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The BCL-2 arbiters of apoptosis and their growing role
as cancer targets

Jerry M Adams*,1,2 and Suzanne Cory*,1,2

Impaired apoptosis plays a central role in cancer development and limits the efficacy of conventional cytotoxic therapies.
Deepening understanding of how opposing factions of the BCL-2 protein family switch on apoptosis and of their structures has
driven development of a new class of cancer drugs that targets various pro-survival members by mimicking their natural inhibitors,
the BH3-only proteins. These ‘BH3 mimetic’drugs seem destined to become powerful new weapons in the arsenal against cancer.
Successful clinical trials of venetoclax/ABT-199, a specific inhibitor of BCL-2, have led to its approval for a refractory form of
chronic lymphocytic leukaemia and to scores of on-going trials for other malignancies. Furthermore, encouraging preclinical
studies of BH3 mimetics that target other BCL-2 pro-survival members, particularly MCL-1, offer promise for cancers resistant to
venetoclax. This review sketches the impact of the BCL-2 family on cancer development and therapy, describes how interactions of
family members trigger apoptosis and discusses the potential of BH3 mimetic drugs to advance cancer therapy.
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FACTS

� Three factions of theBCL-2 protein family interact to adjudicate
whether cells undergoapoptosis. Theprocess is initiatedwhen
BH3-only proteins, upregulated by diverse stress signals,
engage the surface groove of pro-survival relatives (for
example, BCL-2, BCL-XL, MCL-1), preventing their constraint
of BAX and BAK, which then form oligomers that perforate the
outer mitochondrial membrane to elicit caspase activation.

� Diverse tumours have defects in activation of apoptosis
because of overexpression of BCL-2 pro-survival proteins
or impaired upregulation of BH3-only proteins due to, for
example, inactivation of the p53 pathway.

� As a new approach to cancer therapy, drugs termed ‘BH3
mimetics’ that tightly bind the surface groove of certain pro-
survival BCL-2 proteins have been developed.

� Venetoclax, a potent BCL-2-specific BH3 mimetic, has
been approved for treatment of a refractory form of chronic
lymphocytic leukaemia and is under trial for many other
malignancies, both as a single agent and in combination
with diverse known anticancer agents.

� Genetic data and preclinical studies predict that recently
developed BH3 mimetics specifically targeting MCL-1 will
be efficacious against multiple haemopoietic malignancies
and sensitise some solid tumours to other agents.

OPEN QUESTIONS

� As certain normal cell populations are sensitive to
diminished levels of BCL-XL or MCL-1, can an acceptable
therapeutic window be found for their inhibitors?

� Given that most current trials of BH3 mimetics have
focussed on haemopoietic malignancies, will the new drugs
also have a major role in treating solid tumours?

� Which combinations of BH3 mimetics, either with each
other or with other targeted or conventional agents, will be
most efficacious for different malignancies?

� Can BH3 mimetic therapy provide protracted remissions
without the need for long-term treatment?

� Will increased understanding of BAX and BAK oligomers
and the elusive apoptotic pore suggest additional ways to
target the apoptotic switch for cancer therapy?

The FDA approval in 2016 of venetoclax (also known as
ABT-199) for treating a refractory form of chronic lymphocytic
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In many tumour cells, a pro-survival protein like BCL-2 is
occupied on the mitochondrial outer membrane (MOM) by a
BH3-only protein such as BIM. The BCL-2-specific BH3
mimetic drug venetoclax can displace BIM from BCL-2 and
prevent BCL-2 from sequestering active BAX or BAK. Also, the
released BIM can neutralise a non-targeted pro-survival
protein like MCL-1 and directly activate BAX (or BAK) for
oligomerisation and cell death.
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leukaemia (CLL) was a significant milestone for cancer
research and therapy. The remarkable clinical performance
of this drug, designed to mimic natural triggers of apoptosis,
capped three decades of research on the BCL-2 protein family.
In this review, we reflect on the discovery of BCL-2 and its
relatives, summarise how they regulate apoptosis and
describe how this knowledge drove the development of BH3
mimetic anticancer drugs. We then sketch the clinical findings
that led to FDA approval of venetoclax and discuss its potential
and that of other emerging BH3 mimetics, particularly those
targeting MCL-1. In addition to the articles in this series,1–6

other recent reviews assess the clinical impact of BH3
mimetics and BCL-2 family function.7–10

