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Statistical inference for mechanistic models of partially observed dynamic systems is an active
area of research. Most existing inference methods place substantial restrictions upon the form
of models that can be fitted and hence upon the nature of the scientific hypotheses that can be
entertained and the data that can be used to evaluate them. In contrast, the so-called plug-
and-play methods require only simulations from a model and are thus free of such restrictions.
We show the utility of the plug-and-play approach in the context of an investigation of
measles transmission dynamics. Our novel methodology enables us to ask and answer ques-
tions that previous analyses have been unable to address. Specifically, we demonstrate that
plug-and-play methods permit the development of a modelling and inference framework
applicable to data from both large and small populations. We thereby obtain novel
insights into the nature of heterogeneity in mixing and comment on the importance of
including extra-demographic stochasticity as a means of dealing with environmental sto-
chasticity and model misspecification. Our approach is readily applicable to many other
epidemiological and ecological systems.

Keywords: mechanistic model; iterated filtering; sequential Monte Carlo;
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1. INTRODUCTION

The ability to forecast, understand and control the
spread of infectious diseases increasingly depends on
the capacity to formulate and test mathematical
models capturing key mechanisms. Accordingly, there
has been a great deal of recent interest in techniques
that allow one to fit mechanistic models to time-series
data (Gibson & Renshaw 1998; Finkenstädt & Grenfell
2000; Bjørnstad & Grenfell 2001; Gibson & Renshaw 2001;
Grenfell et al. 2001, 2002; Roberts & Stramer 2001;
Bjørnstad et al. 2002; Finkenstädt et al. 2002; Grenfell
et al. 2002; Keeling & Rohani 2002; Clark & Bjørnstad
2004; Koelle & Pascual 2004; Streftaris & Gibson
2004; Beskos et al. 2006; Cook et al. 2007; Cauchemez &
Ferguson 2008; Cauchemez et al. 2008; Ferrari
et al. 2008; Keeling & Ross 2008). Recent advances
in statistical algorithms and computational hardware
have made it possible to tailor statistical methodology
directly to questions of scientific interest and have
expanded the range of models that can be confronted
with data. However, the nonlinear stochastic dynamical
models arising in the study of infectious disease dynamics
have proved relatively recalcitrant. Even the simplest
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useful models of disease transmission are highly non-
linear, and stochasticity cannot be ignored even in the
most predictable of disease systems. Complicating the
picture further is the ubiquitous presence of non-
stationarity, measurement error and unobserved
(hidden, or latent) variables. Finally, models of interest
are typically formulated in continuous time, whereas
data are sampled at discrete and sometimes irregular
intervals. The large body of methodological literature
devoted to the topic of inference for these partially
observed stochastic dynamic systems is testament to its
position as an important and unresolved challenge at
the interface of the fields of ecology, epidemiology,
mathematics and statistics.

As general approaches, all of the methods mentioned
earlier face severe limitations. Some must modify the
model, discretizing time to the scale of observations
(Finkenstädt & Grenfell 2000; Grenfell et al. 2001,
2002; Bjørnstad et al. 2002; Finkenstädt et al. 2002;
Clark & Bjørnstad 2004; Koelle & Pascual 2004).
They rely upon fortuitous congruence between some
time scale of the process under study (e.g. infection gen-
eration time) and that of the sampling interval. These
methods are computationally cheap, but can lead to
severely biased conclusions (Glass et al. 2003). Others
rely on approximations that are valid only in restricted
circumstances. For example, Cauchemez & Ferguson
This journal is q 2009 The Royal Society
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(2008) adopt a diffusion approximation to enable
successful implementation of a Markov chain Monte
Carlo approach; this approximation breaks down in
small populations. On the other hand, straightforward
Bayesian approaches have been demonstrated for
small populations with purely demographic stochasti-
city (Gibson & Renshaw 1998, 2001); however, these
methods break down for large populations (Roberts &
Stramer 2001; Beskos et al. 2006) or when environ-
mental stochasticity is non-negligible (Bretó et al.
2009). Finally, exact methods based on numerical sol-
ution of the so-called master equations (Keeling &
Ross 2008) are available, but limited to low-dimensional
models and small populations. In summary, each of
these approaches makes demands upon the form of
the model and/or the nature of the data and thus
necessitates scientifically irrelevant or even inappropri-
ate assumptions that can interfere with the hypotheses
of interest.

