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A B S T R A C T

Background. Autosomal dominant polycystic kidney disease
(ADPKD) is a leading cause of end-stage renal disease, but esti-
mates of its prevalence vary by >10-fold. The objective of this
study was to examine the public health impact of ADPKD in
the European Union (EU) by estimating minimum prevalence
(point prevalence of known cases) and screening prevalence

(minimum prevalence plus cases expected after population-
based screening).
Methods. A review of the epidemiology literature from January
1980 to February 2015 identified population-based studies that
met criteria for methodological quality. These examined large
German and British populations, providing direct estimates of
minimum prevalence and screening prevalence. In a second
approach, patients from the 2012 European Renal Association–
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|European Dialysis and Transplant Association (ERA–EDTA)

Registry and literature-based inflation factors that adjust for dis-
ease severity and screening yield were used to estimate preva-
lence across 19 EU countries (N¼ 407 million).
Results. Population-based studies yielded minimum prevalen-
ces of 2.41 and 3.89/10 000, respectively, and corresponding
estimates of screening prevalences of 3.3 and 4.6/10 000. A close
correspondence existed between estimates in countries where
both direct and registry-derived methods were compared, which
supports the validity of the registry-based approach. Using the
registry-derived method, the minimum prevalence was 3.29/10
000 (95% confidence interval 3.27–3.30), and if ADPKD screen-
ing was implemented in all countries, the expected prevalence
was 3.96/10 000 (3.94–3.98).
Conclusions. ERA–EDTA-based prevalence estimates and
application of a uniform definition of prevalence to population-
based studies consistently indicate that the ADPKD point prev-
alence is<5/10 000, the threshold for rare disease in the EU.

Keywords: autosomal dominant polycystic kidney disease, epi-
demiology, European Union, orphan disease, rare disease

I N T R O D U C T I O N

Autosomal dominant polycystic kidney disease (ADPKD) is a
hereditary kidney disorder associated with �5% of the total
end-stage renal disease (ESRD) [1, 2]. It is caused by mutations
in either of two genes: PKD1 on chromosome 16 (�85% of
cases) or PKD2 on chromosome 4 (�15% of cases) [3, 4]. The
proteins encoded by PKD1 and PKD2—polycystin-1 and
polycystin-2, respectively—associate with one another to form a
complex that is localized to membranes in multiple cell types,
including renal epithelial cells. Gene defects of ADPKD disrupt
the normal differentiated phenotype of renal tubular epithe-
lium. The mutations lead to increases in intracellular cyclic
adenine monophosphate, resulting in a loss of mitotic polarity,
increased cellular proliferation and apoptosis, and fluid secre-
tion into cysts [5–8]. Cyst growth displaces and destroys normal
kidney tissue, culminating in fibrosis, renal architectural
derangement and ultimately kidney failure [5, 6].

ADPKD places substantial economic burden on the health-
care system, driven largely by ESRD expenditures [9]. The prev-
alence of ADPKD patients on renal replacement therapy (RRT)
in the European Union (EU) has been estimated at 91.1/million
population, with an associated cost (2010) of�651 million euro
per year [10].

Estimating the prevalence of ADPKD is challenging for two
reasons: first, at any given time, a proportion of cases are
asymptomatic and thus undiagnosed. This feature reflects, in
part, the progression of ADPKD over decades, with clinically
detectable reductions in renal function typically appearing dur-
ing the third and fourth decades of life [11]. It also reflects the
complex genetics of ADPKD [3]. To date, >1270 and approxi-
mately 200 likely pathogenic mutations have been reported for
PKD1 and PKD2, respectively [12]. There is a significant differ-
ence in rates of disease progression, with subjects with PKD1
mutations reaching ESRD at a younger age than those with

PKD2 mutations [13, 14]. Even among subjects with a patho-
genic PKD1 mutation, those with a truncating mutation have a
more severe phenotype than those with a nontruncating muta-
tion [13]. Second, general population screening for ADPKD is
not feasible due to the high cost of genetic testing and diagnostic
imaging, and expected low yields. Thus, population-based data
are more limited for ADPKD than for more common
conditions.