Apoptosis and its first known inhibitor: BCL-2

In vertebrates, apoptosis both shapes the embryo and ensures
homeostasiswithin adult tissues. During apoptosis, cells shrink,
fragment their DNA, bleb and break up into ‘apoptotic bodies’ for
engulfment by phagocytes.11 Importantly, because the plasma
membrane is not breached, no inflammation ensues. Apoptosis
culminates in activation of cysteine proteases called caspases
that cleave vital cellular proteins. Caspases are activated
through either the ‘extrinsic’ apoptosis pathway, triggered by
engagement of cell surface ‘death receptors’ of the tumour
necrosis factor (TNF) receptor family, or the ‘intrinsic’ pathway,
initiated by diverse cellular stresses. The BCL-2 protein family
regulates the latter, by controlling the integrity of the mitochon-
drial outer membrane (MOM).
BCL-2 was the first inhibitor of apoptosis to be discovered, in

any species. The gene was found linked to the immunoglo-
bulin heavy chain gene locus by the t(14;18) chromosome
translocation that hallmarks human follicular lymphoma (FL).1

Although BCL-2 seemed likely to be a new oncoprotein, its
sequence provided no clues about its function. In 1988, Vaux
et al.12 solved themystery by showing that lymphocytes forced
to express elevated BCL-2 resisted apoptosis when deprived
of their requisite cytokine. This seminal study revealing BCL-2
as the prototypic inhibitor of cell death also established, for the
first time, that cytokines signal cell survival and proliferation by
different pathways and that impaired apoptosis contributes to
malignant transformation.
BCL-2 transgenic mice reinforced and extended these

observations. The excess lymphocytes they accumulated had
failed to die in response to physiological cues and resisted
diverse cytotoxic agents, including chemotherapeutic
drugs.13–16 Notably, mice co-expressing BCL-2 and myc
transgenes developed lymphomas markedly faster than
littermates expressing either transgene alone,17 validating
BCL-2 as an oncogene. Clarifying the basis for the synergy
with myc, enforced MYC expression proved to stimulate
apoptosis.18,19 Thus, by blocking apoptosis, BCL-2 removes a
critical brake on MYC-driven proliferation and oncogenesis.
As t(14;18) translocations can be detected in B cells of

healthy humans,20 follicular lymphoma requires mutations
additional to BCL-2 translocation, and perhaps also chronic
T-cell stimulation.21 Several other human malignancies
express elevated BCL-2 because of diverse mechanisms.
Notably, the high BCL-2 in CLL reflects loss of microRNAs that
normally dampen translation of its messenger RNA.1

The BCL-2 protein family

Vertebrate proteins related to BCL-2 bear from one to four
BCL-2 Homology (BH) domains and fall into three functional
factions (Figure 1a). The closest BCL-2 relatives (BCL-XL,
BCL-W, MCL-1, A1/BFL-1 and, in humans, BCL-B) promote
cell survival, but BAX and BAK (and possibly BOK) instead
promote cell death, as do distant relatives termed BH3-only
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Figure 1 The BCL-2 protein family. (a) The initiator, guardian and effector factions
of the family. Domains of shared BCL-2 Homology (BH), and the nine α-helices in the
multi-BH domain members are indicated. (Effectors BAX and BAK, and the related
BOK, have a BH4 domain if both structural and sequence homology are
considered.29) BOK seems to drive apoptosis only in special circumstances.6

Faction members most important for controlling apoptosis are in bold. All multi-BH
domain family members and some BH3-only proteins (BIM, BID, BIK, HRK) have a
C-terminal transmembrane (TM) domain for anchoring to organelles, most notably the
MOM. (b) How the BCL-2 protein family controls cell life and death is shown. In
healthy cells, the pro-survival guardians prevent activation of BAX and BAK, at least in
part by binding the BH3 domain (α2) of any destabilised BAX or BAK monomers.
Various stress signals activate BH3-only proteins that avidly bind their pro-survival
relatives, preventing their constraint of BAX or BAK. In addition, certain BH3-only
proteins, namely BIM, cleaved (active) BID and probably PUMA, can directly activate
BAX and BAK, which then homo-oligomerise and permeabilise the MOM, releasing
cytochrome c to initiate caspase activation and cellular demolition. Modified, with
permission, from Figure 1 of Cory et al.8
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proteins, because their only homology to BCL-2 (or each
other) is the BH3 domain, throughwhich they engagemulti-BH
domain relatives.
Interactions between these factions determine whether

cells live or die (Figure 1b). In healthy cells, pro-survival
proteins prevent apoptosis by sequestering any activated pro-
death relatives. However, upon diverse cellular stresses (e.g.,
cytokine or nutrient deprivation, DNA damage or oncogene
activation), BH3-only proteins are upregulated and avidly bind
the pro-survival proteins, preventing their constraint of BAX
and BAK. In addition, certain BH3-only proteins, particularly
BIM and BID and probably PUMA, can directly activate BAX
and BAK, prompting their homo-oligomerisation and MOM
permeabilisation. Cytochrome c then leaks into the cytosol,
where it helps form the apoptosome that activates caspase-9.
In turn, caspase-9 activates effector caspases 3, 6 and 7 that
cleave vital cellular proteins, ensuring cellular demolition.
Curiously, despite the evolutionary conservation of many

players, cell death regulation differs significantly between
invertebrates and vertebrates.2 Thus, the worm Caenorhabdi-
tis elegans has a BCL-2 homologue (CED-9) and a BH3-only
antagonist (EGL-1) but no BAX/BAK homologue, and CED-9
does not act by maintaining mitochondrial integrity. Further-
more, Drosophila BCL-2-related genes have only minor roles
in fly cell death.

