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Abstract: Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity,
aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC
treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years,
tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with
the goal of identifying new molecular targets. It has become evident that the development of TNBC
chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment,
drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways
govern these interactions. Moreover, TNBC’s high heterogeneity, highlighted in the existence of several
molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth
review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging
strategies to overcome them. We discuss novel anti-tumor agents that target the components of these
mechanisms and pay special attention to their current clinical development while emphasizing the
challenges still ahead of successful TNBC management. The evidence presented in this review outlines
the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the
importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
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1. Triple-Negative Breast Cancer

Worldwide, breast cancer is the most commonly diagnosed type of cancer in women and the
leading cause of cancer-related death [1]. Triple-negative breast cancer (TNBC) is defined by the
lack of expression of estrogen (ER) and progesterone (PR) receptors as well as the absence of human
epidermal growth factor receptor 2 (HER-2) overexpression/amplification. TNBC accounts for 10–20%
of annually diagnosed breast cancer cases and commonly occurs in younger women, especially of
African ancestry [2]. TNBC is poorly differentiated and has a higher proliferative rate compared to
hormone receptor-positive (HR+) tumors [3]. It is associated with high recurrence rates, high incidence
of distant metastases, and poor overall survival [3]. The pattern of recurrence differs in TNBC compared
to HR+ breast cancer. Namely, disease progression and recurrence typically occur within the first
3–5 years after diagnosis while distant metastases present to the brain and lung much more commonly
in TNBC [3,4]. Those patients who remain in remission after the first five years have a similar prognosis
as patients with HR+ breast cancer.

TNBC is diagnosed by immunohistochemistry (IHC); however, triple-negative phenotype shows
significant overlap with the basal-like molecular subtype of breast cancer. In landmark studies based
on gene expression profiling, Perou et al. and Sorlie et al. identified five molecular subtypes of
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breast cancer with distinctive clinical behavior and outcome: Luminal A, Luminal B, Her-2 enriched,
Normal-like and Basal-like [5,6]. Basal-like breast cancers are most commonly triple-negative, leading
to a misconception that these two terms are synonymous. However, 70–80% of TNBC are basal-like,
while about 70% of basal-like tumors are triple-negative [7]. Recently, a TNBC subgroup lacking basal
markers was identified. These tumors are enriched for stem cell and epithelial–mesenchymal transition
(EMT) markers and belong to the so-called claudin-low molecular subtype [8]. These findings highlight
the heterogeneous nature of TNBC.

2. TNBC Chemotherapy Basics

Chemotherapy is currently the only systemic treatment option for TNBC, but optimal protocols
are yet to be established [9]. Nevertheless, taxane and anthracycline-based regimens represent the
mainstay in TNBC therapy, while platinum-based chemotherapy has shown promising results in the
neoadjuvant and metastatic settings [9].

Despite the aggressive nature of TNBC, 20% of patients present a pathologic complete response
(pCR) after neoadjuvant chemotherapy [10]. However, TNBC patients that did not achieve pCR are
several times more likely to suffer an early recurrence and die from metastatic disease compared to
HR+. On the whole, TNBC patients have a significantly worse overall survival compared to those
suffering from non-TNBC breast tumors despite better pCR rates; a phenomenon termed “triple
negative paradox” [11]. The differences in clinical outcomes following neoadjuvant treatment imply
that a subset of TNBCs are sensitive to chemotherapy while the majority become resistant during
treatment or are intrinsically less susceptible. Both mechanisms are likely present in the tumors.

In this review, we will shed light on major established processes that give rise to chemoresistance in
TNBC, and we will especially focus on novel strategies to overcome them. In addition, we will explore
TNBC molecular heterogeneity and its therapeutic implications. In doing so, we do not strive to be
encyclopedic but will concentrate on recent data, novel therapeutic modalities, and existing controversies.

3. TNBC Chemoresistance

3.1. ABC Transporters

Chemotherapy resistance presents a significant hurdle for successful cancer treatment, especially
in the metastatic setting where it accounts for 90% of therapy failure [12]. Numerous mechanisms can
lead to the development of chemoresistance, among which transporter-mediated drug efflux is one of
the most thoroughly validated. ATP-binding cassette (ABC) transporters utilize ATP to efflux various
compounds across cellular membranes, including a wide range of anti-cancer drugs with different
structures and properties [13]. A number of ABC transporters are strongly implicated in chemoresistance
of numerous solid tumors, including breast cancer [14]. In particular, multidrug-resistant protein-1
(ABCC1/MRP1), breast cancer resistance protein (ABCG2/BCRP) and multidrug-resistant protein-8
(ABCC11/MRP8) were expressed significantly more, and more frequently in TNBC compared to other
breast cancer subtypes [15,16]. The role of ABCC1 in TNBC chemoresistance is further supported by the
finding that neoadjuvant chemotherapy increased ABCC1 protein expression in TNBC [17]. Moreover,
activation of the hedgehog pathway in TNBC cells led to the acquisition of drug resistance due to the
upregulation of ABC transporters [18]. ABCG2 is strongly implicated in chemoresistance of stem cells
in TNBC [19]. Consistent with the importance of ABCG2 in TNBC resistance, its downregulation via
the inhibition of growth hormone receptor, sensitized TNBC cells to chemotherapy [20].

ABCC1 confers resistance to anthracyclines, taxanes, mitoxantrone, methotrexate, and other
agents whereas ABCG2 transports drugs such as 5-Fluorouracil, methotrexate, doxorubicin, irinotecan,
mitoxantrone, and others [13]. ABCC11 is at the early stages of investigation compared to ABCC1 and
ABCG2 but is known to confer resistance to 5-Fluorouracil and methotrexate [21]. It is evident that
ABCC1, ABCG2 and ABCC11 have a broad and extensively overlapping substrate specificity. Together
they confer resistance to chemotherapy drugs that represent the backbone of current TNBC treatment.
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There are two main approaches in targeting ABC transporters as a means of overcoming
chemoresistance: inhibition of their activity and inhibition of their expression. However, the first few
generations of ABC transporters activity inhibitors were too toxic to be beneficial, lacked selectivity,
or had an insufficient effect on drug accumulation [22]. Despite poor initial results, research in ABC
transporter inhibitors is vigorously continuing. Several nonsteroidal anti-inflammatory drugs (NSAIDs)
were able to sensitize resistant cell lines overexpressing ABCC1 to cytotoxic drug substrates [23].
NSAID sulindac, in combination with epirubicin, showed preliminary anti-tumor activity in a phase
I clinical trial on patients with advanced malignancies, including breast cancer, thus encouraging
further investigation [24]. More recently, sulindac, together with docetaxel, was tested in a phase II
clinical trial in recurrent or metastatic breast cancer (NCT00039520). However, study results are yet to
be formally presented making it difficult to draw conclusions about sulindac clinical value in breast
cancer. PZ-39 is an ABCG2 inhibitor with a two-way mode of action [25]. It not only inhibits ABCG2
activity but also accelerates its degradation [25]. Currently, a wide range of natural products are being
tested as ABCG2 and ABCC1 activity inhibitors that can be safely combined with chemotherapy due to
low toxicity [22]. Interestingly, tyrosine kinase inhibitors (TKIs), while substrates of ABC transporters
at lower concentrations, serve as potent inhibitors (especially of ABCG2) at high concentrations [26].
Currently, a number of clinical trials are testing various TKIs (mostly aimed at epidermal growth factor
receptor-EGFR and vascular endothelial growth factor receptor-VEGFR) in TNBC, often in combination
with chemotherapy [27,28]. However, the ability of TKIs to inhibit ABC transporter activity is generally
not taken into account when designing these trials and TKI doses are not modulated accordingly. Since
TNBC highly expresses ABCG2, ABCC1 and ABCC11, the implication that TKIs could not only work
against their primary targets, but also enhance the effects of chemotherapy in combination treatment,
needs to be thoroughly explored. Nanoparticle drug delivering systems also showed promise in
inhibiting ABCC1- and ABCG2-based chemoresistance. For instance, the redox-responsive polymeric
micelles containing indomethacin (an NSAID) as a chemosensitizing agent and carrying paclitaxe,
strongly inhibited the growth of breast cancer cells [29].

A novel approach in attenuating ABC transporter-mediated chemoresistance centers on the use of
small interfering RNA (siRNA) and microRNA to downregulate their expression. siRNA can precisely
and effectively silence targeted genes [30]. This approach gained traction especially after anti-tumor
potential of RNA interference (RNAi)-based therapeutics was demonstrated in cancer patients [30].
Several groups used RNAi to block ABCG2 [31,32] and ABCC1 [33] protein expression in resistant cell
cultures, thus restoring the therapeutic benefits of cytotoxic drugs that are their substrates. A number
of microRNAs demonstrated inhibitory effects on ABCG2 expression in breast cancer cells [34].