Point prevalence of ADPKD between 1/400 and 1/1000 is
often linked to the seminal work of Dalgaard [15], who did not,
in fact, ascertain the point prevalence of ADPKD. Dalgaard esti-
mated the genetic prevalence of ADPKD at birth using Nyholm
and Helweg-Larsen’s [16] method for calculating morbid risk.
He reported the figure of 0.8/1000 as an approximation of the
theoretical risk of being ill from ADPKD during a lifetime of 80
years duration [15]. Despite Dalgaard’s clear description, the
figure of 1/1000 is often cited as the prevalence of ADPKD,
rather than the theoretical lifetime risk. Point prevalence, life-
time prevalence and lifetime morbid risk (LMR) provide differ-
ent information about disease occurrence. Point prevalence is
the proportion of the population with disease at a specific time
point, whereas lifetime prevalence measures the proportion of
individuals who have had the disorder at some time in their life.
LMR provides information on the proportion who have experi-
enced the disorder plus the additional proportion who are
expected to develop the disorder during a lifetime.

The objectives of the present study were to estimate two
measures of point prevalence: (i) ‘minimum’ or point preva-
lence of diagnosed cases and (ii) point prevalence after screen-
ing (equal to minimum prevalence plus cases expected after
population-based screening). These measures were then com-
pared with the lifetime risk measures that are often cited in the
literature.

M A T E R I A L S A N D M E T H O D S

Minimum prevalence was defined as the point prevalence of
diagnosed ADPKD cases divided by the population at a single
point in time. This measure of disease burden has been applied
in epidemiologic studies of Huntington’s disease, another auto-
somal dominant genetic disorder [17, 18]. We also estimated
‘screening prevalence’ (equal to minimum prevalence plus those
newly diagnosed cases detected after efforts to increase physi-
cian awareness and screen at risk patients). This yields the
expected number of ADPKD patients in the EU who would be
diagnosed if intensified screening were available in all countries.
It provides an estimate of the burden of disease in the popula-
tion, assuming intensified efforts to identify ADPKD patients.

Two approaches were used to estimate prevalence: first, a
broad-based literature search was performed to identify high-
quality population-based epidemiologic studies utilizing mod-
ern diagnostic methods to screen for ADPKD [19]. Second, the
most recently available data (2012) from the European Renal
Association–European Dialysis and Transplant Association
(ERA–EDTA) Registry were used to estimate total ADPKD
cases [20]. The total cases were then divided by the population
covered by the Registry on 31 December 2012 to calculate
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|minimum prevalence. Screening prevalence was estimated by

inflating minimum prevalence by the screening yield obtained
from large population-based studies.

Literature search strategy

Searches of the National Library of Medicine PubMed data-
base were performed to identify high-quality epidemiologic
studies published on ADPKD in EU countries. The search used
the Medical Subject Heading terms (‘polycystic kidney’ or ‘auto-
somal dominant polycystic kidney disease’ or ‘polycystic kidney
disease’) and (‘incidence study’ or ‘prevalence study’ or ‘epide-
miologic study’) and encompassed all studies published
between January 1980 and February 2015, as ultrasound and
other modern diagnostic methods for ADPKD detection were
available during this timeframe. Criteria used to select relevant
studies included population-based studies and registry data, epi-
demiologic reviews and validity studies, and studies of clinical
characteristics in large patient samples. In addition, an adequate
sampling and power analysis, an appropriate denominator for
prevalence estimates and a contemporary ADPKD definition
were required [21]. In all, 2753 citations were identified, of
which 2742 were excluded from further analysis because they
were clinical studies based on small samples or methodologi-
cally flawed. Of the 11 population-based studies identified in
the PubMed search, 9 were considered to have methodological
flaws (Supplementary data, Table S1) [10, 22–31]. For example,
the Heidland et al. study [24] was excluded due to low response
rates and the use of proteinuria screening rather than more sen-
sitive diagnostic procedures, such as ultrasound.

At the end of this selection process, two high-quality popula-
tion-based studies on the ADPKD prevalence in EU popula-
tions remained:

• Neumann et al. [27] presented results from the Else-
Kroener-Fresenius-ADPKD-Study (EKFS–ADPKD), a
population-based registry established in 2004 at the
University Medical Center of Freiburg, Germany, that cov-
ered a population of 2 727 351. A prospective registration
procedure to document patients with ADPKD began in
2009 and involved the cooperation of all nephrology cen-
ters, general practitioners, internists, urologists, human
geneticists and neurosurgery centers in the region.
Diagnosis of ADPKD followed internationally approved
standard criteria and included clinical findings and family
history. To optimize registration, each registrant was asked
to inform affected relatives, and 6000 re-inquiries were
sent to obtain the full data set of registrants. All registrants
were offered genetic screening for germ-line mutations of
PKD1 and PKD2 genes.