Critical roles of vertebrate family members. Gene abla-
tion revealed that the widely expressed BAX and BAK are
functionally redundant, apoptosis requiring one or the other.22

In contrast, individual pro-survival proteins vary in abundance
in different cell types, producing differential dependencies.3,23

For example, BCL-2 is crucial for survival of circulating
lymphocytes; BCL-XL for neurons, erythroid cells and
platelets; and MCL-1 for many haemopoietic (and other) cell
types, including stem and progenitor cells. The BH3-only
proteins, which are regulated by multiple mechanisms,
mediate the responses to various cytotoxic insults.23,24 For
example, whereas DNA damage upregulates p53 protein,
which induces expression of PUMA and NOXA, cytokine
deprivation relies mainly on BIM and PUMA.23 Just as the
pro-survival proteins are oncoproteins, several BH3-only
proteins can be tumour suppressors.23–25

Rules of engagement between factions. As first found for
BCL-XL,

26,27 all multi-BH domain family members comprise a
globular bundle of nine α-helices, and all display a hydrophobic
surface groove created largely by the conserved BH1, BH2 and
BH3 domains.10,28,29 In contrast, most BH3-only proteins are
intrinsically unstructured until their BH3 domain forms an
amphipathic helix upon engagement of a multi-BH domain
partner. The exception is BID, which resembles a multi-BH
domain protein and requires cleavage to expose its BH3
domain.29

The canonical interaction between family members is the
binding of the BH3 domain of a BH3-only protein, or of BAX or
BAK, to the surface groove of a multi-BH domain protein
(either pro-survival or pro-apoptotic).30 As Figure 2a illustrates
for a BIM BH3 peptide bound to BCL-XL, four conserved BH3
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Figure 2 Interaction of BCL-2 family members. (a) The canonical BH3/surface groove interaction in the family. Structure of BCL-XL (blue surface representation) bound to the
amphipathic helical BH3 peptide of BIM (a yellow ribbon indicates its helical structure)27 (PDB/3FDL), with its N terminus at the bottom. Underneath the protein is a consensus
BH3 sequence of the pro-apoptotic proteins (x denotes nonconserved residues). The four key hydrophobic amino acids (yellow) of the Bim BH3 peptide that bind to pockets p1 to
p4 in BCL-XL are highlighted, as is the invariant aspartic acid (D) (oxygens in red) that binds to a conserved arginine (R) in BCL-XL. BIM or BID BH3 peptides associate with the
grooves of BAX or BAK through contacts resembling those with their pro-survival relatives (as above) but include additional contacts that contribute to their activator function.41–44

(b) Selective association of BH3-only proteins with their pro-survival relatives. Whereas BIM, PUMA and tBID bind promiscuously, BAD and NOXA have restricted targets, as
indicated. (c) BCL-2 pro-survival targets of current BH3 mimetic drugs. A BH3 mimetic engages the surface groove of the targeted pro-survival protein(s) in a manner akin to their
natural antagonists, as in (a), but usually involving only pockets p2 and p4. In cells, binding of the compound to their pro-survival target(s) releases any bound BH3-only proteins
and prevents the targeted pro-survival protein(s) from restraining BAX and BAK. Note that preclinical studies were reported on Servier MCL-1 inhibitor S63845,115 but the clinical
candidate from Novartis/Servier is the more advanced derivative S64315. Modified, with permission, from Figure 2 of Cory et al.8
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hydrophobic residues project into hydrophobic groove pockets
p1-p4, and a BH3 aspartic acid (D) pairs with an adjacent
conserved arginine (R) in the groove.
BH3-only proteins vary in affinity for different pro-survival

relatives31–33 because of sequence differenceswithin both the
BH3 domain and groove.29 Whereas BIM, PUMA and cleaved
BID (tBID) avidly bind all five pro-survival relatives, BAD binds
only BCL-2, BCL-XL and BCL-W, and NOXA engages only
MCL-1 or A1/BFL-1 (Figure 2b). BH3-only proteins that bind all
pro-survival proteins (BIM, PUMA, tBID) are more potent
killers than those with restricted binding profiles. Importantly,
however, NOXA plus BAD kills potently, suggesting that
efficient killing requires neutralisation of all pro-survival
members in the relevant cell type.32

The BH3 domains of activated BAX and BAK also show
preferences: BAK is restrained primarily by BCL-XL, MCL-1
and A1/BFL-1,34 whereas BAX is controlled by all pro-survival
members.35

The outcome of BH3 domain binding differs dramatically
between a pro-survival and a pro-apoptotic multi-BH domain
protein. The BH3 complexes with pro-survival proteins are
stable, whereas those with BAX or BAK are fleeting and elicit
remarkable conformational changes, as detailed below.

