Monotonous increase in the probability of success
The success rates of free throws attempts are summarized in

Table 1 and shown graphically in Figure 1(a,c). One can see for

both the individual (a) and aggregated (c) level data how the mean

probability of success increases with the order of throw attempt in

the sequence. This effect is evident for the whole period and for

each season whether one is looking on sequences of two or three

free throw attempts. It is worth noting that the first two attempts

from sequences of three free throw attempts have higher mean

success rates, this is due to the fact that players who attempt a

three point shot usually posses better shooting skills (the blue

symbols in figure 1 represents these results). For the case of two

free throws attempts, the success rate for the second attempt is

increased by at least 4% for all the seasons examined with the

ZNS and �ZZNS values (see Table 4) for all of the seasons above 10

(!). The probability of this happening by chance under the null

hypothesis is ridiculously low (v10{23) for both the individual and

aggregated data, which gives these results a very high level of

statistical confidence. Moreover, the fact that both ZNS and �ZZNS

are very close suggests that this tendency of improving the pro-

bability for the second shot is relatively a homogeneous feature of

the players. The three attempts sequences show the same tendency

for the third shot as well but with less statistical significance as

there are only 251 players with 4587 free throws attempts (see

Supporting Information S1).

In the left panels (with the red bars) of Figure S1 we plot the

histograms for the improvement in success rate for all the

individual players and the corresponding zNS values for each

individual player taken from the data for all seasons. The average

improvement values span between the limits 7:6{12:7% and the

median between 4:9{7% the positive skew from a symmetrically

distribution in the individual players level is evident. The

histograms of the zNS values show a similar skew as well with a

means and medians values between 0:5 and 0:7, which result,

once again, in a negligible q value (p value of the collection of

individual p values, see methods) of *10{24 calculated from

table 4.

The reasons for this effect could be easily justified as an

‘‘alignment gauge’’ for the hand of the shooter. The time taken by

the player until the second attempt also allows for rest and more

concentration before the second and third shots are taken.

Needless to say that this tendency cannot go on forever and it

may be interesting to quantify this feature further using targeted

experiments.

Increase in conditional probability (‘‘Hot Hand’’)
Panels b and d of Figure 1 show the success rate of the second

free throw attempts conditioned a successful/unsuccessful first

attempt for both aggregated and average of the individual players

(the data is summarized in Table 3). Over all 5 seasons examined

Table 1. An example of the Simpson’s paradox.

Kevin Martin

2nd-Miss 2nd-Hit

1st-Miss 1 35

1st-Hit 25 159

Dwight Howard

2nd-Miss 2nd-Hit

1st-Miss 59 102

1st-Hit 89 127

Both combined

2nd-Miss 2nd-Hit

1st-Miss 60 137

1st-Hit 114 286

Player zNS zCP

Kevin Martin 0.96 20.90

Dwight Howard 1.37 21.83

Both combined 1.44 0.49

The individual tables for Kevin Martin and for Dwight Howard (season 2008=2009) give negative values for zCP while the aggregated table of both players yields a
positive value for zCP .
doi:10.1371/journal.pone.0024532.t001
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there is a 1:4{4:6% improvement in the second attempt success

rate conditioned that the first attempt was good. This data is for

the mean of the individual level, eliminating any skew of the results

due to aggregation. The histograms for the individual players

success rates and corresponding zCP values are presented in the

the right blue panels of Figure S1.

As for the statistical significance of this result, one is referred to

table 4 to see the resulting q values calculated by the two methods

(normal approximation and permutation approach) described in

the methods section. One sees that in both methods similar

numbers are obtained (which means that the normal distribution

approximation is a decent one in this case) and that in most

seasons (apart from 2008/2009) the trends we observed are

statistically significant (q value v0:05=G, where G is the number

of repeating tests one is performing, 5 in our case). These q

values are much less significant from the aggregated level data.

Table 2. Non stationarity (NS) statistics for each season.