Inhibiting a single transporter may not be enough to overturn chemoresistance in vivo due to
high redundancy in transport function. However, inhibiting several transporters is burdened with
high toxicity. This issue is entirely circumvented with a novel strategy based on agents that are poor
substrates of ABC transporters. One group recently reported that FL118, a semisynthetic analog of
camptothecin, is a poor substrate of ABCG2 and ABCB1 [35,36]. FL118 had a stronger negative effect
on tumor growth compared to irinotecan in xenograft models that highly expressed ABCG2 [35].
In addition, cell cultures with high expression of ABCG2 were still sensitive to FL118 [35].

Clinical data regarding ABC transporter inhibitors in breast cancer is limited. However, preclinical
information presented in this review is supportive of the role of ABC transporters in TNBC
chemoresistance. These tumors might be well suited for the use of ABC transporter inhibitors.

3.2. Cancer Stem Cells

It is well documented that in solid tumors, there exists a subpopulation of cells with a unique
aptitude for tumor renewal [37]. These cells are named cancer stem cells (CSC). CSCs have been
implicated in tumorigenesis, tumor heterogeneity, recurrence, and metastasis [37,38]. They have
self-renewal properties and an ability to re-establish a tumor following treatment (Figure 1).
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Figure 1. Cancer stem cell theory. Chemotherapy reduces bulk tumor burden but resistant cancer stem
cells (CSCs) survive and are able to drive tumor recurrence. Specifically targeting CSCs is necessary to
achieve stable tumor remission.

Specifically, in breast cancer, a substantial increase of CSC presence was noted in the residual
tumors following exposure to conventional chemotherapy [39]. This finding implies that breast CSCs
are resistant to treatment with their selective survival resulting in a residual tumor enriched with
tumor-initiating cells. Subsequent studies also detected a higher percentage of CSCs in primary
breast tumors following neoadjuvant chemotherapy, thereby confirming the initial result [40]. This
phenomenon is of particular importance in TNBC, which has very limited therapy options and seems
to be intrinsically enriched in CSCs compared to luminal and HER2+ breast cancer subtypes [41,42].
Many lines of evidence support the notion of CSC importance in TNBC, such as the positive correlation
observed between the expression of stem cell markers (CD44, ALDH1) and lower survival rates of
TNBC patients [43,44]. Accumulating data suggests that chemoresistant CSCs may be a dominant
factor in TNBC relapse. RNA transcripts of CSCs associated genes were upregulated in TNBC biopsies
following chemotherapy [45]. Treatment of TNBC cell lines with gemcitabine or paclitaxel promoted
the expression and activity of hypoxia-inducible factors (HIFs) which resulted in the increase of CSC
population signaling and the upregulation of ABCB1 expression [46]. Inhibition of factors crucial for
CSC maintenance, sensitized TNBC cells to cytotoxic drugs [47].

Mechanisms behind CSC ability to evade chemotherapy are still unclear. It is well established
that CSCs are relatively quiescent when compared to more differentiated cells. This dormant behavior
of CSCs could provide them with a natural defense against cytotoxic agents that are generally most
effective against fast-dividing cells [37]. Secondly, CSCs have highly expressed ABC transporters, most
notably ABCG2, which confer resistance to a broad spectrum of cytotoxic agents. Several studies have
reported ABCG2 as an important marker of the so-called, side population of CSC [48]. In addition,
Britton et al. demonstrated that breast cancer side population cells had increased ABCG2 expression,
higher resistance to mitoxantrone, and were associated with TNBC subtype [19].

Therapies that could target CSCs are generating great interest, although much more work remains
to be done. ABCG2 inhibition could represent a chief strategy in this setting, contributing to the
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eradication of tumor-initiating CSCs. A proof of concept was provided by a novel ABCG2 inhibitor,
YHO-13351, which sensitized side population CSCs to irinotecan in vitro and in vivo [49].

The second approach includes targeting CSC surface antigens. Nanoparticles coated with
hyaluronic acid (a CD44 ligand) and carrying chemotherapy agents, were able to target breast CSCs,
both in vitro and in vivo while sparing healthy cells [50]. Various other CD44 targeting nanocarriers
are currently being investigated. They serve as delivery vehicles for a number of therapeutic agents,
including cytotoxic drugs and siRNAs [51].

Targeting signaling pathways crucial for CSC self-renewal represents a promising third
approach. TGF-β (transforming growth factor-beta), Notch, Wnt (wingless)/β-catenin, Hh (Hedgehog)
developmental pathways all have essential roles in CSCs. These pathways are discussed in greater
detail below (Figure 2).
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Figure 2. Overview of developmental pathways and their potential inhibitors in triple-negative breast
cancer (TNBC). TGF-β (transforming growth factor-beta), Notch, Wnt/β-catenin and hedgehog (Hh)
pathways all have crucial roles in initiation, progression, CSC maintenance, metastasis, and chemoresistance
of TNBC. A number of inhibitors have recently been developed to target these pathways. Inhibitors are
shown in red.

3.2.1. TGF-β Pathway

TGF-β is a member of a large cytokine superfamily that consists of over 30 related growth factors,
including three TGF-β isoforms (TGF-β1–3) [52]. The pathway is engaged when TGF-β binds to type
II TGF-β receptor (TGF-βR), which subsequently recruits and transphosphorylates the type I TGF-βR
forming a receptor complex. The now active type I TGF-βR, in turn, recruits and phosphorylates the
main effectors of this pathway—Smad2 and Smad3. Phosphorylated Smad2/3 interact with Smad4
forming a heteromeric complex that is transported into the nucleus where it regulates the expression of
numerous target genes [52].

In oncology, TGF-β signaling is known to promote EMT, proliferation, angiogenesis, metastatic
spread, chemotherapy resistance, and has an immuno-modulating effect [53]. Moreover, the TGF-β
pathway is critical for the regulation of breast CSCs [54]. Namely, human breast cancer cell lines exposed
to TGF-βunderwent EMT and acquired CSC properties, including chemoresistance [54]. Chemotherapy
treatment of TNBC was revealed to increase TGF-β signaling [45]. In addition, the use of a TGF-βR
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inhibitor in TNBC xenografts prevented the re-establishment of tumors following chemotherapy [45].
In concordance with these findings, a recent study showed that both TGF-β expression and breast CSC
markers were increased in epirubicin resistant TNBC cell lines [55]. Together, these results imply a
vital role of TGF-β signaling in the acquisition of stemness and TNBC chemotherapy resistance, thus
providing a rationale for new therapeutic strategies. Targeting the TGF-β pathway mostly focuses
on small molecule inhibitors aimed at TGF-βR. Several of these are currently undergoing clinical
evaluation. For instance, an ongoing phase I clinical trial is investigating galunisertib (TKI with
low toxicity) in combination with chemotherapy in metastatic TNBC and is expected to conclude in
2021 (NCT02672475). The second approach centers on the anti-TGF-β monoclonal antibodies (mAbs).
Fresolimumab was evaluated in a clinical trial in metastatic breast cancer but generated disappointing
results (NCT01401062). Other strategies, like advanced vaccines (vigil) and antisense oligonucleotides
(trabedersen), are still at relatively early stages of investigation and have, so far, generated mixed
results [56,57].

Several challenges remain ahead of TGF-β-based TNBC therapy, including selectivity/specificity
issues of TGF-βR inhibitors and the accessibility of the TGF-β to mAbs [58]. Additionally, the TGF-β
pathway acts as a tumor suppressor in early-stage cancers, including breast cancer [52]. Therefore, the
implementation of inhibitors will need to be extremely careful in order to suppress the tumorigenic
arm of the pathway while encouraging the tumor-suppressive one.

3.2.2. Notch Pathway

The canonical Notch signaling pathway is comprised of four cell surface receptors (NOTCH 1–4)
and five transmembrane ligands (Delta-like 1,3,4 and JAGGED-1,2). Cell-to-cell contact is required for
Notch activation. Binding of ligands on neighboring cells induces successive cleavages by ADAM
proteases and γ-secretase resulting in the release of the intracellular domain (NICD) of the receptor.
NCID translocates to the nucleus where it initiates transcription of numerous target genes [59].

Altered Notch signaling has diverse effects in human tumors and is implicated in all of the
hallmarks of cancer, from immune system evasion to maintenance of CSCs [59]. Notch 1–4 signaling
is established as crucial for the maintenance of breast CSCs and highly correlates with resistance to
chemotherapy [60,61]. Specifically, in TNBC, Notch-1/3/4 overexpression/amplification was detected
and associated with the induction of proliferation, invasiveness, and tumorigenesis [62–64]. Recently,
constitutive Notch-3 signaling was suggested as a driver of oncogenic program in the basal subset of
TNBC [65]. However, Zhang et al. showed that Notch-3 could also act as a tumor suppressor in TNBC
cell lines where it inhibited EMT [66]. Doxorubicin induced Notch-1 signaling in breast cancer cell
lines, which led to increased ABCC1 expression. Importantly, γ-secretase inhibitor (GSI) reverted the
Notch-1 induced upregulation of ABCC1, rendering the cells more susceptible to doxorubicin [67].
This effect was also confirmed in TNBC cells, where GSI enhanced the efficacy of doxorubicin [68].
In a similar vein, siRNA-mediated knock-down of Notch-1 inhibited the growth of TNBC cell lines
and increased their sensitivity to docetaxel and doxorubicin [64]. In concordance with these findings,
Notch-1 inhibitors had a synergic effect with docetaxel in TNBC and showed potent anti-tumor action
in breast CSCs and patient-derived xenograft models [69].