In this paper, we use a relatively new approach with
none of the aforementioned limitations (Ionides et al.
2006, 2007, 2009; King et al. 2008; Bretó et al. 2009).
In particular, the method works on continuous time
models, in large or small populations, with demographic
or environmental stochasticity or both. It has the
important advantage of operation based only on simu-
lation from the dynamic model, without a need for
explicit expressions for transition probabilities. The
latter property has been called plug-and-play (Bretó
et al. 2009). Plug-and-play inference methodology
provides a powerful tool to enable carrying out data
analysis via flexible, scientifically motivated classes of
models. In particular, plug-and-play is extremely
useful when one wishes to entertain multiple working
hypotheses translated into multiple mechanistic
models. Two properties analogous to plug-and-play
have been considered in the contexts of optimization
and complex system theory.

(i) In optimization theory, methods requiring only
evaluation of the objective function have been
called gradient-free (Spall 2003). In such
methods, computer code to evaluate the objective
function can be plugged into the optimizer. This
is particularly useful in situations in which the
objective function is a complex, and possibly
stochastic, function for which the analytic calcu-
lation of derivatives is difficult or impossible
(Kocsis & Szepesvári 2006).

(ii) In the analysis of complex systems, methods that
are based solely on simulations from computer
codes representing a model have been called
equation-free (Kevrekidis et al. 2004). A typical
goal of such investigations is to determine the
relationship between macroscopic phenomena
(e.g. phase transitions) and microscopic phenom-
ena (e.g. molecular interactions).

These analogies suggest that plug-and-play is a subject
whose importance extends beyond our present topic of
inference for partially observed stochastic dynamic sys-
tems. The conceptual commonality is that all these
methodologies can be applied to models specified as
J. R. Soc. Interface (2010)
‘black-box’ computer codes. This enables flexible
model development and therefore avoids confounding
methodological issues with scientific hypotheses. It
also facilitates both the comparison of alternative expla-
nations and the transfer of methodological expertise
between different systems. The price of plug-and-play
is primarily in terms of computational effort: when
properties of a model are available in closed form, com-
putationally more efficient methods typically exist. As
computational capabilities continue to grow, the ease
with which new scientific questions can be asked and
answered via plug-and-play methodology will make
such techniques increasingly attractive.

We illustrate our new approach via a case study of
measles transmission dynamics. A focus on this well-
studied disease allows us to compare our conclusions
with those derived previously by other means. Further,
we demonstrate that our analysis leads to fresh insights
not readily available via previous analyses. Measles has
occupied a central place in mathematical epidemiology
owing to its relatively straightforward diagnosis, the
lifelong immunity following infection and the avail-
ability of high-quality case report data. Models that
assume mass-action transmission on the scale of
communities do remarkably well at reproducing the
disease dynamics, particularly in large populations
(Bailey 1955; Bartlett 1960; Fine & Clarkson 1982),
although recent work has suggested that deviations
from mass action are detectable in time-series data
(Bjørnstad et al. 2002). Moreover, models incorporating
purely demographic stochasticity have been deemed ade-
quate to reproduce observed dynamical patterns. We
revisit these questions by fitting a family of models
that incorporate deviations from the mass-action
assumption together with both environmental and
demographic stochasticity. We fit these models to
time-series data from both large and small populations.
A comparison of results across community sizes
indicates that there is little evidence in the data for
deviations from mass-action transmission, at least as
it has been modelled previously. On the other hand,
our results do suggest a role for heterogeneity in trans-
mission as a function of population size. With respect to
the nature of stochasticity in this system, our results
indicate a clear role for extra-demographic variability.
Indeed, they suggest that failure to allow for extra-
demographic variability may lead to severe biases in
estimates of key parameters. These insights are possible
because of the flexibility of the inference machinery,
which also makes our approach more readily applicable
to other, less exhaustively analysed, systems (e.g. King
et al. 2008).
2. METHODS: INFERENCE MACHINERY,
DATA AND MODELS