The life/death switch on the MOM

In healthy cells, pro-survival and pro-apoptotic multidomain
proteins are distributed between the cytosol and intracellular
membranes, with the MOM being the primary site regulating
apoptosis. Whereas BCL-2 and BAK are predominantly integral

MOM proteins, BAX is mainly cytosolic, with its hydrophobic tail
(α9) partially sequestered in its groove.28 Apoptotic cues lead to
release of α9, which attracts BAX to theMOM, although it can be
‘retro-transposed’ back to the cytosol by pro-survival proteins
like BCL-XL.

36 BAKbehaves similarly, but its equilibrium strongly
favours MOM insertion.37 Both BAX and BAK initially associate
with the MOM in a large complex with VDAC2,38–40 a minor
isoform of the voltage-dependent anion channel that mediates
nutrient and ion transport through the MOM.
The switch from survival to apoptosis is triggered when

BH3-only proteins reach concentrations sufficient to both
neutralise their pro-survival relatives and activate BAX or BAK,
culminating in BAX/BAK homo-oligomerisation andMOMpore
formation. Direct activator BH3-only proteins such as BIM and
tBID induce multiple conformational changes in BAX and BAK
(Figure 3).41–44 As well as dislodging the BAX transmembrane
domain (α9) from its surface groove,28 these include release of
the N-terminal segment (including α1) of both BAK and BAX.45

Then, remarkably, BAX and BAK unfold into an N-terminal
‘core’ (α2–α5) and a C-terminal ‘latch’ (α6–α8).41,43 This
metamorphosis displaces the activating BH3-only protein and
exposes the BH3 domain of BAX/BAK (α2), creating a critical
decision point (Figure 3). If pro-survival proteins such as
BCL-2 are available to bind the BH3 domain of activated BAX/
BAK, apoptosis aborts (Figure 3, upper right). However, if the
pro-survival proteins are largely occupied by BH3-only
proteins, the cores of unfolded BAKor BAXmonomers instead
form homodimers through reciprocal BH3/groove interactions
(Figure 3, lower right).41,43,46,47
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Figure 3 Model for life/death decisions on the MOM, showing how pro-survival family members constrain BAX (and BAK) and how BH3-only proteins (here BIM) drive their
activation. In healthy cells, monomeric BAX shuttles between the cytosol and MOM, where VDAC2 acts as a receptor (also for BAK), although pro-survival relatives (here BCL-XL)
can ‘retro-translocate’ MOM-bound BAX back to the cytosol.36 Upon apoptotic signalling, to allow more BAX to move to the MOM (step 1), where most BAK molecules reside, an
activator BH3-only protein such as BIM may transiently engage a BAX ‘rear site’ involving helices α1 and α6,130,131 thereby releasing the C-terminal trans-membrane (TM)
domain (α9) from its surface groove to enable MOM binding. Then, groove binding by the activator drives release of the N terminus and α1 of BAX or BAK (pale orange) (step 2)
and all subsequent activation steps for both the MOM-bound effector proteins. The most dramatic change is the unfolding of BAX and BAK that separates their ‘latch’ domain
(α6–α8; speckled orange) from their ‘core’ domain (α2–α5)41,43 (step 3); this ejects the BH3-only activator (BIM here) and exposes the BH3 domain of BAX or BAK (α2, red
triangle) (step 4). If pro-survival proteins are available to bind the exposed BAX (or BAK) BH3 domain, apoptosis aborts (step 5a). However, if pro-survival proteins are largely
occupied by BH3-only proteins, the unfolded BAK or BAX monomers form homodimers through reciprocal BH3/groove interactions of their core domains (step 5b).41,43,46,47 The
core dimers are the central unit of the BAX and BAK homo-oligomers,46,47,132 but how they associate into oligomers (step 6) remains uncertain, as does how the oligomers drive
MOM permeabilisation (see text). Modified, with permission, from Figure 3 of Cory et al.8
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Though the evidence is now compelling that direct engage-
ment of BAX or BAK by a BH3-only protein can trigger their
activation, this interaction may be catalytic rather than
obligatory because in a mammalian cell line engineered to
lack all the BCL-2 pro-survival proteins and all BH3-only
proteins, BAX and BAK spontaneously engaged the MOM,
oligomerised and evoked apoptosis.48 Thus, restraint by the
pro-survival faction is crucial to prevent unwarranted cell death
provoked by BAX and BAK.