Aggregated data 2005=06 2006=07 2007=08 2008=09 2009=10

�PP(1) 74.32 73.54 74.71 76.49 75.58

Number of throws 7807 8418 7300 7265 7651

�PP(1,) 71.91 73.12 73.54 74.70 73.74

�PP(,1) 76.95 77.57 77.70 79.29 78.10

Number of throws 27765 27344 26416 25842 25550

�PP(1,,) 79.07 78.84 77.74 76.51 78.65

�PP(,1,) 78.29 79.18 80.65 84.23 83.51

�PP(,,1) 84.50 87.03 80.65 85.57 84.59

Number of throws 258 293 310 298 370

Individual data

P(1) 69.47 69.20 70.52 73.19 70.55

Number of individuals 398 410 397 389 397

P(1,) 68.21 69.53 69.80 71.63 70.13

P(,1) 74.83 76.04 74.29 75.43 75.21

Number of individuals 439 443 438 427 429

P(1,,) 76.82 80.67 78.06 74.26 76.20

P(,1,) 76.73 76.66 78.16 82.06 85.20

P(,,1) 84.79 85.21 78.23 83.06 83.16

Number of individuals 95 112 121 120 132

The upper part of this table (with the ‘ { ’ symbols) refers to the success rates in the aggregated data (and number of throws attempts for each of the different free
throws types) of the entire regular season (2005=6{2009=2010). The lower part of the table (without the ‘{ ’ symbols) refers to the mean values of the different players
success rates throughout the season. P(1) is the percentage of success in a set of one throw attempts. P(1,) is the same for the first throw out of a two throws set, while
P(,1) is the percentage of success in the second throw in such a set. P(1,,) is the percentage of success in the first throw out of a set of three throws attempts and so on.
doi:10.1371/journal.pone.0024532.t002

Table 3. Conditional probability (CP) for each season.

Aggregated data 2005=06 2006=07 2007=08 2008=09 2009=10

�PP(1j0) 72.45 72.38 72.63 75.33 73.81

Number of records 7800 7350 6990 6537 6709

�PP(1j1) 78.71 79.48 79.52 80.63 79.62

Number of records 19965 19994 19426 19305 18841

Individual data

P(1j0) 71.94 74.20 72.28 74.59 73.59

Number of individuals 418 424 414 405 408

P(1j1) 76.53 77.05 75.79 75.97 76.42

Number of individuals 430 435 425 421 422

As in table 1, the upper part of the table (with the ‘{ ’ symbols) refers to the aggregated data while the lower part refers to the mean values of the different individual
players success rates throughout the season. P(1j0) is the success rate in the second throw attempt (out of a two throws set) given that the first one was a miss while
P(1j1) is the success rate in the second attempt given that the first one was a hit.
doi:10.1371/journal.pone.0024532.t003
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This is attributed to the fact that the players probability of

success distribution is broad and the ‘‘mean’’ individual is not a

representative player. In three attempts sequences we observed

the same trend but with a much lower level of statistical signifi-

cance due to the low numbers of throws (see Supporting Infor-

mation S1).

The interpretation of this result is essentially that the results are

unlikely to emerge from a collection of uncorrelated sequences

each with a constant probability of success and no auto

correlation. But statistical significance is borderline in some cases

and the question about its’ origin remain: does it mean that we

found proofs that‘‘success breed success’’ or can something else

explain the observed ‘‘hot hand’’ pattern? Recently, for the change

in the conditional probability, similar results were obtained in [6],

using different methodology and based on a subset of the data

presented hereby (namely, the 2005=6 season). Our analysis agree

with these results for that season and extend them to a larger

period of time.

‘‘better and worse’’ periods rather than ‘‘success breeds
success’’

In principle, ‘‘better and worse’’ periods for individual

players can cause the same effect as ‘‘success breeds success’’ on

the success rate of the second free throw attempt and are hard

to separate apart. To illustrate the reasons for this diffi-

culty, two of the simplest descriptions of each possibility are

compared:

N ‘‘Better’’ and ‘‘worses’’ periods: switching with random (or

constant) periods of time spent in each of the two states where

each state is a Bernoulli independent repeated trials with

probability of success pgood and pbad .