Consider a time series y1:N ; y1, . . . ,yN, consisting of N
observations made at times t1, . . . ,tN. A stochastic
model for y1:N implies a joint density f(y1:Nju) given
a vector of unknown parameters u, where u is in Rnu.
Corresponding conditional densities for yn given y1:n–1

are written as f ðynjy1:n�1; uÞ. Via the factorization
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f ðy1:N juÞ ¼
QN

n¼1 f ðynjy1:n�1; uÞ, the log-likelihood
function is given by ‘ðuÞ ¼

PN
n¼1 log f ðynjy1:n�1; uÞ.

Sequential Monte Carlo (Doucet et al. 2001; Arulampalam
et al. 2002; Cappé et al. 2007) provides a standard
method to obtain the log likelihood for stochastic
dynamic systems. In our terminology, stochastic
dynamic system is synonymous with partially observed
Markov process (Ionides et al. 2006; Bretó et al.
2009); in the statistical literature, these systems are
known as state-space models (Shumway & Stoffer
2006). Likelihood evaluation via sequential Monte
Carlo has the feature that only simulations of sample
paths are required; one need not have explicit forms
for transition probabilities. That is, it has the plug-
and-play property. Both Bayesian (Liu & West 2001;
Toni et al. 2009) and frequentist (Ionides et al. 2006;
Poyiadjis et al. 2006) approaches to plug-and-play like-
lihood-based inference via sequential Monte Carlo have
been proposed. We adopt the maximum-likelihood
approach of Ionides et al. (2006, 2009), which enables
statistically efficient inference for general nonlinear
stochastic dynamical systems. In contrast, the approxi-
mations developed by Liu & West (2001) are not
statistically efficient, and lead to additional bias and var-
iance in the resulting parameter estimates (Storvik 2002;
Newman et al. 2008). The popularity of the artificial par-
ameter evolution method of Liu & West (2001) may be
due more to the convenience of its plug-and-play prop-
erty than to its statistical properties. Various refinements
and variations in the vein of the Bayesian methodology
of Liu & West (2001) have been studied (Polson et al.
2008 and references therein); however, these typically
do not posses the plug-and-play property.

We used the implementation of iterated filtering con-
tained in the software package POMP (King et al. 2009)
written for the R statistical computing environment (R
Development Core Team 2006). This implementation
follows the algorithm described by King et al. (2008,
supplementary information therein). Heuristics and
diagnostics, together with a discussion of computational
issues, can be found in Ionides et al. (2006); a theoretical
treatment is given by Ionides et al. (2009).

For complex dynamical systems, not all questions
that one might wish to ask will be clearly answered
by the available data. Typically, a question posed of
the dynamic system is formalized as a hypothesis
about a combination of parameters in a model for the
system. If the likelihood function does not discriminate
well between different values of some parameter combi-
nation, this parameter combination is said to be poorly
identified. In such a case, one might proceed by making
additional assumptions: adding constraints typically
improves parameter identifiability at the cost of
potential bias in the estimates of other parameters. In
§3, we focus on questions the data are able to answer
without further assumptions. A basic tool for this is the
profile likelihood function, in which one parameter is
varied over a range of values, while the likelihood is maxi-
mized over all remaining parameters (Barndorff-Nielsen&
Cox 1994; Hilborn & Mangel 1997). In practice, we
work with a smoothed estimate of the likelihood surface
calculated via Monte Carlo (Ionides 2005).
J. R. Soc. Interface (2010)
The data we analyse consist of weekly measles case
reports on 20 representative communities with popu-
lation sizes ranging from 2000 to 3 000 000. The
towns and cities were selected from 954 urban locations
for which case reports have been compiled (Grenfell &
Bolker 1998); specifically, we chose the largest 10
cities by population and sampled 10 more towns at
random. Figure 1 shows the case reports and annual
birth rates for two of these: London and Hastings.
These data and their limitations have been discussed
previously (Fine & Clarkson 1982; Bjørnstad et al.
2002). In particular, although measles became a notifi-
able disease in England and Wales in 1940, we follow
Fine & Clarkson (1982) by starting our analysis in
1950 to avoid the disruptions caused by the second
world war and the transition period following the
introduction of the National Health Service in 1948.
From 1950 onwards, it is believed that reporting was
carried out fairly consistently, with between half and
two-thirds of all cases being counted.