The quest for the elusive apoptotic pore. As all mutations
impairing BAX or BAK dimerisation impair MOM
permeabilisation,46,49 BAX/BAK homodimers and probably
also the larger homo-oligomers they form must be required.4

However, how are the reciprocal dimers linked into oligo-
mers? Although they can be coupled via α6,50,51 α3 and α5,52

α953,54 or α1,55 all these proposed linkages are weaker than
those that maintain BH3 domain-groove dimers, and none as
yet appears essential for oligomerisation, prompting a recent
proposal that disordered dimer clusters suffice to disrupt the
MOM.55

Most current apoptotic pore models4,52,55–58 suggest that
lipids partially wall the pores and that the oligomers do not
have a simple structure. Contrary to the long-standing
‘umbrella’model in which a BAX α5–α6 hairpin penetrates the
MOM,26,59 helices α4 and α5, which form the hydrophobic
‘bottom’ of the stable BH3/groove dimer,41,43 appear to lie ‘in-
plane’ with the MOM and sink only into its outer leaflet, as do
the flexible α6, α7 and α8 helices.55,56 Their shallow insertion
would expand the outer leaflet relative to the inner leaflet,
promoting tension that induces a nascent lipidic pore that the
dimers or oligomers may stabilise by sliding over the rim.56,58

Indeed, in the ‘clamp model’, a core dimer sits on the rim with
its two flexible α6–α8 ‘arms’ projecting on the inner and outer
leaflets, and the two α9 helices penetrate the bilayer from both
faces to stabilise the pore.57

High-resolution imaging is beginning to reveal the pores.
Cryo-EM showed nanogold-labelled activated BAX edging
large pores in liposomes.60 Super-resolution microscopy on
activated BAX in mitochondria also revealed large arcs and
rings,61,62 indicative of pores,62 and atomic force microscopy
of lipid bilayers revealed heat-activated BAX oligomers around
huge holes 20–80 nm in diameter.61 Lining such rings might
require 440 BAX dimers. However, these studies cannot
distinguish a fully BAX-lined pore from a partially lipidic rim
braced by BAX helices. Irrespective, it seems that BAX
oligomers expand limitlessly rather than forming a pore of
defined, or even preferential, size.

Rationale for BH3 mimetic anticancer drugs and their
development

Many tumours, especially those refractory to therapy, express
elevated levels of one or more pro-survival family member,7,63

and many carry mutations that cripple induction of BH3-only
proteins. In particular, most tumours (~90%) have mutations
that inactivate the p53 protein, delete its gene or impair
upstream regulators, preventing p53 induction of PUMA and
NOXA to drive apoptosis.64 In addition, 17% of mantle cell
lymphoma cell lines have homozygous deletions ofBIM,65 and

many Burkitt lymphomas harbour epigenetically silenced BIM
or PUMA alleles.66,67

Although such changes can make cancer cells resistant to
cytotoxic agents, including radiation and chemotherapeutics,
most tumours retain the core apoptotic machinery, suggesting
that organic molecules mimicking BH3-only proteins might
switch on apoptosis. However, the long, shallow and primarily
hydrophobic groove of the pro-survival proteins made the
challenge daunting. Indeed, most of the putative BH3
mimetics initially reported had relatively modest affinity for
pro-survival proteins and few passed the definitive test of
requiring BAX or BAK to kill cells.68,69

The first bona fide BH3 mimetic, ABT-737, was developed
by Abbott Laboratories (now AbbVie) in a decade-long tour de
force using NMR fragment screening, structural biology and
medicinal chemistry to enhance affinity and reduce serum
binding.70 Like the BH3-only protein BAD (Figure 2b),
ABT-737 has low nanomolar affinity for BCL-2, BCL-XL and
BCL-W but negligible affinity for MCL-1 or A1/BFL-1, as does
the orally bioavailable derivative navitoclax (ABT-263) devel-
oped for the clinic.71 The crystal structures of BCL-XL binding
ABT-73772 and BCL-2 binding ABT-26373 revealed intriguing
differences to their complexes with a natural ligand like BIM.27

Although two hydrophobic moieties of the compounds engage
the p2 and p4 groove hydrophobic pockets (Figure 2a), the p2
pocket is penetrated much more deeply than by the BIM
invariant BH3 leucine, revealing unanticipated groove
plasticity.
Because BCL-XL controls platelet lifespan,74 ABT-737 and

navitoclax provoke acute dose-limiting thrombocyto-
paenia.75,76 Efforts to circumvent this problem led to the
development of the BCL-2-specific venetoclax (ABT-199)73

that spares platelets.73,77 Venetoclax differs from navitoclax
primarily by engaging the p4 pocket in a manner that exploits a
difference between BCL-2 (Asp103) and BCL-XL (Glu96).73

Other BH3 mimetics are emerging.9 They include another
BCL-2-specific inhibitor (Servier’s S55746); the BCL-XL-
specific WEHI-53978 and its more potent derivatives
A-1155463 and A-1331852;79 and, most recently, three
MCL-1-specific inhibitors (see below) (Figure 2c).