Figure 1. The two trends observed in the data. Panels a and c(individual and aggregated levels respectively) show how the chances of hitting a
free throw increase with the number of throws taken in a row (until a set of three throws). This increase is evident in both individual and aggregated
levels (a and c respectively). The last two values of the x axis represent sets of two throws taken only by individuals who had at least one three
throws set. These values resembles the values of the first two throws in a three throws set. Panels b and d show the success rates of the second
throw in a two throws sequence following a success/failure in the first throw. These panel shows a major finding of the current paper: ‘‘hot hand’’
statistical traces - success rates in the second throw are higher when the throw attempt followed a success in the first attempt rather than a failure. In
this case as well, the results are present both in the individual level and in the aggregated level (b and d respectively).
doi:10.1371/journal.pone.0024532.g001

The Hot (Invisible?) Hand

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e24532



N Positive/negative one step feedback: the probability of success

given the last trial was a success is phit and pmiss if the previous

trial was a failure.

Both options can be viewed as a system where each player

behaves essentially like two players sharing the overall sequence

with different probabilities of success. This point of view connects

back to the first observation (effect of aggregation) and to

Supporting Information S1 where it is shown that in this case

there will be a systematic deviation between p(1j0) and p(1j1) and

thus a ‘‘hot hand’’ will be present in the data.

In order to distinguish between the two there is a need for an

analysis of the time series of results which will help in identifying a

characteristic timescale in which the probability of success changes

and then to try and link it to one of the possibilities presented

above (see [15] for a comparison of several methods to detect such

pattern). However, the studied data set does not allow such

analysis since the typical player throws only one set of two throws

in a game and it would not be wise to treat free throw attempts

from different days as one sequence. Moreover, the free throws

happen during a game in which the players experience success and

failure in several aspects not captured by the current analysis. We

think there will be merit in an experiment that includes many

subjects aiming to extend the results in [15] to address this

interesting question. In spite of the statistical ‘‘hostile’’ environ-

ment for choosing between the two options in this data, it is still

possible to come up with two different arguments that support the

first possibility (better and worse periods) over the second one

(success breeds success and failure breeds failure).

1. Common sense: it will be unrealistic to think that during a

year players will not have temporal fluctuations in their objective

skills due to various environmental conditions disregarded of their

achievements. Some examples are injuries and recovering from

them, unrelated psychological crises or improvement in their skills

due to hard work.

2. Hard wired: the belief in the positive/negative feedback

mechanism is attributed to processes related to the psychology of

the player. In particular, it implies that there should be certain

players who have a tendency to a ‘‘hot hand’’ and others who have

tendencies to a ‘‘cold hand’’ or play neutrally. If such

psychological reasons do exist and are hard wired in the players

minds, they will dominant the deviation from the null hypothesis.

Thus, one expects to be able to see a tendency for each individual

to maintain his hot/cold tendency from one season to the other. In

figure 2 the zCP value of each individual player in one season is

plotted vs. the value he had for the following year. The numbers

of players in each quartile are noted in black and represent

the number of players that maintained/flipped their zCP sign

(depending on the quartile). One sees that the pattern looks quite

random and indeed if one measures Pearson’s correlations for

these variables the resulting numbers are very close to zero

({0:012,{0:043,{0:013,{0:006 for the four panels ordered by

chronological order). In order to prove this point in a more

quantitative way we can recruit once again the hypergeometric

distribution: in this case, if we denote the four quartiles by

azz,az{,a{{,a{z, then the mapping to the hypergeometric

distribution is

WHW ~azzzaz{

BHW ~a{{za{z

SHW ~azzza{z

wHW ~azz

ð5Þ

This yiealds the following ZHW values: {0:29,{0:4,0:53,0:02
which correspond to the following p values:

{0:77,{0:69,0:6,0:98. These numbers agree with random

reshuffle of the individual zCP value (which can be thought of as

the level of the ‘‘hot hand’’ tendency of each player) from one

season to the next one, which implies that a player with ‘‘hot’’

hand in one season has equal chances to have a ‘‘cold’’ hand in the

next season. Since here we are not interested in calculating q
values, we can use also Fisher’s exact test for these tables which

results in the same kind of results (the resulting p values from

Fisher’s exact test are: 0:73,0:82,0:63,0:99).