A basic susceptible–exposed–infectious–recovered
(SEIR) model for measles divides the population into
those individuals susceptible to infection, exposed (i.e.
infected but not yet infectious), infectious and removed
(i.e. quarantined or recovered and subsequently
immune). The model is specified by describing the
rates at which individuals move between compartments
(Jacquez 1996; Matis & Kiffe 2000); figure 2 shows the
transitions for the SEIR model of measles. A diagram
such as figure 2 can be unambiguously interpreted as
a deterministic system, a system with demographic
stochasticity or a system with both demographic and
extra-demographic stochasticity (Bretó et al. 2009).
We give the equations for each of these interpretations
in appendix A. Here, we will employ the stochastic
interpretation, with both demographic and extra-
demographic stochasticity, described in box 1 (in
appendix A). The transition rates in a model such as
figure 2 may, in general, depend on the state of the system
and/or covariates. We specify the force of infection as

mSEðtÞ ¼
bðtÞðI þ iÞa

N ðtÞ : ð2:1Þ

Here b(t) is the transmission rate; i the mean
number of infectives visiting the population at any
given time; a a mixing parameter, with a ¼ 1 corre-
sponding to homogeneous mixing (Liu et al. 1986;
Bjørnstad et al. 2002), and N(t) the population size,
treated as known via interpolation from census data.
Since transmission rates are closely linked to contact
rates among children, which are higher during school
terms (Schenzle 1984; Keeling & Grenfell 2002; Bauch
& Earn 2003; Conlan & Grenfell 2007), we assume
that b(t) reflects the pattern of British school terms
and holidays. Specifically, we take

bðtÞ ¼ ð1þ 2 ð1� pÞ aÞ �b; during school term;
ð1� 2 p aÞ �b; during school holiday;

�

ð2:2Þ

where p ¼ 0.759 is the proportion of the year taken up
by the school term, b̄ the mean transmission rate and
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Figure 1. Weekly reported measles cases (solid line) and annual birth rate (dotted line) for (a) London and (b) Hastings.
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Figure 2. Flow diagram for measles. The population is divided
into four compartments: S, susceptible; E, exposed and
infected but not yet infectious; I, infectious; R, recovered
and immune. Births enter S at the rate mBS(t), and all individ-
uals have a mortality rate mSD ¼ mED ¼ mID ¼ mRD ¼ m. The
case reports, C, count infected individuals with probability r.
Since diagnosed cases are treated with bed-rest and hence
removed, infections are counted upon transition to R.

274 Plug-and-play inference for disease dynamics D. He et al.
a the relative effect of school holidays on transmission.
For ease of interpretation, it is sometimes convenient
to reparameterize b̄ in terms of the annual average
basic reproductive ratio, R0, defined as the expected
number of secondary infections engendered by an infec-
tive introduced into a fully susceptible population.
When the duration of infection is much shorter
than life expectancy, R0 � b̄/mIR; here we employ a
modification of this formula, given in appendix A.