Many tumour cells are primed to die. Paradoxically, many
tumours with elevated levels of a pro-survival protein are
nonetheless sensitive to cytotoxic therapies, including BH3
mimetics. Indeed, they seem ‘primed to die’, that is, more
sensitive than their normal counterparts.5,80 The basis of
priming appears to be that the mutations and stresses
suffered by a cell en route to malignancy upregulate BH3-only
proteins such as BIM, imposing selective pressure for
elevated levels of pro-survival proteins. Consequently, pro-
survival proteins loaded with potent BH3-only proteins like
BIM put the cells in many tumours on the brink of apoptosis
(Figure 4).81 This concept explains how a cancer cell with
elevated BCL-2 can be more susceptible to apoptosis than a
normal cell with lower BCL-2.
Notably, in a primed tumour cell, the impact of a BH3

mimetic can extend beyond the targeted protein. Thus, in
Figure 4, although venetoclax targets only BCL-2, the BIM it
frees from BCL-2 can engage the non-targeted MCL-1 or BAX
or BAK, enhancing sensitivity.5,81,82 Priming, which can be
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assessed by the sensitivity of mitochondria in permeabilised
cells to disruption by BH3 peptides, often correlates with
responses to cytotoxic chemotherapy.83,84

Unexpectedly, unlike malignant and neonatal tissues, many
normal adult tissues (particularly brain, heart, kidney) are
refractory to both BH3 mimetic and conventional cytotoxic
therapies because their apoptotic systems are enfeebled, in
part by a dearth of BAX and BAK.85

The therapeutic potential of BH3 mimetics
Navitoclax trials show promising efficacy: Navitoclax was the
first authentic BH3 mimetic to enter clinical trials, after
extensive preclinical studies on ABT-737 and navitoclax had
established their efficacy and mechanism of action.68,70,71,86

Navitoclax proved active in malignancies with high BCL-2,
such as CLL and FL.75 Although the predicted rapid drop in
platelets74 precluded determining the maximal response rate,
circulating tumour cells were reliably reduced in CLL and 35%
of patients had an objective response.75 Although responses
in FL were very limited, combining navitoclax with the CD20
antibody rituximab proved safe and markedly improved
response rates in both CLL and FL.87

Venetoclax: the first BH3 mimetic to enter routine clinical
practice: The accelerated FDA approval of venetoclax
followed highly encouraging phase 188 and phase 289 clinical
trials indicating that daily oral venetoclax is effective against
relapsed and refractory CLL, including disease resistant to
DNA-damaging chemotherapy and having poor prognostic
features. Indeed, some of these patients had exhausted all
other credible treatment options. Of those receiving ther-
apeutically effective levels (150 to 1200 mg/day), 79% had an
objective clinical response and 20% a complete remission.88

Like navitoclax,75 venetoclax evoked canonical apoptosis
features in CLL cells, verifying the mechanism of action.90

BH3 mimetics act downstream of p53 (Figure 1b) and, as

expected, their efficacy proved independent of p53
status.75,88–90 The high response rate in CLL patients
with deletion 17p89 considerably exceeded those obtained
previously for combinations of monoclonal antibodies and
chemotherapy.88 Thus, venetoclax significantly advances
CLL therapy.5

In the first venetoclax trial, the precipitous tumour decima-
tion in several CLL patients with a large tumour burden
provoked tumour lysis syndrome,88 which arises when tumour
destruction exceeds the body’s capacity to remove cell debris.
This potentially fatal syndrome is now avoided by ramping up
the dosage over a month, from a low level to the target dose.88

Other toxicities include mild gastrointestinal side effects and
neutropaenia, both of which can be well managed clinically.88

Other B lymphomas with high BCL-2 that respond to
venetoclax as a single agent include mantle cell lymphoma
and, less frequently, follicular lymphoma, myeloma and some
diffuse large B-cell lymphomas.91 Responses in FL and
myeloma often required higher doses than in CLL, probably
because MCL-1 and BCL-XL are more abundant than in
CLL.92 Relapsed or refractory acute myeloid leukaemia (AML)
has also shownmodest single agent responsiveness (19%).93