Presented preclinical data provide evidence of Notch signaling as crucial for TNBC chemoresistance
and demonstrates the ability of Notch inhibitors to sensitizes cells, including CSCs, to cytotoxic agents.
Therefore, it seems logical to deploy GSIs concurrently with chemotherapy for treating TNBC patients.
This strategy was investigated in two recent phase I clinical studies of GSIs in advanced breast cancer,
including TNBC [70,71]. PF-03084014 GSI, in combination with docetaxel, was well tolerated and
showed clinical benefit in patients with advanced TNBC [70]. Another GSI, MK-0752, together with
docetaxel, had limited anti-tumor activity but importantly, reduced breast CSC burden in a number of
patients after multiple treatment cycles [71]. However, in a recent preclinical study, AL101 (a novel
GSI), demonstrated significant anti-tumor effects in TNBC patient-derived xenografts that displayed
abnormal Notch signaling [72]. Moreover, a phase II clinical trial is currently investigating AL101 as
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monotherapy in adenoid cystic carcinoma (NCT03691207). This implies that GSIs could have efficacy
in TNBC treatment even as monotherapy. While γ-secretase is the most thoroughly investigated target,
other approaches to inhibit Notch signaling are also being evaluated in clinical studies. Tarextumab,
a first in class anti-Notch 2/3 antibody, recently completed a phase I clinical trial in advanced solid
tumors, including breast cancer with acceptable levels of toxicity [73]. Preliminary activity against
Notch signaling was observed [73]. Demcizumab, an anti-DLL4 mAb, completed several clinical trials
in solid tumors as a single agent or in combination with chemotherapy. However, after demcizumab
failed to provide any clinical benefit in two recent phase II trials (NCT02259582, NCT02289898), further
development was discontinued. These results illustrate the challenge of developing novel anti-cancer
agents but do not lessen the therapeutic value of targeting Notch signaling in TNBC.

3.2.3. Wnt/β-Catenin Pathway

Wnt signaling is associated with tumor initiation, stemness, and metastatic spread [74]. In the
absence of Wnt, β-catenin is rapidly degraded due to the action of the multi-protein destruction
complex. Binding of Wnt to its receptors and co-receptors (Frizzled and low-density lipoprotein
receptor-related proteins (LRP5/6), respectively) ultimately causes the dissolution of the destruction
complex stabilizing β-catenin. Accumulating β-catenin is then free to translocate to the nucleus
and activate the transcription of Wnt targeted genes [74]. In addition to this canonical pathway, two
β-catenin-independent pathways also exist: planar cell polarity pathway (PCP) and calcium-dependent
pathway, both of which regulate the cytoskeleton and are crucial for cancer cell migration [75].

Extensive literature data highlights the key role of deregulated Wnt/β-catenin signaling in TNBC
and its association with aggressive tumor phenotype and poor outcome. TNBC patients with aberrant
Wnt/β-catenin signaling are more likely to develop distant metastases, especially to the brain and
lung [76]. Wnt signaling was even suggested as necessary for TNBC development [77]. Namely, TNBC
cells with knocked-down β-catenin had remarkedly slower growth, impaired migration ability, were
more susceptible to chemotherapy and formed significantly smaller tumors in murine models [77].
In addition, the same study connected Wnt/β-catenin signaling with TNBC stemness as its knock-down
also reduced the stem cell population [77]. Building on these results, β-catenin was demonstrated to
have a synergistic effect with Nek2B on chemotherapy resistance in TNBC [78]. Other constituents of the
Wnt/β-catenin pathway are also upregulated in TNBC. FZD6 (a member of the Frizzled receptor family)
was overexpressed in TNBC and linked with adverse clinico-pathological tumor properties [79]. FZD6,
acting as a component of the non-canonical Wnt pathway, had a crucial role in cellular motility,
invasion, and metastasis in TNBC [79]. FZD8-mediated Wnt signaling was shown to have a major
part in TNBC chemoresistance as it was significantly enhanced in residual cells following neoadjuvant
chemotherapy [80]. Paralleling these findings, LRP6 overexpression was demonstrated in TNBC, and
its knock-down not only inhibited cell proliferation but had an even stronger negative effect on cell
migration and invasion [81]. The crucial role of Wnt/β-catenin signaling in TNBC tumorigenesis is
doubtless and, as such, represents a logical therapeutic target. Numerous preclinical studies have attested
to the merit of using Wnt/β-catenin inhibiting agents. For instance, novel benzimidazole compounds,
SRI33576 and SRI35889 produced pro-apoptotic effects in TNBC cell lines by downregulating LRP6
and therefore inhibiting Wnt/β-catenin signaling [82]. Treatment with salinomycin sharply reduced
β-catenin signaling and was able to suppress breast CSC proliferation, invasion, and self-renewal
while inducing apoptosis [83]. CWP232228, a small molecule that selectively inhibits Wnt pathway
signaling by blocking nuclear β-catenin interaction with T-cell factor, reduced tumor growth in TNBC
xenograft models and had a strong effect against chemoresistant breast CSC both in vitro and in vivo [84].
A repurposed drug clofazimine demonstrated efficacy in reducing the proliferation of TNBC cells and
tumor growth in xenograft models [85]. Clofazimine negatively impacted β-catenin accumulation in
the cytosol, thus downregulating the pathway and reducing the expression of ABC transporters [85].
Moreover, it showed a marked synergistic effect with doxorubicin with an excellent toxicity profile [85].
Combined inhibition of tankyrase-1, which antagonizes the destruction complex, and polo-like kinase 1
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dramatically reduced TNBC cells invasiveness and survival [86]. A novel recombinant human Frizzled-7
protein antagonist repressed proliferation, invasion, and angiogenesis while sensitizing TNBC cells to
docetaxel both in vivo and in vitro [87]. This wealth of preliminary data has culminated in the clinical
investigation of a number of agents that target Wnt/β-catenin signaling at different levels. LGK974, a
small molecule that blocks Wnt ligand secretion, is currently being tested in patients with Wnt-ligand
dependent malignancies, including TNBC (NCT01351103). Another phase I trial tested vantictumab,
an antibody that blocks several Frizzled receptors, together with paclitaxel in advanced or metastatic
breast cancer (NCT01973309). However, formal results have not yet been made available. PTK7-ADC,
an antibody–drug conjugate targeting a component of the Wnt/β pathway, is currently undergoing
evaluation in metastatic TNBC as a combination therapeutic (NCT03243331).

In the last decade, great strides have been made in the understanding of the structure and
interaction of Wnt/β-catenin signaling pathway constituents. Multiple Wnt/β-catenin targeted inhibitors
were designed in the wake of this knowledge. These inhibitors have shown efficacy in TNBC both
as monotherapy and as sensitizing agents, although the research is still in early clinical phases.
Wnt/β-catenin pathway is not fully elucidated as of yet and its continued characterization will certainly
provide opportunities for the development of future anti-tumor agents.

3.2.4. Hedgehog Pathway

The Hh signaling pathway is an elaborate network critical for embryonic development and
tissue regeneration. Altered signaling of this pathway has been implicated in stem cell renewal and
carcinogenesis [88]. In essence, the Hh pathway consists of three secreted ligands, of which the Sonic
Hedgehog (SHH) is the most broadly expressed, and transmembrane receptor/co-receptors Patched
(PTCH) and Smoothened (SMO). Three glioma-associated oncogene transcription factors (GLI1–3) are
the main effectors and regulate the expression of many target genes, such as ABCG2 and VEGF [89].
The canonical pathway is activated when SHH binds PTCH destabilizing it and thus alleviating its
repression of SMO. Activated SMO allows the formation of the full-length activator form of GLI
transcription factors—GLIA. Upon translocation to the nucleus, GLIAs upregulate target genes.

GLI1/2 are linked to cell survival, proliferation, invasion, EMT, angiogenesis, and chemoresistance
in various human tumors [88]. Growing evidence connects Hh signaling with more aggressive clinical
behavior of TNBC. Overexpressed SHH stimulated the migration, invasion, and proliferation of TNBC
cells in vitro while enhancing lung dissemination in vivo [89]. Similarly, increased expression of GLI1
promoted the survival, migration, invasion, and metastasis of TNBC cells [90]. In concordance with these
findings, the inhibition of the Hh pathway reduced motility and self-renewal capacity of TNBC cells but
promoted apoptosis [90]. Mechanically, Hh signaling increases TNBC growth, invasiveness, and metastatic
dissemination by enhancing the expression of extracellular matrix remodeling metalloproteases and
VEGFR, thus stimulating angiogenesis [90,91]. Accumulating evidence suggests frequent non-canonical
Hh pathway activation in TNBC due to the action of several other oncogenic pathways [92]. For instance,
Han et al. reported the activation of GLI2 in a SMO independent manner [93]. Hh signaling is also
strongly linked with CSC in TNBC. Both GLI1 and GLI2 are upregulated in breast CSCs, while the
induction of cell differentiation considerably reduced their expression [94,95]. GLI1 seems to be crucial,
even required, for EMT in breast cancer [96]. Several studies correlated Hh activity status with TNBC
histopathologic characteristics and patient outcomes. Hh signaling was found to be associated with
larger tumor size, high grade, high stage, and with poor prognosis in TNBC [97,98]. Moreover, Hh
signaling is implicated in chemoresistance of breast tumors. Treatment of breast cancer cell lines with
docetaxel caused the activation of Hh signaling leading to the survival and expansion of breast CSC [95].
GLI1 was overactivated via non-canonical pathway following exposure of malignant cells to cytotoxic
drugs and, subsequently, stimulated the expression of ABC transporters [18].