• Patch et al. [28] performed a retrospective cohort study
using data from the UK General Practice Research
Database (GPRD), which included electronic medical
records of >400 family practices and a registered popula-
tion of 1.3–3.2 million. The GPRD was searched for all
recorded medical codes for adult PKD from 1 January 1991
to 15 October 2008. The primary advantage of this design
was that it was representative of the UK population as 98%
of UK residents are registered with a family practice.

Estimating ADPKD prevalence in the EU via the
ERA–EDTA Registry

Progressive impairment of renal function characterizes
ADPKD [4], and most patients with the more common PKD1
mutation require RRT by age of 55–66 years [13]. Since renal
failure is a frequent consequence of ADPKD, data from renal
care registries were used to study geographic variation in the
occurrence of ADPKD. The ERA–EDTA Registry is a well-
respected source of epidemiologic data, and�200 peer-reviewed
epidemiologic studies have been published using these data.

The 2012 ERA–EDTA annual report included data on the
number of dialysis or transplant patients diagnosed with PKD
from the following 18 EU/European Economic Area (EEA)
countries: Austria, Belgium, Croatia, Denmark, Estonia, Finland,
France, Greece, Latvia, the Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden and the UK [20].

To estimate minimum point prevalence rates that could be
generalizable across the EU, two calculations were applied to the
ADPKD patient subset of the ERA�EDTA Registry: first, the
total number of diagnosed patients was estimated from the popu-
lation of PKD patients receiving RRT [22]. Second, EU screening
prevalence was calculated by determining how many additional
previously undiagnosed patients could be identified through
intensive family- and population-based screening using pre- and
post-data from contemporary screening studies [22, 24].

Renal replacement therapy rates in the literature

Prevalence of RRT in patients diagnosed with ADPKD has
been reported in the literature across various time periods.
Neumann et al. [27] calculated an RRT prevalence of 32% in a
population of 2.7 million for the period of 2004–09, while
Davies et al. [22] calculated a prevalence of 23% (70/303) in a
population of 2.1 million for 1970–90; that is, 209 families with
303 members alive and 70 members on RRT. This establishes a
range of estimates for RRT prevalence in the EU/EEA over a
period of four decades. The higher prevalence reported by
Neumann et al. [27] for 2010 is consistent with the findings of
Spithoven et al. [10], who compared intervals of ERA–EDTA
RRT data between 1991 and 2010 and concluded that the RRT
prevalence had increased during this period due, in part, to
reduced cardiovascular mortality rates.

Screening yield rates in the literature

The difference between the numbers of patients diagnosed
with ADPKD before and after intensified screening represents the
additional percentage of ADPKD patients who could be diagnosed
with real-world screening in an average EU/EEA country. Real-
world screening for ADPKD was performed in an area in
Germany with a population of �2.7 million and in an area in
Wales with a population of 2.1 million [22, 27]. In Germany, regis-
tration of known ADPKD patients was expanded by contacting all
registered internists, general practitioners, urologists and medical
geneticists in this geographic area, and affected relatives of known
cases were sought by sending 6000 re-inquiries. In addition, physi-
cian awareness of ADPKD was increased through survey ques-
tions regarding diagnostic criteria for ADPKD. Using this
approach, an additional 8% of cases were identified in southwest
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|Germany [27]. Similarly, Davies et al. [22] contacted all physicians

and nephrologists in south and mid-Wales, obtained detailed fam-
ily histories, examined autopsy reports, made home visits to family
members of known cases and recommended screening to all
adults at risk. After screening was offered, these efforts yielded an
additional 20%. (For full details of the screening methods utilized
by Neumann et al. [27] and Davies et al. [22], please refer to pages
2, 4 and 5 and pages 478 and 479, respectively).

The percent age of ADPKD patients who were diagnosed
before screening is likely to be higher in Germany than in other
European populations because working-age adults are screened
for hypertension, a key clinical feature of ADPKD [26, 28, 32–
35]. In contrast, the percent age of cases known before screening
from the Davies study [22] is probably too low due to improve-
ments in diagnostic technology since the early 1980s when the
study was conducted. A midrange of these percentages (85%)
was, therefore, applied to estimate that an additional 15% could
be identified after population-based screening. This percent age
does not represent all undiagnosed cases in the population as it
is accepted that some patients with family history of ADPKD
delay testing for fear of societal or economic prejudices. The
estimate reflects the practical limitations of screening programs
but is based on the assumption that real-world ADPKD screen-
ing is extended throughout the EU.