We conclude that these two points suggest that the observed

pattern interpreted as ‘‘hot hand’’ in the analyzed data is in large

part a consequence of better and worse periods.

4th quarter
It is believed that the last quarter of a basketball game is very

different from the other quarters. The game is often interrupted

and special tactics apply to this period. An interesting question is if

and how the features we have seen so far are affected by this. For

that purpose, we have divided the data into two parts: 1) quarters

1{3 and 2) 4th quarter and overtime and repeated the above

analysis. Interestingly, our findings were consistent between these

two periods of the game; See Supporting Information S1 for the

complete analysis. One more point worth mentioning is that,

indeed, as one might expect the percentage of sets of two

consecutive free throws taken on the 4th quarter is significantly

larger than 25% of the total number of sets in the game (except the

2009=2010 season, in which the deviation is not statistically

significant). In addition, the fraction of sets of one free throw is

significantly lower than 25% in all seasons. One can connect these

Table 4. Statistical significance of the trends observed.

2005=2006 2006=2007 2007=2008 2008=2009 2009=2010

�ZZNS
13.62 12.08 11.12 12.39 11.52

ZNS 13.48 12.25 10.31 10.9 11.13

�ZZCP
11.13 12.48 11.86 9.15 9.89

ZCP 3.71 4.13 4.04 1.87 2.58

qCP{value 2.1e-04 3.6e-05 5.3e-05 6.1e-02 9.9e-03

q
permutation
CP {value 5.2e-04 1.2e-04 1.4e-04 7.6e-02 1.5e-02

As in tables 1,2 the variables with the ‘{ ’ symbol refer to the aggregated data. See text for the definitions of the different measure.
doi:10.1371/journal.pone.0024532.t004
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observations to the fact that the fouls committed in this quarter are

harder and chances of scoring a basket after a foul was committed

on the player are lower.

Discussion

Strong evidence for the existence of a ‘‘hot hand’’ phenomenon

in free shots of NBA players were found. More precisely, several

statistically nontrivial features of the data were found and can be

summed into one concept: heterogeneity. The heterogeneous

behavior was found both in ‘‘space’’ (across players) and time

(along one season). In particular it has been shown that

N If one looks at the aggregated data he/she is likely to observe

patterns that do not necessarily exist at the individual level.

N The probability of success increases with the order of throw

attempt in a sequence (NS).

N Even if one looks at each individual sequence separately, ‘‘hot

hand’’ patterns are still visible (CP): probability of success

following a success is higher than the probability of success

following a failure.

N These patterns could have resulted from ‘‘better and worse’’

periods and not necessarily from positive/negative feedback loops.

These statistical features per se are not so surprising when

studying performance of human subjects. Nevertheless, due to the

intensive debate in the last 25 years since the first paper about the

‘‘hot hand’’ phenomenon [7], they can be seen as crucial pieces of

information that serve as solid evidences to rule out a stationary

Figure 2. Comparison of the individual zCP’s across seasons. This plot shows the individual zCP in one season vs. the value of the same
individual in the following season (in cases where the player had finite zCP values in both seasons). The color code refers to the total number of two
throws sets taken in both seasons. The numbers (in black) in each quartile are the number of observations that fall in each of them. This random
pattern of the zCP (see text for more quantitative support for this statement) values across seasons suggest that the individual ‘‘hot hand’’ is not a
characteristic of the player but rather something that can vary from one season to another for the same individual. This fact leads us to suggest that
this phenomenon is caused by whithin-season nonstationary probability of success rather than psychological reasons which are connected to
positive/negative feedback loops.
doi:10.1371/journal.pone.0024532.g002
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randomly independent behavior. In retrospect, it seems like a very