Extensive preclinical information in regard to Hh signaling has stimulated numerous investigations
of this pathway as a therapeutic target. By far the majority of inhibitors are directed against SMO, the
most druggable member of the pathway. While these agents showed good preclinical performance
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and a few have been approved for the treatment of other tumors, their efficacy in breast cancer was
disappointing. Namely, preliminary data from clinical trials investigating SMO inhibitors in breast cancer,
including TNBC, showed only limited benefit and a number were terminated early (NCT02027376,
NCT01071564, NCT01576666, NCT01757327). However, vismodegib, an SMO inhibitor approved for the
treatment of basal-cell carcinoma, is currently undergoing evaluation in TNBC patients (NCT02694224).
SMO independent activation of the Hh pathway was demonstrated in TNBC and could partially account
for the lack of efficacy of SMO inhibitors [18,92]. Preclinical data implies that the use of GLI inhibitors,
although technically more difficult, might be preferred for TNBC treatment. These compounds inhibit
GLI function by varied mechanisms and are classified as direct (such as GANT61, GANT58, Glabrescione
B) or indirect inhibitors. Of the direct GLI inhibitors, GANT61 seems the most promising. It showed
strong action in TNBC cell lines where it stimulated apoptosis, reduced proliferation, and decreased CSC
population even when SMO inhibitors proved ineffective [93,99]. However, none of the GLI inhibitors
have entered clinical trials as of yet.

Taking all data into account, the crucial role of developmental pathways in TNBC initiation,
progression, CSC maintenance, metastasis, and chemoresistance is undeniable. Based on the evidence
presented in this review, it would seem that TNBC patients could benefit greatly from the development
of new therapeutic agents targeting developmental pathways. However, significant challenges remain
if these drugs are to be brought into the clinic. High toxicity is a concern since any systemic treatment
with such inhibitory agents would undoubtedly impact normal stem cells and thus have detrimental
effects on adult tissue homeostasis and repair. Moreover, while we have, in the interest of clarity and
limited space, presented these pathways independently, considerable cross-talk and collaboration
exists between them. This signaling network, which is yet to be fully elucidated, would need to be
addressed if successful treatment is to be achieved.

3.3. Hypoxia

Hypoxia is a term that refers to insufficient tissue oxygen supply. As the tumor expands, blood
vessels grow haphazardly, often being cut-off or destroyed [100]. Acute hypoxia develops due to a
transient lack of oxygen, while chronic hypoxia arises due to increased diffusion distances—malignant
cells are too far from the blood vessel to receive adequate oxygen [100]. Low oxygen levels stabilize
HIFs, which in turn, regulate transcriptional activation of a large cluster of genes allowing the cells
to survive in these harsh conditions [100]. Hypoxia is a fundamental characteristic of the tumor
microenvironment and is associated with tumor aggressiveness, metastatic potential, and resistance
to therapy [100]. Hypoxia contributes to chemoresistance in several essential ways (Figure 3). Firstly,
insufficient vasculature hinders drug penetration [100]. Secondly, hypoxia leads to the acidic tumor
microenvironment, which compromises the uptake of certain drugs widely used in TNBC treatment [101].
Thirdly, cytotoxic effects of a number of drugs are oxygen dependent [102]. Fourthly, hypoxia induces
the breast CSC phenotype [103]. Fifthly, hypoxia directly or indirectly modulates tumor immunity
by activating immunosuppressive signaling pathways and acting as a barrier to immune effector
cells [104]. Finally, hypoxia stimulates cellular adaptations that act as obstacles to successful treatment.
These include: increased expression of ABC transporters (including ABCG2 and ABCC1) [105,106];
decreased proliferation [102]; complex modulation of cellular senescence and apoptosis [102]; induction
of autophagy that aids in tumor survival [107]; enhanced genetic instability and subsequent clonal
selection of aggressive phenotypes [102]; upregulation of pro-angiogenic factors [102] and repression of
E-cadherin thus promoting metastatic spread [102].
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TNBC frequently shows morphological features that are characteristic of hypoxia, such as the
presence of fibrotic and necrotic areas [108]. Another evidence for the importance of hypoxia in these
tumors comes from the study by Tam et al. who demonstrated that the expression of carbonic anhydrase
IX (CAIX), a key HIF-1 regulated gene, was associated with TNBC subtype and shorter survival [109].
More directly, several studies have shown the hyperactivity of HIF-1 in TNBC and its association
with poor survival [110,111]. Hypoxia, via HIF-1, also promoted EMT transition and induced the
invasion of TNBC cells [96]. A recent publication has even suggested HIF-1 and hypoxia as hallmarks of
TNBC [111,112]. Adding to these findings, it was recently demonstrated that HIF-1 expression, together
with CAIX, has an unfavorable effect on TNBC patients’ survival [113]. In a similar vein, the metabolic
silencing of HIF-1 in TNBC xenografts markedly reduced tumor growth rates [114].

Hypoxia has many profound effects on malignant cells rendering the tumors more challenging to
treat. However, since hypoxia is mainly a characteristic of solid cancers, it also represents an opportunity
to target tumor tissues. There are two main strategies in exploiting hypoxia: the use of hypoxic cytotoxins
and inhibition of molecular targets that allow cellular survival in low oxygen condition [115]. Hypoxic
cytotoxins come in the form of hypoxia-activated prodrugs (HAPs). The prodrug is nontoxic but is
converted to a cytotoxic free radical by the action of intracellular one-electron reductases. In conditions
of normoxia, the free electron from the radical is immediately transferred to molecular oxygen, thereby
recreating the harmless prodrug [115]. Based on chemical structure, HAPs can be classified into
several groups: nitro groups, aliphatic and aromatic N-oxides, quinones, and transition metals [115].
For example, TH-302 showed promising results in a phase II trial in pancreatic cancer [116]. Apaziquone
and TH-4000 (a hypoxia-activated EGFR TKI) are also undergoing assessment in clinical trials [117].
However, significant challenges remain ahead of the successful implementation of HAPs in tumor
treatment, including normal tissue toxicity, insufficient delivery, short therapeutic windows due to
hypoxia fluctuations within tumors and others.

The inhibition of molecular targets critical for hypoxia processes represents a promising alternative
strategy that could compensate for HAP deficiencies. The main targets of this approach are the HIF
family of transcription factors as well as their partners and downstream targets. Several HIF inhibitors
have shown high efficacy in preclinical studies. For instance, IDF-11774 reduced HIF-1α accumulation
in hypoxic conditions and negatively impacted the growth of colorectal carcinoma both in vitro and
in vivo [118]. Since the discovery of HIFs, many inhibitors with diverse modes of action have been
identified, but none have progressed to clinical use [119]. The vast majority are indirect inhibitors.
Direct, specific agents that inhibit the expression of HIFs or their activity have emerged only recently
and are now undergoing clinical trials. PT2385, a novel HIF-2α antagonist, showed encouraging results
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in a phase I trial on previously treated advanced clear cell renal cell carcinoma [120]. Clinical benefit
was reported in more than 2/3 of patients and was accompanied by an acceptable toxicity profile [120].
PT2977, a more potent second-generation HIF-2α antagonist is a subject of several ongoing investigations
in solid tumors (NCT02974738, NCT03634540, NCT03401788).

We hypothesize that direct and selective HIF inhibitors are more appropriate for usage in
anti-cancer treatment and will be the focus of future hypoxia-based therapeutic strategies. Literature
data regarding the effects of hypoxia in TNBC implies these agents could be important pieces in our
arsenal against this disease.

3.4. Avoidance of Apoptosis

The complex apoptotic machinery is universally dysregulated in cancer. Evasion of apoptosis is a
major hallmark of cancer and has been linked with resistance to various cytotoxic agents critical for the
treatment of TNBC, such as paclitaxel, doxorubicin, and cyclophosphamide [121,122]. The importance
of apoptotic malfunction in the TNBC prognosis is well documented. For instance, protein expression
of pro-survival factors, such as Bcl-2 and Mcl-1, was reported as an indicator of unfavorable outcome
in TNBC [123,124]. Moreover, the molecular profiling of residual triple-negative tumors resistant to
chemotherapy revealed that MCL1 is the second most frequently altered gene [125]. There are reports
linking MCL-1 expression with chemoresistance [126]. Since MCL-1 was found to be crucial in breast
cancer development, its expression likely contributes to intrinsic TNBC chemoresistance [123]. Preclinical
studies also demonstrated that Bcl-2 inhibitors, like ABT-199, sensitize TNBC cells to doxorubicin [122].