Sensitivity analyses for renal registry estimates

To examine the sensitivity of the renal registry estimates, the
effect of varying the upper and lower bounds of the percents of
patients receiving RRT (23 and 32%, respectively) was explored.
Similarly, the effect of varying the screening yield rates was also
explored by testing the upper and lower bounds of the pub-
lished rates (80 and 90%, respectively).

R E S U L T S

Point prevalence of ADPKD from population studies

Eleven population-based studies were identified, of which
seven provided estimates of ADPKD prevalence (Figure 1).
Two of the 11 European population-based studies met the pre-
specified criteria for acceptable high-quality epidemiologic data.
The first study, based on data from the EKFS–ADPKD registry
in southwestern Germany, identified 891 ADPKD cases (658
index cases plus 233 relatives) in a population of 2 727 351. The
minimum prevalence of ADPKD in this population was 2.41/10
000 and the point prevalence after screening was 3.3/10 000 on
31 December 2010 [27].

The second study, based on GPRD data, identified 1238
diagnosed ADPKD cases in a population of 3.2 million from
1991 to 2008, yielding a minimum prevalence of 3.89/10 000
[28]. Assuming that an additional 15% could be identified after
screening [22, 27], the total number of ADPKD patients in this
British population was estimated at 1456, resulting in a screen-
ing prevalence of 4.6/10 000. Thus, both minimum and screen-
ing prevalence estimates from a population of 5 927 351
demonstrated a prevalence of<5/10 000.

Prevalence calculation based on renal registry data

The estimate for EU/EEA minimum prevalence of ADPKD
was 3.29/10 000 (95% confidence interval 3.27–3.30). This esti-
mate was derived by combining RRT registry data from 18
countries with Neumann et al.’s [27] published prevalence for
Germany. The estimate for EU/EEA point prevalence after
screening was 3.96/10 000 (95% confidence interval 3.94–3.98).
This rate yields the expected number of ADPKD patients in the
EU who would be diagnosed if intensive screening was available
in all countries, based on renal registry data from a total popula-
tion of 407 428 518 (81% of EU population; Table 1).

Validation of the renal registry method for prevalence
estimates

Registry-derived estimates for individual EU countries were
compared with published prevalence rates from McGovern et
al. [26], Neumann et al. [27] and Patch et al. [28]. Results
showed a close correspondence between the two methods, sup-
porting the validity of the renal registry approach for estimating
ADPKD prevalence in countries without published data
(Table 2).

To assess reliability over time, the correlation between
country-specific, registry-based estimates was evaluated in 2010
and 2012 (Figure 2) [20, 36]. Point prevalence estimates were
highly correlated and appeared to be stable over time.

Sensitivity analysis for renal registry-based estimates

The two assumptions used to estimate point prevalence were
subjected to sensitivity analyses. Each assumption was tested
separately by fixing one assumption and varying the other
across a range based on available evidence. Thus, the assump-
tion for the proportion of ADPKD patients on RRT varied
between the published ranges of 23 and 32%, and the screening
yield varied between the published ranges of 80 and 90%. This
sensitivity analysis resulted in a screening prevalence ranging
between 2.90 and 4.16/10 000 at the two most extreme assump-
tions (Table 3).

D I S C U S S I O N

In this study, measures of ADPKD point prevalence estimated
with two different methods showed consistent results. First,
high-quality, population-based studies of large German and
British populations provided estimates of ADPKD minimum
prevalence of 2.4 and 3.9/10 000, respectively. Estimates of
screening prevalence were 3.3 and 4.6/10 000, respectively.
Although population-based studies are considered the gold
standard for estimating disease prevalence, the total combined
population from these two studies represented only a limited
proportion of the total EU population. In the second approach,
RRT patient counts from national and regional registries and
literature-based assumptions about disease severity and screen-
ing rates were used to determine a more generalizable preva-
lence estimate (covering 19 EU countries and 81% of the EU
population). This approach yielded a minimum ADPKD point
prevalence on 31 December 2012 of 2.41/10 000 and an
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estimated screening prevalence of 3.96/10 000. Both results sup-
port the classification of medicines to treat ADPKD as orphan
medicinal products in the EU [37].