A novel feature of our model is that we add white
noise with intensity sSE to the transmission process.
Some empirical support for the choice of white (i.e. tem-
porally uncorrelated) noise is given by Lande et al.
(2003). This variability in the rates allows the possi-
bility of over-dispersion (McCullagh & Nelder 1989;
Bretó et al. 2009). It is discussed at more length,
together with a full specification of all the model
equations, in appendix A.
J. R. Soc. Interface (2010)
The other transition rates are specified as follows:
mEI is the rate at which exposed individuals become
infectious, thus mEI

21 is the mean latent period; mIR is
the recovery rate; mSD ¼ mED ¼ mID ¼ mRD ¼ m denotes
a constant per-capita death rate, ignoring the negligible
effect of disease-induced mortality; mBS(t) is the per-
capita rate of recruitment of susceptibles, depending
on the birth rate b(t), which is assumed to be known
via interpolation from birth records. Births enter the
susceptible class with a delay t corresponding to the
age at which children enter the high-risk school-age
population. We also consider a cohort-entry effect
that reflects the fact that a large cohort of first-year
students—the majority of them serologically naive—
enters the schools each autumn (Schenzle 1984; He
2006). Specifically, a fraction c of recruits into the sus-
ceptible class enter on the school admission day, and
the remaining fraction (1–c) enter the susceptible class
continuously. The cohort effect provides a parsimonious
and mechanistically plausible alternative to previous
suggestions that the transmission rate b(t) may increase
following the start of the academic year (Fine &
Clarkson 1982; Grenfell et al. 2002). The reporting
process is taken to be on over-dispersed binomial,
with reporting rate r and overdispersion parameter c

(appendix A, equation (A 6)). Quantities appearing in
the model are summarized in table 1.
3. RESULTS

Maximum-likelihood parameter estimates for our
sample of 20 communities are presented in table 2.
These estimates are for the model in §2 with no



Table 1. List of symbols used in the paper.

symbol description units reference

mij per-capita rate of transition from compartment i to j yr21 figure 2, box 1
sij white-noise intensity on i! j transition rate yr1/2 box 1
LP latent period day equation (A 7)
IP infectious period day equation (A 7)
i mean number of visiting infectives — equation (2.1)
a mixing exponent — equation (2.1)
b(t) transmission rate yr21 equations (2.1) and (2.2)
N(t) population size — equation 2.1
a amplitude of seasonality — equation 2.2
b(t) birth rate yr21 equation (A 5)
c cohort entry fraction — equation (A 5)
t recruitment delay yr equation (A 5)
m mortality rate mjD for j [ fS, E, I, Rg yr21 figure 2
r reporting probability — equation (A 6)
c reporting overdispersion — equation (A 6)
R0 basic reproductive ratio — —

Table 2. Point estimates for 20 representative communities. N is 1950 population in thousands; LP and IP are the latent and
infectious periods, respectively, in days, calculated from mEI and mIR as described in equation (A 7) of appendix A; other
parameters and their units are as specified in table 1; the parameters t ¼ 4 yr and m ¼ 0.02 yr21 were not estimated.
Maximized log-likelihood values are presented in the electronic supplementary material. The bottom row gives the Spearman
rank correlation of the columns with N with * denoting significance at the 5 per cent level, ** the 1 per cent level and *** the
0.1 per cent level.