Targeting deregulated apoptosis represents an attractive approach to cancer therapy (Figure 4).
Most studies investigating anti-cancer strategies have focused on Bcl2 family members, TRAIL receptors,
and inhibitors of apoptosis (IAPs) [127]. BH3-only proteins are members of Bcl2 family essential for
the initiation of apoptosis [128]. Advances in the understanding of BH3-only proteins structure and
function have allowed the development of BH3 mimetics—anti-cancer agents that imitate the action
of BH3-only proteins, thus promoting apoptosis [128]. Venetoclax, a BH3 mimetic, is currently being
tested in several phase I/II clinical trials in advanced breast cancer (NCT03878524, NCT03900884,
NCT03584009). Dulanermin, a soluble recombinant human TRAIL, and several death receptor (DR)
agonistic mAbs were previously evaluated in clinical trials mostly on advanced solid tumors [129].
However, while these agents were well tolerated, they showed little efficacy and largely failed to improve
patient outcomes [129]. For instance, a phase II clinical study investigating tigatuzumab combined
with chemotherapy in metastatic TNBC recently concluded with unsatisfactory results (NCT01307891).
Further development of tigatuzumab was terminated. The assumption is that current DR agnostic mAbs
are unable to trigger a strong enough response in tumor cells. Multivalent DR agonists might represent
the solution to this problem. MEDI3039, a highly potent novel multivalent agonist, demonstrated strong
anti-tumor efficacy both in-vitro and in-murine models of TNBC [130]. Still, the true potential of this
compound can only be revealed in clinical studies. Upon receiving pro-apoptotic stimuli, mitochondria
release the second mitochondria-derived activator of caspases (SMAC) which acts as an antagonist of
IAPs [131]. This mechanism has inspired the creation of SMAC mimetics as pro-apoptotic, anti-cancer
agents [131]. There is evidence that SMAC mimetics could be particularly effective in TNBC [131].
For example, Debio 1143 showed good preclinical performance and is currently undergoing testing
in several clinical trials on advanced solid tumors, including TNBC (NCT03270176, NCT01078649,
NCT02022098, NCT01930292). Another SMAC mimetic, LCL161, demonstrated high efficacy as a
neoadjuvant agent in combination with paclitaxel [132]. In preclinical studies, LCL161 was shown to
promote apoptosis and have synergistic effects with paclitaxel [132]. In this phase II clinical trial in
localized TNBC, LCL161/paclitaxel combination more than doubled the pCR rate compared to paclitaxel
alone, although accompanied by increased toxicity [132]. However, the pCR effect was only present in
the TNBC group preselected for the tumor necrosis factor (TNF) gene expression profile [132]. These
results do not just highlight the value of LCL161 but demonstrate the crucial role of biomarkers in
defining patient populations most likely to respond favorably to treatment.
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Figure 4. Targeting apoptotic pathways in TNBC. Cancer cells contain two pathways that can trigger
apoptosis: intrinsic, that is activated in response to cellular damage, and extrinsic, which is mediated
by death receptor activation. Both are potential targets for TNBC treatment.

3.5. Role of Signaling Pathways in TNBC Chemoresistance

An intricate network of signaling pathways governs the survival, growth, and invasion of TNBC.
Especially NF-κB; PTEN/PI3K/AKT/mTOR; JAK/STAT and receptor tyrosine kinases are implicated
in TNBC chemoresistance and progression. Immense effort has been made into understanding the
alterations of these pathways in TNBC, and it is now bearing fruit in the form of targeted therapeutics
(Figure 5).Cells 2019, 8, 957 13 of 32 
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3.5.1. NF-κB

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) family is comprised of five
members with the ability to form hetero- and homodimers [133]. When the pathway is not engaged, the
dimers are kept inactive due to the binding of inhibitors (IκB). The activation of the NF-κB canonical
signaling causes the formation of an active IκB kinase (IKK) complex, which phosphorylates IκB
resulting in the release of NF-κB dimers. NF-κB can now freely enter the nucleus and induce the
transcription of many target genes [133].

NF-κB signaling pathway is a crucial regulator of TNBC—it inhibits apoptosis, controls inflammatory
response and angiogenesis, is associated with TNBC progression and poor prognosis [134,135].
Moreover, the level of NF-κB expression in TNBC is several times higher compared to normal breast
tissue [134]. It is well established that NF-κB activation mediates chemoresistance in breast and other
types of cancer [133]. NF-κB signaling is also upregulated by hypoxia, which, as we have already
discussed, has a clear connection with chemoresistance [136].

Since NF-κB has a vital role in many cellular processes, inhibitors of this pathway have been
generating great attention. More than 750 inhibitors have been described so far, including small
molecules, peptides, siRNAs, antioxidants, microbial, and viral proteins [137]. The majority of these
agents are non-specific inhibitors that affect many other targets besides the NF-κB pathway. Plumbagin,
a non-specific inhibitor, blocks NF-κB signaling and induces caspase-3 activity, thus decreasing cell
viability and promoting apoptosis in TNBC cell lines [138]. Similarly, genistein, a major soy isoflavone,
has anti-growth and pro-apoptotic effects in TNBC due to the inhibition of NF-κB activity via the
Notch-1 pathway [139]. Specific anti-NF-κB strategies include targeting pathway constituents upstream
of IKK, inhibiting IKK itself, inhibiting NF-κB activities in the nucleus or targeting NF-κB downstream
effectors [137]. For example, dehydroxymethylepoxyquinomicin (DHMEQ), which inhibits nuclear
translocation of NF-κB, reduced the activation of this pathway in TNBC cells leading to decreased
growth and induction of apoptosis [140]. However, despite the abundance of information regarding
the role of NF-κB in cancer and the substantial effort of researchers and the pharmaceutical industry,
only a few inhibitors have found their way into the clinical practice in niche applications [137]. Clinical
investigations of NF-κB mostly reported disappointing results due to the very high toxicity of systemic
inhibitors and the pleiotropic effects of NF-κB [137]. Still, the data presented in this review reveals
TNBC as one of the malignancies that could considerably benefit from NF-κB inhibition if the toxicity
issues can be resolved.

3.5.2. PTEN and PI3K-AKT-mTOR Pathway

PI3K-AKT-mTOR (PAM) pathway is one of the critical mechanisms by which cells control
survival, growth, proliferation, and motility. Phosphoinositide 3-kinase (PI3K) transduces signals from
growth factors and activates the AKT kinase [141]. Activation of AKT leads to phosphorylation of the
mammalian target of rapamycin (mTOR), which, in turn, enhances protein synthesis and cell growth,
giving malignant cells a significant advantage [141]. PAM activity is negatively regulated by the tumor
suppressor phosphatase and tensin homolog (PTEN) [141].

PAM pathway is frequently hyperactivated in TNBC, chiefly due to PTEN loss, and is associated
with adverse clinical course, aggressive tumors, and poor outcome [142,143]. PTEN loss also contributes
to chemoresistance of breast cancer [144]. Similarly, highly expressed activated AKT was associated
with chemoresistance in breast cancer [144] while mTOR inhibition sensitized resistant cells to
cytotoxic agents [145]. In addition, AKT induces HIF-1, which, as we have seen, is a notable factor in
chemoresistance [141]. Targeting the PAM pathway in conjunction with chemotherapy could be a useful
strategy in aggressive TNBCs with PTEN loss. mTOR inhibitor, everolimus showed good activity against
TNBC in preclinical investigations. Promising results were also obtained for NVP-BEZ235, a PI3K/mTOR
inhibitor, in TNBC cell lines [146]. These findings have paved the way for clinical testing of PAM
inhibitors. Alpelisib, is the first PI3K inhibitor to be approved for treatment of hormone receptor-positive,
HER2 negative advanced or metastatic breast cancer harboring PIK3CA mutations [147]. A number
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of phase I and II clinical trials are underway investigating the effects of mTOR and PI3KA inhibitors,
alone or in combination with chemotherapy mainly in advanced TNBC (NCT02531932, NCT01931163,
NCT00761644, NCT01629615, NCT01623349, NCT01920061, NCT01884285, NCT02583542). Recently
AKT has been revealed as a potent therapeutic target in the LOTUS trial [148]. A combination of
AKT inhibitor ipatasertib with paclitaxel, prolonged progression-free and overall survival of TNBC
patients compared to paclitaxel alone. Moreover, the benefit was greater in the PIK3CA/AKT1/PTEN
altered population, highlighting the importance of careful patient selection. These findings imply that
the PAM pathway might be critical for the maintenance and growth of a subset of TNBCs and have
provided a rationale for the currently recruiting trial investigating ipatasertib in advanced TNBCs
preselected for PIK3CA/AKT1/PTEN alterations (NCT03337724). Another AKT inhibitor, uprosertib,
was recently evaluated in a phase II clinical trial on metastatic TNBC, but formal results are still pending
(NCT01964924). AZD5363, also a novel AKT inhibitor, in combination with chemotherapy, showed a
favorable effect on overall survival in a phase II trial on metastatic TNBC [149]. These results indicate
that AKT might be a preferred PAM target in TNBC.