Venetoclax sensitises to other therapies: Preclinical
data73,79,94,95 predict that rational combination therapies
should greatly boost the clinical impact of venetoclax.
Accordingly, in CLL and B-cell lymphomas, venetoclax is
under trial with anti-CD20 antibodies, with or without genotoxic
chemotherapy; in CLL and mantle cell lymphoma, with ibrutinib
that inhibits Bruton’s tyrosine kinase; and in multiple myeloma,
with proteasome inhibitor bortezomib and steroids (see https://
clinicaltrials.gov/ct2/results?term= venetoclax).
The most advanced available data are from venetoclax plus

rituximab in relapsed CLL. Exciting results indicate an 86%
response rate and complete remissions in 51%, over twice
that with venetoclax alone.96 Moreover, in 80% of complete
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Figure 4 Killing of ‘primed’ cancer cells by BH3 mimetics. Because of the many stresses imposed by the tumourigenic process, such as abridged cell cycle checkpoints,
hypoxia or altered metabolism, many cancer cells have been selected for elevated expression of pro-survival proteins, here BCL-2 and MCL-1. These stresses will have elevated
the level of BH3-only proteins such as BIM, much of which may be in complex with BCL-2 (top left). Hence, paradoxically, the ‘primed’ cancer cell, despite elevated BCL-2, can be
nearer the apoptotic threshold than normal cell counterparts.80 (see text and Letai5 in this series.) When such cells are exposed to a BCL-2-specific BH3 mimetic like venetoclax
(red triangles), BIM is displaced from BCL-2, as is any BAX previously sequestered by BCL-2 (bottom left). The freed BIM can then sequester any unoccupied non-targeted pro-
survival protein (here MCL-1) (centre); it can also activate inactive BAX (or BAK) monomers (right), thereby facilitating apoptosis. Thus, the presence in a primed cancer cell of
abundant complexes of a BH3-only protein like BIM with a pro-survival partner renders the cell more vulnerable to apoptosis. Once activated BAX monomers build up on the
MOM, each can insert its exposed BH3 (α2) into the groove (α3–α5) of another activated monomer, generating a ‘symmetric’ homodimer (right).41,43,46 These dimers can then
oligomerise and permeabilise the MOM, releasing cytochrome c (cyt c) from the intermembrane space to trigger caspase activation (see Figure 3). Modified, with permission,
from Figure 5 of Cory et al.8
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responders and 57% of all treated patients, the bone marrow
exhibited no minimal residual disease. Notably, all 11 patients
without minimal residual disease who stopped treatment
remain progression free,96 raising the exciting prospect of
protracted remissions without continuous venetoclax therapy.
Venetoclax combination therapy should have important

applications beyond lymphoid malignancies. Clinical trials in
treatment-naive AML with venetoclax plus demethylating
agents (decitabine or azacitidine) have yielded highly promis-
ing preliminary results, including 38% complete remissions.97

Furthermore, in preclinical AML models, targeting both BCL-2
andMCL-1 eradicated disease, and venetoclax synergistically
enhanced the activity of cytarabine and idarubicin.98 Similarly,
AML cells with mutated isocitrate dehydrogenase 1 or 2 are
BCL-2 dependent, and preclinical studies showed that this
AML subset was sensitive to venetoclax plus agents that
disrupt mitochondrial electron transport.99

Although inhibitors of the BCR-ABL kinase, for example,
nilotinib, have revolutionised treatment of chronic myeloid
leukaemia (CML), cures are rare, because the ‘leukaemia
stem cells’ remain, and a refractory blast crisis can ensue.
In a mouse CML model, however, venetoclax plus nilotinib
eliminated the leukaemia stem cells and extended mouse
survival.100 This drug combination even killed human CML
cells in blast crisis.100 Thus, the efficacy of some BH3
mimetics may reflect their eradication of ‘cancer stem cells’.
Currently, nearly 50 clinical trials of venetoclax are under-

way in different tumour settings. Although the focus has been
on haemopoietic malignancies, trials for solid tumours are
eagerly awaited. Pertinently, combining venetoclax with the
anti-oestrogen tamoxifen markedly improved responses of
ER+ breast cancer xenografts that express high BCL-2.101 Of
greatest moment would be identifying a therapy that elimi-
nated metastasis, the major killer in cancer.
Exciting prospects for targeting MCL-1: Cancer researchers
have long sought an effective MCL-1 inhibitor. The elevated
MCL-1 found in many tumour types63 is implicated in therapy
resistance, including of some breast and lung cancers,102,103

and many studies68,104,105 show that MCL-1 mediates
resistance to navitoclax and venetoclax, as their com-
plementary targets suggest (Figures 2b and c). Most
compellingly, conditional gene deletion (or knockdown)
demonstrates that MCL-1 is required for the sustained growth
of AML driven by MLL-fusion genes,106 MYC-driven B
lymphoma,107 TP53− /− thymic lymphoma,108 BCR-ABL-
driven acute lymphoblastic leukaemia109 and myeloma.110

Valid concerns about the safety of MCL-1 inhibition have
arisen from reports of MCL-1 dependence for mouse
cardiomyocytes,111 hepatocytes112 and neurons.113 However,
mcl-1+/− mice, which should mimic 50% inhibition, are normal
and healthy, suggesting that a suitable therapeutic window
may well be found. Furthermore, MCL-1 functions that are
independent of BH3 binding114 may contribute to the knockout
results.3

Developing a specific MCL-1 inhibitor has been
challenging,9 but very recently three highly potent (sub-
nanomolar) and selective inhibitors have emerged. Preclinical
data on the Servier inhibitor S63845 are very impressive.115