N a sSE R0 LP IP a i c r c

Halesworth 2 0.95 0.075 33 7.87 2.28 0.38 0.01 0.55 0.75 0.64
Lees 4 0.97 0.060 28 7.28 1.93 0.16 0.03 0.62 0.60 0.69
Mold 6 1.04 0.054 21 5.93 1.78 0.27 0.01 0.44 0.13 2.87
Dalton 11 0.99 0.078 28 5.48 1.98 0.20 0.04 0.42 0.46 0.82
Oswestry 11 1.04 0.070 53 10.29 2.72 0.34 0.03 0.26 0.63 0.48
Northwich 18 0.93 0.069 23 8.07 2.55 0.30 0.05 0.39 0.78 0.40
Bedwellty 29 0.94 0.061 25 6.82 3.03 0.16 0.04 0.35 0.31 0.95
Consett 39 1.01 0.071 36 9.07 2.66 0.20 0.07 0.31 0.65 0.41
Hastings 66 1.00 0.096 34 7.00 5.44 0.30 0.19 0.33 0.70 0.40
Cardiff 245 1.00 0.054 34 9.86 3.09 0.22 0.14 0.27 0.60 0.27
Bradford 294 1.00 0.053 36 10.80 3.22 0.25 0.27 0.30 0.60 0.19
Hull 302 0.97 0.064 39 9.18 5.46 0.22 0.14 0.27 0.58 0.26
Nottingham 307 0.98 0.038 23 5.72 3.69 0.16 0.17 0.34 0.61 0.26
Bristol 443 1.01 0.039 27 6.19 4.94 0.20 0.44 0.34 0.63 0.20
Leeds 510 1.00 0.078 48 9.48 10.92 0.27 1.25 0.59 0.67 0.17
Sheffield 515 1.02 0.043 33 7.23 6.38 0.31 0.85 0.23 0.65 0.17
Manchester 704 0.97 0.055 33 11.11 6.94 0.29 0.59 0.36 0.55 0.16
Liverpool 802 0.98 0.053 48 7.90 9.80 0.30 0.26 0.19 0.49 0.14
Birmingham 1118 1.02 0.056 35 11.23 7.90 0.31 1.09 0.61 0.56 0.19
London 3390 0.98 0.088 57 13.14 12.51 0.55 2.90 0.56 0.49 0.12

r 0.14 20.27 0.44 0.46* 0.94*** 0.26 0.94*** 20.16 20.16 20.93***
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constraints placed on the parameters. The variation in
the parameter estimates between populations has two
sources: it may represent differences in the population
dynamics of measles between communities, or it may
be due to weak identifiability of some combinations of
parameters. We disentangle these two explanations
via a detailed investigation of two of them, London
and Hastings. However, table 2 does reveal some con-
sistent patterns that are robust across the population
samples and are therefore not strongly affected by
identifiability issues. These patterns are valuable for
J. R. Soc. Interface (2010)
indicating model features about which the data under
investigation are informative without the incorporation
of additional assumptions based on prior analyses.

In table 2, the homogeneity parameter a is consist-
ently found to be close to 1. At first glance, this may
suggest that there is little evidence for inhomogeneity
of transmission in the data. Profile likelihood plots
over a for London and Hastings are presented in
figure 3. We see that the statistical uncertainty in the
estimates for these two places is comparable to the geo-
graphic variability in the point estimates in table 2



pr
of

ile
 lo

g 
lik

el
ih

oo
d

α

−
38

14
−

38
10

−
38

06

0.80

(a)

(b)

0.85 0.90 0.95 1.00 1.05 1.10−
15

94
−

15
90

−
15

86

Figure 3. Profile likelihood analysis of the mixing parameter,
a, for (a) London and (b) Hastings. The solid black lines
show the estimated profile log likelihood, derived from the
Monte Carlo point estimates shown as circles. The dashed
lines construct approximately 95 per cent CIs of (0.93, 1.03)
for London and of (0.85, 1.03) for Hastings.
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(mean+ s.d. of 0.99+ 0.03). This finding confirms the
suggestion by Glass et al. (2003) that such exponents
may be artefacts of the time discretization employed
in earlier approaches (Bjørnstad et al. 2002; Grenfell
et al. 2002). We can conclude that the phenomenon of
inhomogeneous mixing—inasmuch as it plays a
dynamic role—is best captured in some other way.

The imported infection parameter i is well identified
in these data. There is a strong log-linear relationship
between i and N, consistent with the earlier findings
of Bjørnstad et al. (2002) and with the results obtained
by Xia et al. (2004), who analysed a much more exten-
sive dataset using a gravity model. The evidence for
such a relationship is stronger here than in a previous
empirical investigation (Finkenstädt et al. 2002, fig. 6).