long journey to walk through just in order to notice that human

subjects have good periods and bad periods and that the time

sequence results can not be produced from a binomial independent

repeated trials with a constant probability of success. We hope that

this work will pave the way for studying the more important

questions concerning the ‘‘hot hand’’ phenomenon such as what are

the physiological and psychological causes for the changes in the

probabilities of success and how do the players and observers

perceive these indicators for good and bad periods. In particular, it

will be constructive to find new examples and/or stage new

experiments that will allow one to measure the time scale in which

the good and bad periods alternate. Except [15], the only supported

example we have found in the literature that claims that there is a

causal connection (dependency) between one trial and the following

was from the world of Bowling (see the review by [8]). In that study

[5], came to a conclusion that there is a dependency between trials.

We re-examined their test for independence and found that the test

they have used could have detected nonstationarity rather than

dependency. Nevertheless, the Bowling setup seems to be a good

place to perform such analysis that will address the question of

timescales of good and bad periods as well as what causes the

transitions between the two periods.

From the basketball fan/professional perspective, it could be

beneficial if the NS result which implies that the probability of

success increases with the shot number would be further exploited.

To start with, this could be added as one more statistical feature

that is calculated and presented throughout basketball matches,

but more importantly, one can study further the psychological and

physiological reasons behind it and maybe come up with

techniques that will help the player to improve the first trial(s) in

a sequence of trials.

Although the phenomenon that was studied here is taken from

the world of sports, the implications are much more far reaching

and should bear in one’s mind when analyzing data of any kind. In

spite of the fact that it is known for many years that aggregated

data (or mean behavior) can deviate significantly from the

microscopic dynamics underlying it (e.g. [13,14,17–20]), it tends

to be forgotten in many cases; in particular when referring to time

aggregation.

The current example of the ‘‘hot hand’’ phenomenon serves as

a fascinating one since it is possible to trace back the fundamental

reason for the deviations between the observed macro patterns and

the underlying micro processes causing them to heterogeneity both in

space and in time. It is demonstrated that not only different

individuals may have display different characteristics which need

to be treated with extra precautions, but also that the ‘‘mean

behavior’’ of one individual can be non representative of it’s own

true time dependent dynamics.

Supporting Information

Figure S1 Histograms of the individual statistics for the
two observed trends for 2005=2006{2009=2010. The left,

red, panels (A–L) relate to the nonstationary observation (NS): the

second throw attempt in a set of two attempts has better success

rate than the first one. The left of which (A,C,E,G,I,K) refer to the

relative increase of the second throw success rates in units of the

success rate of the first (in percentage) while the right panel of

which (B,D,F,H,J,L) is a histogram of the zNS value calculated

from the hypergeometric distribution. In both measures infinites

might occur, hence the difference in records number. The right,

panels (in blue, M–X) show similar measures for the conditional

probability (CP): given that the first throw attempt in a set of two

went in or out what is the success rate in the second one. The left

of which (M,O,Q,S,U,W) refer to the relative difference between

the two in units of the percentage of p(1j0) while the right of which

(N,P,R,T,V,X) are histograms of the zCP values calculated from

the hypergeometric distribution. Although many of the individuals

do not show the observed trends, their distribution is unlikely to

result from random fluctuations but rather from a real bias toward

these trends.

(EPS)

Supporting Information S1 Appendix and supporting
figure and tables. In the appendix we analyze the effect of

aggregation on heterogeneous population. The first table lists

examples of individual data for the top 15 players (ranked by the

number of two throws attempts taken) for the 2009=2010 season.

The other tables summaries the data for sets of three free throws,

and give detailed comparison between the 1st–3rd quarters and

the 4th quarter and overtime.

(PDF)

Dataset S1 Data for all free throws taken during 2005/6–2009/

10 in the NBA.

(DAT)
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