3.5.3. JAK/STAT Pathway

JAK/STAT pathway consists of four proteins with Janus kinase domain (JAK1–3, TYK2) and seven
proteins that comprise the signal transducer and activator of transcription protein family (STAT1–4,
STAT5A, STAT5B, and STAT6). JAKs are cytoplasmic proteins associated with transmembrane receptors.
Binding of an extracellular ligand (such as IL6, IL8) allows the trans-phosphorylation of JAKs which
then phosphorylate STAT monomers. Activated STATs enter the nucleus and subsequently regulate
the transcription of numerous target genes [150].

Abnormal JAK/STAT signaling has been implicated in numerous crucial malignant processes
such as tumorigenesis, survival, proliferation, metastasis, immune suppression, angiogenesis, and
anti-apoptosis [150]. Genetic profiling revealed a pro-inflammatory gene signature characteristic for
TNBC. Among the identified genes, IL6 and IL8 were reported as crucial for TNBC growth both in vitro
and in vivo while, simultaneously having little effect on ER+ cells [151]. Moreover, combined inhibition
of IL6 and IL8 significantly reduced tumor growth, promoted apoptosis, and enhanced TNBC sensitivity
to paclitaxel [151]. STAT3, a member of the JAK/STAT signaling pathway downstream from IL6/8, is
highly expressed in TNBC and connected with tumor initiation, aggressive clinical behavior, unfavorable
outcome, and resistance to chemotherapy [152,153]. STAT3 interacts and collaborates with NF-kB
leading to chemoresistance in TNBC [154]. In addition, STAT3 was upregulated in TNBC stem cells
resistant to doxorubicin [155]. STAT3 was also able to upregulate HIF1, thus proving its involvement in
hypoxia-mediated chemoresistance in TNBC [156]. Interestingly, STAT3 upregulated the expression of
ABC transporters further contributing to hypoxia-induced chemoresistance [156]. Since STAT3 has a
strong oncogenic potential in TNBC; numerous inhibitors have been developed with diverse modes of
action targeting STAT3 itself as well as its upstream regulators [157]. The research is predominantly in the
preclinical stage of development, but the results regarding TNBC are encouraging [157]. STAT3 inhibitor,
WP1066 was able to restore the sensitivity of TNBC cells to doxorubicin [158]. Moreover, simultaneous
admission of STAT3 and HIF-1α inhibitors significantly increased the anti-tumor activity of cisplatin in
TNBC under hypoxic conditions [159]. In a similar vein, the JAK2 gene was preferentially amplified in
TNBC cells following chemotherapy treatment and its specific inhibitor, together with chemotherapy,
was able to suppress tumor progression and growth [160]. According to Nascimento et al., several
STATs and JAK1–2 were significantly upregulated in chemoresistant breast cancer cells [161]. The same
authors also demonstrated that JAK inhibitor tofacitinib sensitized the cells to chemotherapy [161].
These promising preclinical results have inspired several clinical studies targeting STAT3 and JAK2 in
various solid tumors [157]. JAK1/2 inhibitor ruxolitinib, in combination with neoadjuvant chemotherapy,
is currently undergoing investigation in triple-negative inflammatory breast cancer (NCT02876302).
A clinical trial evaluating STAT3 inhibitor TTI-101 in advanced cancers, including breast cancer, recently
started recruiting participants (NCT03195699). AZD9150, a novel antisense nucleotide inhibitor of
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STAT3, is undergoing investigation in a phase I/II clinical trial together with durvalumab and paclitaxel
in metastatic TNBC (NCT03742102).

3.5.4. Receptor Tyrosine Kinases

PAM and JAK/STAT signaling pathways are used by numerous growth factors to bring about a
multitude of biological outcomes. The upstream regulators of these pathways implicated in TNBC
chemoresistance are EGFR and insulin-like growth factor-1 receptor (IGF-1R).

EGFR expression is markedly higher in TNBC compared to other breast cancer subtypes and has
been reported in up to 64% of cases [162]. EGFR overexpression is even considered one of the hallmarks
of TNBC. On the genetic level, EGFR gene amplification, but not mutations, correlates with protein
expression [162]. These findings imply gene amplification as the most crucial mechanism behind
increased EGFR expression in TNBC. In addition, several studies demonstrated that EGFR amplification
and expression are connected with worse outcome in TNBC [162,163]. The EGFR pathway is also
involved in the regulation of ABCG2 expression and function [164,165]. Moreover, EGFR inhibition
resulted in the reversal of ABCG2-mediated chemoresistance in-vitro and in-xenograft models [166].

There are two basic strategies for targeting EGFR (and other receptor tyrosine kinases) in TNBC: the
use of anticancer mAbs specific for the receptor and, second, the use of TKIs. Cetuximab, an anti-EGFR
mAb, was investigated in metastatic TNBC together with cisplatin [167]. While the primary endpoint
of the clinical trial (the overall response rate) was not achieved, combined treatment with cetuximab
and cisplatin moderately increased progression-free and overall survival [167]. However, a phase II
study of cetuximab in combination with carboplatin in metastatic TNBC was met with disappointing
results [168]. Panitumumab, another EGFR mAb, showed mixed efficacy in clinical trials [169,170].
Interestingly, in a trial focusing on early, operable TNBC, the number of tumor-infiltrating lymphocytes
was predictive of tumor response to panitumumab [171]. These findings imply an important connection
between EGFR regulated pathways and the immune component of the tumor microenvironment. This
has provided a rationale for the currently ongoing clinical trials of panitumumab in combination with
chemotherapy in inflammatory TNBC (NCT02876107, NCT01036087). Another strategy to increase the
effect of anti-EGFR mAbs is to use a combination of antibodies. Ferraro et al. showed a cooperative
effect of anti-EGFR mAbs leading to enhanced inhibitory potential [172]. Despite initial success, several
TKIs, such as gefitinib, afatinib, and lapatinib, showed disappointing results in clinical trials. The efforts
to test existing and develop new TKIs are ongoing. For instance, a clinical trial investigating icotinib in
metastatic TNBC is currently recruiting patients (NCT02362230). One proposed way to enhance the
effect of EGFR inhibition is to combine anti-EGFR mAbs and TKIs, which seems to have a synergistic
effect and could result in a stronger anti-tumor effect [173].

It is a puzzle why EGFR targeted therapy has poor performance in TNBC—a tumor characterized
by high EGFR overexpression. One possibility is that mutations, not protein expression level, dictate
the efficacy of anti-EGFR TKIs. One study identified two EGFR mutations in TNBC which are known
as good predictors of TKI sensitivity in non-small cell lung cancer [174]. However, several other groups
reported EGFR mutations as extremely rare events in TNBC with little clinical relevance [162,175].
The work of Ali and coworkers may provide an alternative answer to this puzzle in the form of what
they termed the “EGFR paradox” [176]. According to the authors, the role of EGFR signaling changes
during tumor progression akin to, for example, TGF-β. Namely, the examination of paired samples
of primary tumors and their corresponding metastases revealed that EGFR was overexpressed in
primary tumors while metastatic cells had markedly reduced EGFR expression and were intrinsically
resistant to EGFR targeted therapy [176]. This phenomenon was observed in a number of human
cancers, including TNBC [176]. The majority of recent and current clinical trials involving EGFR were
performed on metastatic TNBC. Incidentally, the two clinical studies of panitumumab that reported
the greatest benefit were conducted on operable, primary TNBC [169,171]. These findings imply that
metastatic TNBC is not dependent on EGFR signaling for survival. Other growth factors and pathways
compensate for the loss of EGFR signaling and their identification is urgently needed. It seems that a
fundamental shift in our approach to EGFR targeted therapy in TNBC might be necessary.
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IGF-1R is a transmembrane receptor overexpressed in numerous human tumors. Insulin-like
growth factors (IGFs) bind to the receptor activating the downstream signaling cascade, ultimately
stimulating cell growth, proliferation, expression of ABC transporters, angiogenesis, and inhibiting
apoptosis [177]. IGF-1R is expressed in up to 46% of TNBCs and is associated with poor survival [178].
IGF-1 was demonstrated to interact with the Wnt/β-catenin pathway and was expressed at a higher
level in CSCs compared to bulk tumor cells in TNBC [84]. Importantly, β-catenin inhibition markedly
reduced IGF-1 levels, which decreased the self-renewal and growth abilities of CSCs [84]. Moreover,
IGF-1R overexpression is connected with chemoresistance in various cancers [177]. IGF-1R expression
was upregulated in breast tumors following neoadjuvant chemotherapy and was associated with
shorter overall survival [179]. Studies on TNBC cell lines and primary tumor xenografts have shown
good efficacy of IGF-1R inhibitors [180]. Promising preclinical results in regard to IGF-1R inhibitors
encouraged many subsequent clinical trials in various settings, including breast cancer. Unfortunately,
the results were generally disappointing [181]. Recent efforts are mostly focusing on anti-IGF-1R mAbs
in combination with chemotherapy or other signaling disruptors [181]. Another proposed strategy
is the neutralization of ligands, not receptors, by mAbs. Two of these, MEDI-573 and BI836845, are
currently being investigated [182].