The renal registry approach had several potential limitations.
First, the ADPKD prevalence estimate reflects the quality of the
underlying database. Hommel et al. [38] crosschecked 3020
incident RRT patients in the Danish National Registry on
Regular Dialysis and Transplantation (NRDT) with the same
patients in the Danish National Patient Registry, which contains
information on hospital admissions and treatments. Results
indicated 97% completeness in the NRDT and high validity of
the start date of RRT. The validity of common renal diagnoses
was also high, e.g. diagnosis of adult PKD as measured by inter-
rater agreement was excellent (K ¼ 0.95). Thus, completeness
of ADPKD patient registration in NRDT was highly acceptable.
Although not all renal registries publish validity studies, the
available information supports a high degree of confidence in
these data [39, 40]. Second, the registry-based estimate of
ADPKD prevalence was dependent on the validity of the infla-
tion factors used in the calculations. The validity of these val-
ues was directly tested by comparing predicted numbers of
ADPKD cases from the registry model with independent
population-based estimates. A close correspondence existed
between the numbers of diagnosed cases estimated with each
method, validating the renal registry approach. Finally, the

Table 2. Comparison of minimum prevalence estimates from ERA–EDTA
Registry data versus population-based studies

Country Registry year Diagnosed patients, n

Registry method Population-based
study

Germany 2010 23 054 23 912a

UK 2010
2012

20 522
22 335

23 668b

24 923c

aNeumann et al. [27], bMcGovern et al. [26] and cPatch et al. [28].

FIGURE 1: Point prevalence of ADPKD from published population studies [22–24, 26–28, 30] compared with estimates derived by autopsy fre-
quency and theoretical lifetime risk [17]. *Period prevalence estimates provided by Patch et al. [28] and Simon et al. [30] were recalculated to esti-
mate total point prevalence. Hatched line at 5/10 000 indicates criterion used for orphan designation in EU. Estimates based on Dalgaard’s [15]
autopsy data represent frequency of polycystic kidneys at autopsy (black bar). Genetic frequency from hospital records was derived by Nyholm and
Helweg-Larsen’s [16] method for calculating morbid risk (dark gray bar). Period prevalence was calculated using autopsy and hospital records
(hatched gray bar). Point prevalence values from published population studies are plotted to right (light gray bars).

Table 1. Minimum prevalence of ADPKD in 19 EU countries estimated
using renal registry data and published population-based data

EU country Population
covered by
ERA–EDTA
Registry: 1
January 2013
(n)

Point
prevalent
cases from
EU renal
registries: 31
December
2012 (n)

Estimated
diagnosed
cases (n)a

Austria 8 451 860 561 2439
Belgium 11 161 642 1198 5209
Croatia 4 262 140 260 1130
Denmark 5 602 628 434 1887
Estonia 1 320 174 66 287
Finland 5 426 674 551 2396
France 65 578 819 6932 30 139
Germany 80 523 746 19 406b

Greece 11 062 508 983 4274
Latvia 2 023 825 105 457
The Netherlands 16 779 575 1269 5517
Poland 38 533 299 1468 6383
Portugal 10 487 289 706 3070
Romania 20 020 074 885 3848
Slovakia 5 410 836 171 743
Slovenia 2 058 821 188 817
Spain 45 263 418 4530 19 696
Sweden 9 555 893 888 3861
UK 63 905 297 5137 22 335
Total 407 428 518 133 893
Total point
prevalence

3.29/10 000
(95% CI 3.27–3.30)

aCalculated using RRT estimates from the published literature of 23% (Davies et al. [22]).
bDoes not include registry estimates from Germany.
CI, confidence interval.
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registries did not typically differentiate between RRT patients
with ADPKD and autosomal recessive polycystic kidney dis-
ease (ARPKD). The degree of overestimation is likely to be
very small, however, because few ARPKD patients survive to
adulthood [41–44]. In the ERA–EDTA 2012 data, diagnosis
information was included for 133 893 PKD cases and 99%
were attributed to ADPKD.

Of note is the variability in prevalence between countries
(Figure 2). Some variation may be related to geographic cluster-
ing of families in which ADPKD is present. For example, higher
prevalence rates are evident in Belgium and France, which is
consistent with an early study by Simon et al. [30] that reported
higher prevalence in France than in other European countries.
Differences in access to healthcare resources may also be a fac-
tor as recent evidence indicates that early treatment of hyper-
tension may delay the progression of ADPKD [24, 45]. It is also
important to note that variability in estimates for some coun-
tries may be related to smaller population size as random error
is more likely to affect these estimates.