Notably, 92% of the multiple myeloma cell lines tested were
highly or moderately sensitive, as were 83% of human

lymphoma lines, all tested AML cell lines and half the primary
AML samples. This sensitivity translated into markedly
extended mouse survival in xenograft and transgenic models.
Furthermore, certain solid tumour cell lines, particularly those
with low BCL-XL, were sensitised to conventional therapies.
For example, S63845 showed synergy with current therapies
in preclinical models of two types of breast cancer.116

Importantly, mice tolerated S63845 well, with normal tissues
unaffected at doses that eradicated MYC-driven mouse
lymphomas.115 Thus, a therapeutic window seems likely.
Preliminary preclinical reports on the other two new MCL-1
inhibitors are also exciting. Amgen AMG 176 was potent in
myeloma, AML and non-Hodgkin’s lymphoma cell lines and
xenografts, and a phase 1 myeloma trial is underway.117

Myeloma was also particularly sensitive to AstraZeneca
AZD5991: a single tolerated dose achieved 100% tumour
regression in xenografts.118 Clinical findings on the tolerability
and efficacy of these three new inhibitors will attract close
interest.

Potential of other emerging BH3 mimetics: Although no trials
are underway, a BCL-XL-specific BH3 mimetic may well have
clinical utility, as many solid tumours, especially colorectal
cancer,119 have elevated BCL-XL that correlates with che-
moresistance in cancer cell lines.120 Selective BCL-XL

inhibitors (A-1331852, the most potent) were well tolerated
in mice and modestly enhanced docetaxel efficacy against
diverse solid tumour xenografts.79 As mice lacking one BCL-
XL allele are healthy121 and ramped dosing can largely
control the expected thrombocytopaenia,87 a therapeutic
window for BCL-XL inhibition seems likely.
No specific inhibitors have yet been developed against BCL-

W, BFL-1 or the little studied BCL-B. BCL-W, recently
implicated in maintenance of MYC-driven B lymphomas,122

should be a safe target, because BCL-W− /− mice are normal,
apart from male sterility.123 BFL-1 (called A1 in mice) should
also be a good target, as it contributes to chemoresi-
stance,105,124 and mice lacking all three A1 isotypes are
normal and healthy.125

Potential of directly activating BAX or BAK: In principle, any
compound directly activating BAX or BAK could be a lead to
an effective anticancer agent, given an acceptable therapeu-
tic window. Proof-of-principle studies suggest that com-
pounds engaging either the BAX ‘rear’ site126 or its
groove127 might have promise, as should other sites driving
BAX or BAK activation, for example, the α1–α2 loop,128 or a
site at the junction of the α3–α4 and α5–α6 hairpins that
sensitises BAX activation.129

Concluding remarks

The remarkable success of BH3 mimetics has broken new
ground in drug development by demonstrating that protein–
protein associations can be targeted with high potency and
exquisite specificity, although requiring much larger com-
pounds than enzymes. With highly selective inhibitors now in
hand for the three major pro-survival family members, namely
BCL-2, BCL-XL and MCL-1, cancer researchers and clinicians
can rapidly expose the vulnerabilities of multiple cancer types
and explore the efficacy of BH3 mimetics not only as single
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agents but also in combination with each other or with other
targeted and conventional agents.
As most, if not all, conventional cytotoxic agents kill through

the apoptotic switch governed by the BCL-2 family, what
advantages do BH3 mimetics offer for cancer therapy? First,
their direct engagement of the apoptotic machinery is more
efficient and selective. Second, because they act downstream
of p53 (Figure 1b), even the vast majority of tumours with a
defective p53 pathway remain vulnerable.90 Third, the
oncologist can focus therapy on the pro-survival target(s) to
which a particular tumour is ‘addicted’. Fourth, at least with
CLL, venetoclax responses appear unusually effective and
durable, possibly because it can target tumour-initiating cells,
as shown for CML.100 Fifth, many tumours seem particularly
vulnerable to BH3 mimetics because of their abundant
complexes of BH3-only proteins with a pro-survival partner
(Figure 4). Sixth, unlike radiotherapy and other DNA-
damaging agents, which undoubtedly increase mutational
load, BH3 mimetics are not mutagens. Seventh, their
mechanism of action is well understood, whereas that of
many conventional agents is not. Finally, unlike therapies
linked to specific oncogenic mutations or particular cell types,
BH3 mimetics should be relevant to diverse cancers, because
they engage a universal apoptotic control mechanism.
We conclude that the advent of BH3mimetic drugs represents

a notable advance in cancer treatment. Extending their
applications to multiple tumour types, including metastatic solid
tumours, and optimising their integration with conventional and
targeted therapies should lead to greatly protracted remissions
and even curative therapies for a number of cancers.
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