3.6. MicroRNAs

MicroRNAs are small, non-coding, single-stranded RNAs that regulate crucial biological processes
at the posttranscriptional level by repressing the translation of proteins. MicroRNAs can act as both
tumor suppressors and oncogenes, depending on which proteins are repressed. Distinctive microRNA
expression profiles/signatures are characteristic of specific diseases. In recent years, a specific cluster
of microRNAs has been identified in TNBC and linked with tumor invasiveness, EMT, stemness,
migration, metastasis, and chemoresistance. For instance, miR-20a-5p was highly expressed in TNBC
tissues and cell lines, promoted migration and invasiveness of TNBC cells while, conversely, its
depletion had strong opposite effects [183]. This result is paralleled by miR-224, which exhibited a
significantly higher level of expression in TNBC compared to luminal breast cancer. Overexpression
of miR-224 had a strong negative effect on caspase-9, which lead to the inactivation of the apoptotic
pathway and increased the viability, migration, and invasiveness of TNBC cells [184]. Similar findings
were reported for miR-221/222 that was dramatically overexpressed in TNBC cell lines and tissues where
it promoted cellular survival, proliferation, EMT, and migration via the Wnt/β-catenin pathway [185].
A number of other microRNAs were abnormally expressed in TNBC and connected with disease
outcome. Increased expression levels of miR-21, miR-210, miR-454, and miR-27a/b were associated
with poor survival of TNBC patients. At the same time, the reduction of tumor suppressor miR-155
expression was predictive of shorter survival [186].

Accumulating evidence suggests that microRNAs have an important role in both TNBC resistance
and sensitivity to cytotoxic drugs. Song et al. demonstrated that miR-301b was upregulated in TNBC
cell lines where it inhibited 5-fluorouracil induced apoptosis [187]. MiR-105 and miR-93-3p were
shown to induce cisplatin chemoresistance, stemness, and metastasis in TNBC trough Wnt/β-catenin
signaling [188]. Overexpression of miR-620 promoted gemcitabine resistance of TNBC cells [189].
The up-/downregulation of an entire cluster of microRNAs was found to influence doxorubicin resistance
in TNBC [190]. On the other hand, several microRNAs were shown to enhance the chemosensitivity of
TNBC cells to various cytotoxic agents such as paclitaxel and doxorubicin [191,192]. Moreover, it seems
that specific microRNA signatures are associated with pCR in TNBC [193].

Because of their wide-ranging effects, microRNAs represent a promising novel target in cancer
therapy. Two basic strategies have been developed: the inhibition of oncogenic microRNAs and
rehabilitation of tumor suppressor microRNAs function using substitutes [194]. Various therapeutic
molecules are deployed in realizing these strategies. For the inhibition of oncogenic microRNAs,
the following agents are used: anti-microRNA oligonucleotides, microRNA sponges, small RNA
zipper molecules, antagomiRNAs, locked nucleic acid anti-miRNAs, and small molecule inhibitors.
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For instance, antisense-microRNA-21 and antisense-microRNA-10b co-delivery using nanoparticles
significantly reduced TNBC cell proliferation and tumor growth in murine TNBC models [195].
MicroRNAs mimics and microRNAs coded by expression vectors are utilized for the restoration of
tumor suppressor microRNAs [194]. Hashemi et al. reported that the restoration of miR-193b-3p and
miR-31-5p expression levels using miR-mimic recombinant vectors dramatically reduced the migration
and invasion of TNBC cells [196].

MicroRNAs are currently being vigorously investigated as potential biomarkers in various human
cancers. Indeed, the use of microRNAs as biomarkers is nearing implementation in the clinic. On the
other hand, clinical data on microRNAs as therapeutics in solid tumors is scant as this field is still in its
infancy. MicroRNAs-based therapeutic approach holds much potential but will require improvements
in delivery systems, toxicity, selectivity, and specificity if it is to find its way into the daily clinic. When
these issues are resolved, microRNAs will undoubtedly become crucial targets for TNBC treatment.

3.7. TNBC Heterogeneity

Another obstacle standing in the way of successful chemotherapy treatment of TNBC is its high
heterogeneity. TNBC is not a single disease but an umbrella term encompassing several entities with
significant differences in prognosis, patterns of relapse, and response to chemotherapy. In a landmark
study, Lehmann et al. conducted a detailed dissection of TNBC gene expression profiles showing that
these tumors can be stratified into six subtypes [146]. The authors later refined these subtypes into four:
basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (MES) and luminal androgen receptor (LAR) [197].
However, the molecular profiling of TNBC is an ongoing effort. Other studies have reported similar but
different definitions of TNBC subtypes [198,199]. Nevertheless, LAR, BL, and MES molecular profiles
are consistently present. These subtypes display varying levels of chemoresistance, which is reflected in
their pCR rates [200]. LAR appears to be the most resistant subtype based on the information received
from several clinical trials and preclinical studies [200,201]. Interestingly, Ashgar and colleagues showed
that LAR tumors are relatively quiescent, which could partially explain their chemoresistance [202].
As the name implies, LAR tumors are characterized by the androgen receptor (AR) expression and
luminal genetic profiles. In keeping with luminal properties, PI3KCA mutations are much more frequent
in LAR tumors compared to other TNBC subtypes [203]. As we have already discussed, the PAM
pathway is strongly implicated in chemoresistance and could represent a suitable approach for targeting
LAR in addition to AR antagonists. After LAR, the lowest pCR rates were observed in MES tumors [200].
Moreover, TNBC cell cultures with mesenchymal properties, like MDA-MB-231 and hs578t, display high
levels of chemoresistance. The MES subtype of TNBC is enriched in gene expression signatures linked
with EMT and stemness [146]. In Section 3.2 of this review, we have extensively documented the crucial
role of CSCs and the associated developmental pathways in TNBC chemoresistance. Therefore, therapies
targeting these pathways may be most effective in treating the MES subtype of TNBC. On the other end
of the spectrum is the BL group, which demonstrates high pCR rates and is the most predominant TNBC
subtype [200]. This group of TNBCs is characterized by robust proliferation and is enriched in genes
involved in cell cycle and DNA damage response [146]. BRCA1/2 is frequently inactivated in BL1 subtype
due to mutations or hypermethylation. This leads to deficiencies in DNA damage repair, thus making
these tumors more susceptible to DNA damaging agents [146]. Indeed, platinum-based chemotherapy
significantly increased the pCR rates of TNBC patients that harbor germ-line BRCA mutations [204].
Poly (ADP-ribose) polymerase (PARP) inhibitors also demonstrated good activity in this TNBC subtype
owning to synthetic lethal effect in combination with BRCA1 inactivation. Recently, PARP inhibitors,
olaparib and talazoparib were approved for use in HER2 negative, BRCA mutated, metastatic breast
cancer pretreated with chemotherapy [205,206]. Finally, in their original study, Lehmann et al. also
identified the so-called, immunomodulatory TNBC subtype [146]. This gene expression profile was
later proven to originate from tumor-infiltrating lymphocytes (TILs), and not from the TNBC itself [197].
Therefore, IM phenotype is not a distinct subtype itself, and its signature can overlap with the established
molecular subtypes. Still, the presence of TILs is a favorable prognostic marker, especially if observed
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in the residual tumor following neoadjuvant chemotherapy [207]. These findings have provided a
rationale for the testing of immune-checkpoint inhibitors in TNBC. Atezolizumab, a mAb against
programmed cell death-ligand 1 (PD-L1), in combination with nab-paclitaxel, demonstrated good
efficacy in TNBC [208]. It prolonged both progression-free and overall survival of patients, and the effect
was especially pronounced in patients whose tumors expressed PD-L1 [208]. Based on these results,
atezolizumab was recently approved for use for women with advanced or metastatic TNBC expressing
PD-L1 [209]. TNBC seems to be a spectrum of several diseases with overlapping genetic alterations.
Thus, devising therapeutic strategies tailored to specific TNBC subtypes is a challenging but worthwhile
approach. As illustrated in this review, TNBC subtypes have distinct sensitivities to standard cytotoxic
agents and as such, should be considered when deciding on the therapeutic management of TNBC.
The characteristics of TNBC subtypes and proposed tailored approaches in treatment are summarized
in Table 1.