Much of the nearly 10-fold variation in the reported preva-
lence of ADPKD is due to differences in prevalence definitions
or the misinterpretation of autopsy data [10, 15, 22, 3, 25–31].
ADPKD prevalence is often cited as 1 in 773, but this is an inac-
curate citation as Dalgaard [15] clearly reports that this figure is
the percent of cases found at autopsy. In the early 20th century,
ADPKD patients were more likely to have died from unex-
plained causes as ultrasound technology was not available for
detection and treatment options were limited and less effective.
Thus, ADPKD patients would be more likely to die at an early
age, be autopsied and be over-represented in these data.

Dalgaard’s [15] estimate of the LMR of ADPKD (0.8/
1000) is also cited as the prevalence of ADPKD, although it
is more accurately a theoretical estimate of lifetime risk. The
LMR method used by Dalgaard assumed complete survival
of the population to the age of 80 years and is known to pro-
duce an overestimate of actual risk when the competing risk
of mortality is not taken into account [46]. Alternative meth-
ods adjust the incidence rate by the all-cause mortality rate

in the population and provide the actual risk of developing
the disease before dying of another cause [47]. Future
research using contemporary cohorts and alternative meth-
ods to estimate LMR for ADPKD is needed. Contemporary
data may yield different results as the accuracy of LMR cal-
culations depends on the stability of age-of-onset distribu-
tions over generations and this is likely to have changed
since these data were collected in 1920–53. In addition, the
accuracy of diagnosis and age-of-onset information is likely
to be improved.

The large difference between often-cited and contempo-
rary prevalence rates can be further clarified by calculating
period prevalence from the Dalgaard study [15] using both
autopsied and hospitalized cases. Dalgaard reported
population-based data on the number of cases detected in
clinical settings over an 18-year period. When these patients
are added to autopsied cases and divided by the population,
the result is a period prevalence of 3.26/10 000, which is nearly
identical to the point prevalence rate of 3.25/10 000 recently
reported in Europe [27]. Thus, results of this early study are
not inconsistent with recent data after similar prevalence defi-
nitions are applied.

From a public health perspective, we emphasize the utility of
our prevalence estimate of 3.96/10 000 as it measures the point
prevalence of ADPKD in the general population, inclusive of
both known cases and those expected to be diagnosed after
population-based screening. Although it is not inclusive of all
patients who inherited ADPKD-related mutations, it measures

FIGURE 2: Correlation between country-specific minimum prevalence estimates in 2010 and 2012. Estimates from ERA–EDTA Registry in
2010 and 2012 were calculated assuming a 23% RRT rate [20, 36]. Estimates were not adjusted for between-country differences in population
age structure. Prevalence data for Austria (3.39), Croatia (3.12) and Slovenia (4.67) were available only for 2012; data for Germany (3.32) and
Italy (2.80) were available only for 2010.

Table 3. Sensitivity analyses: estimates of ADPKD screening prevalence by
variation in key assumptions

Proportion on RRT Prevalence by % of cases diagnosed prescreening

80% 85% 90%

23%a 4.16 3.96 3.77
32%b 3.18 3.03 2.90

aDavies et al. [22] and bNeumann et al. [27].
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|burden of disease and treatment need, assuming increased

awareness and surveillance of ADPKD in the EU.
In conclusion, indirect prevalence estimates, such as these,

provide much needed epidemiologic data for national policies
on rare disease. The validity of indirect prevalence estimates
is, however, dependent on careful selection of valid and gener-
alizable studies for key assumptions, validation strategies to
assess assumptions and realistic sensitivity analyses. In this
case, ERA–EDTA-based prevalence estimates, alternative
assumption analyses and application of uniform prevalence
definitions to population-based ADPKD studies over six deca-
des consistently indicated that ADPKD point prevalence was
<5/10 000, which is the threshold for a rare disease in the EU.
This finding has important policy implications for govern-
mental and research agencies, professional organizations, aca-
demia, clinical research programs, industry and rare-disease
patient groups.
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A B S T R A C T

Background. Sucroferric oxyhydroxide is a non-calcium,
iron-based phosphate binder indicated for the treatment of

hyperphosphataemia in adult dialysis patients. This post hoc
analysis of a randomized, 24-week Phase 3 study and its 28-
week extension was performed to evaluate the long-term effect
of sucroferric oxyhydroxide on iron parameters.
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