4. Conclusions and Future Directions

TNBC is the most aggressive subtype of breast cancer characterized by poor survival and a high
incidence of distant metastases. Limited treatment options are a major contributing factor to the
poor outcome of TNBC. Standard chemotherapy remains the backbone of TNBC systemic treatment;
however, these tumors often become resistant to cytotoxic drugs. There is an urgent medical need
to elucidate the molecular drivers behind TNBC chemoresistance. This goal has been aggressively
pursued in the last decade. The ensuing research has dramatically advanced our understanding of the
elaborate mechanisms that govern TNBC resistance to chemotherapy. The present review highlights
the complexity of TNBC chemoresistance, which is induced by the interaction and collaboration of
numerous factors and signaling pathways. Completely untangling this network remains a significant
challenge but is vital for the identification of new treatment targets. Data generated so far has spurred
the development of a multitude of therapeutic agents with the aim of overcoming resistance in
TNBC. This multipronged approach includes neutralizing ABC transporters; targeting developmental
pathways and breast CSCs; exploiting tumor hypoxia, stopping tumors from circumventing apoptosis,
inhibiting signaling pathways with critical roles in TNBC survival and confronting TNBC heterogeneity
with subtype-specific treatment modalities. All of the strategies highlighted in the present review
represent promising opportunities to sensitize TNBCs to the current standard of care chemotherapy.
However, despite the immense effort, only a few of these agents have made the transition from research
to clinical practice. Toxicity, specificity, and selectivity are overarching concerns in all approaches.
Another issue shared among all of the emerging strategies is the selection of patients that would benefit
the most from the given agent. A single pathway may not be crucial for cell survival in all TNBCs or
all stages of progression. Indeed, several clinical trials have demonstrated the value of pre-selecting
patients based on specific biomarkers [132,148]. By evaluating an inhibitor of a specific pathway in the
whole TNBC population, its efficacy in the subgroup, depending on the pathway in question, may be
masked. Thus, the development of a promising agent might be discontinued, and patients robed of
potential treatment. The necessity of validating and incorporating biomarkers in future clinical studies
is evident. Another question is how these novel therapeutics should be implemented, whether as
single agents or combined treatment. While some of the agents outlined in this review showed good
efficacy as monotherapy, extensive TNBC heterogeneity and crosstalk between signaling pathways
will likely require combination therapy if treatment is to be successful. Most recent clinical studies on
TNBC that demonstrated improvements in patient benefit used the combination treatment strategies,
especially combinations of specific agents and standard chemotherapy (NCT02876302, NCT02672475,
NCT02694224). Since these inhibitors target different mechanisms, they often show good synergistic
effects and acceptable toxicity profiles when used together with cytotoxic drugs. Going forward, it is
clear that future clinical studies in TNBC will need to focus on biomarker integration, precise patient
stratification, and novel combinatorial regimens tailored to be effective in different patient subgroups.
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Table 1. Classification of TNBC subtypes and potential therapeutic strategies—recent clinical trials.

TNBC Subtype and Its Characteristics [147,198] Promising Therapy Clinical Studies

Basal-like 1
Cell cycle, cell division, DNA damage response.

High pCR rate

Platinum
NCT02441933, Phase III, Recruiting, Carboplatin in combination with standard chemotherapy in early TNBC

NCT01881230, phase II/III, superior efficacy of Nab Paclitaxel/Carboplatin combination in metastatic TNBC

PARP inhibitors
NCT02000622, Phase III, Olaparib as monotherapy significantly increased PFS and reduced the risk of progression and death in metastatic breast
cancer including TNBC

NCT01945775, Phase III, Talazoparib as monotherapy significantly increased PFS in advanced breast cancer including TNBC

Aurora inhibitors
NCT01639248, Phase II, ENMD-2076 in previously treated, advanced or metastatic TNBC

NCT00858377, Phase I, AMG 900 in taxane-resistant TNBC failed to provide clinical benefit

CHK1 inhibitors
NCT01359696, Phase I, GDC-0425 in combination with gemcitabine showed preliminary anti-tumor activity in TP53-mutated TNBC

NCT00779584, phase I, MK-8776 demonstrated preliminary clinical efficacy with acceptable toxicity in advanced solid tumors

Basal-like 2
Growth factor signaling, myoepithelial markers,

activated glycolysis and gluconeogenesis pathways.
Moderate pCR rate

Shares susceptibility to platinum and PARP
inhibitors with BL1

EGFR pathway inhibitors

NCT00463788, Phase II, Cetuximab in combination with cisplatin increased PFS and OS in metastatic TNBC

NCT01036087, Phase II, Panitumumab in combination with nab-paclitaxel and carboplatin demonstrated highest ever reported pCR rates in
inflammatory TNBC

NCT02362230, Phase II, Recruiting, Icotinib is being evaluated in previously treated metastatic TNBC

IGF1R pathway inhibitors

NCT01340040, Phase I, MEDI-573 was well tolerated but showed limited activity as monotherapy in advanced solid tumors

NCT00626106, Phase II, Ganitumab in combination with endocrine therapy failed to improve outcome in patients with previously treated HR+
advanced or metastatic breast cancer

Mesenchymal
EMT, stemness, growth factor signaling,

angiogenesis, high rate of PAM pathway aberrations.
Low pCR rates

TGF-β inhibitors NCT02672475, Phase I, Recruiting, Galunisertib in combination with paclitaxel in metastatic TNBC

Notch inhibitors
NCT01876251, Phase I, PF-03084014 in combination with docetaxel was well tolerated and showed clinical benefit in patients with advanced TNBC

NCT00645333, phase I/II, MK-0752 together with docetaxel had limited anti-tumor activity but reduced breast CSC burden in advanced or
metastatic breast cancer

Wnt/β-catenin inhibitors NCT01351103, Phase I, Recruiting, LGK974 in patients with Wnt-ligand dependent malignancies including TNBC

Hedgehog inhibitors
NCT02027376, Phase I, Sonidegib in combination with docetaxel was well tolerated and showed preliminary anti-tumor activity in advanced,
pre-treated TNBC

NCT02694224, Phase II, Recruiting, Vismodegib in combination with standard neoadjuvant chemotherapy in TNBC

PI3K inhibitors
NCT01629615, Phase II, BKM120 as monotherapy in metastatic TNBC

NCT01884285, Phase I, AZD8186 as monotherapy or in combination with other agents in advanced solid tumors including TNBC, demonstrated
preliminary anti-tumor activity with serious adverse events

mTOR inhibitors
NCT02531932, Phase II, Recruiting, Everolimus together with carboplatin in advanced TNBC

NCT01920061, Phase I, Recruiting, Gedatolisib in combination with either cisplatin or docetaxel in TNBC

AKT inhibitors

NCT02162719, Phase II, Ipatasertib in combination with paclitaxel, increased PFS and OS of patients with metastatic TNBC compared to
paclitaxel alone

NCT02423603, Phase II, AZD5363 in combination with paclitaxel, prolonged the PFS and OS of patients with metastatic TNBC compared to
paclitaxel alone

Anti-angiogenic therapy

NCT01176669, Phase II, Apatinib as a single agent demonstrated clinical benefit in pre-treated metastatic TNBC

NCT03348098, Phase II, Recruiting, Apatinib in combination with paclitaxel as neoadjuvant treatment for locally advanced TNBC

NCT01234337, Phase III, Sorafenib in combination with capecitabine failed to show clinical benefit compared to capecitabine alone in advanced or
metastatic HER2-negative breast cancer including TNBC
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Table 1. Cont.

TNBC Subtype and Its Characteristics [147,198] Promising Therapy Clinical Studies

Luminal androgen receptor
Hormonal-mediated signaling, androgen receptor,

PI3KCA mutations.
Very low pCR rate

Androgen receptor

NCT03055312, Phase III, Recruiting, Bicalutamide as single agent compared to the efficacy of standard chemotherapy in metastatic,
AR+ TNBC

NCT01889238, Phase II, Enzalutamide as monotherapy was well tolerated and showed clinical benefit in patients with advanced
AR+ pre-treated TNBC

PI3K inhibitors NCT02457910, Phase I/II, Enzalutamide in combination with Taselisib (PI3K inhibitor) in patients with AR+, metastatic TNBC

Heat shock protein 90
NCT01677455, Phase II, Ganetespib as a single agent in TNBC patients who were not subjected to prior systemic treatment in the
metastatic setting

NCT02474173, Phase I, Recruiting, Onalespib in combination with paclitaxel in patients with metastatic TNBC

Immunomodulatory
Immune-mediated signaling

Checkpoint inhibitors
NCT02425891, Phase III, Atezolizumab in combination with nab–paclitaxel prolonged both PFS and OS of patients with metastatic TNBC,
especially in patients with PD-L1 expressing tumors

NCT02926196, Phase III, Recruiting, Avelumab as adjuvant treatment for high-risk TNBC

JAK/STAT pathway
NCT02876302, Phase II, Recruiting, Ruxolitinib, in combination with standard neoadjuvant chemotherapy in triple-negative inflammatory
breast cancer

NCT03195699, Phase I, Recruiting, TTI-101 as monotherapy in advanced cancers including breast cancer

PFS—progression free survival, OS—overall survival, AR+—androgen receptor positive. Details of the presented trials can be obtained by searching the trial identifier number in the US
National Institutes of Health Registry (https://clinicaltrials.gov/).

https://clinicaltrials.gov/
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