The extra-demographic stochasticity parameter sSE

is consistently found to be around 0.06 (0.063+
0.015). The profile likelihood plots in figure 4 also indi-
cate that this parameter is fairly well estimable, and the
data strongly argue against the choice sSE ¼ 0. Figure 4
suggests that a role for extra-demographic stochasticity
is not only strongly indicated for large cities such as
London but also clearly evidenced in smaller popu-
lations for which one might expect demographic
stochasticity to dominate. One interpretation of this is
that models with purely demographic stochasticity
(i.e. all discrete-population continuous-time dynamic
models that have been previously fitted to disease
data) fail to capture an extra-demographic source of
variability that has an important dynamic role. A
priori exclusion of the possibility of such additional
variability can lead to spurious confidence in the con-
clusions of the analysis (McCullagh & Nelder 1989)
and to biased parameter estimates. Figure 4 shows
J. R. Soc. Interface (2010)
that, in the absence of extra-demographic stochasticity,
estimates of the latent and infectious periods are sub-
stantially lower when one allows for such stochasticity.
This appears to arise because short transition times
lead to fewer individuals in compartments E and I on
average and therefore to a larger dynamic role for
demographic stochasticity. In other words, the model
compensates for the lack of extra-demographic
stochasticity by attempting to increase the intensity
of demographic stochasticity.

Each parameter of the model has an interpretation in
terms of the basic biology of transmission and infection
at the level of individual hosts. To the extent that the
model is a faithful description of the population-level
processes, one expects that parameter estimates
should agree closely with estimates based on individ-
ual-level observations. When discrepancies occur, they
are evidence for model misspecification or oversimplifi-
cation. Strikingly, table 2 shows a strong log-linear
relationship between population size and infectious
period and, to a lesser extent, latent period. Since
there is no evidence that the natural history of measles
varies with population size, this relationship is indica-
tive of such oversimplification. Figure 1 suggests that
this simple model fails to account adequately for hetero-
geneity in transmission. Specifically, the model calls for
short infectious periods and high transmissibility b to
reproduce the explosive epidemics and interepidemic
fadeouts typical of small communities. The data from
large populations, in contrast, represent the aggregate
of many local epidemics, in each of the many schools
and local communities contained in a large conurba-
tion. In these aggregated data, fadeouts are rare and
the epidemic curve is generally shallower. The oversim-
ple model can reproduce these features only by
extending the infectious period and reducing transmissi-
bility. Moreover, while the infectious period estimated
in the small populations (2–4 days) is consistent with
evidence from household studies (Hope Simpson 1948,
1952; Bailey 1956), the longer infectious periods esti-
mated in the large populations are not. Previous
studies have noted that deterministic versions of the
mass-action model analysed here do a remarkably
good job of qualitatively reproducing the dynamics of
measles in large communities (Earn et al. 2000). Our
analysis shows, however, that when both continuous
time dynamics and stochasticity are taken into account,
data from small populations afford a less-distorted view
of the disease dynamics, at least when viewed through
the lens of relatively simple models.

The basic reproductive ratio of measles is conven-
tionally held to lie between 14 and 18 (Anderson &
May 1991). The values of R0 in table 2 are variable
but consistently high relative to previous estimates
(mean + s.d. of 34.7+ 10.1 over 20 communities).
Profile likelihoods over R0 for London and Hastings
(see the electronic supplementary material) yield
approximately 95 per cent confidence intervals (CIs)
of (37, 60) and (28, 74), respectively. Earlier empirical
work on transmission dynamics (Bjørnstad et al.
2002) also led to a relatively high value of R0 ¼ 29.9
for London. Bjørnstad et al. (2002) were cautious
about the interpretation of this result because of
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concerns about the effects of the discrete-time methods
employed. We can more confidently say that these
higher values of R0 are a genuine feature of the continu-
ous-time dynamics, at least under the assumption of
homogeneous mixing and exponentially distributed
latent and infectious periods. Changing the distribution
of the latter to a more general gamma distribution
(Keeling & Grenfell 1997; Lloyd 2001b; Wearing et al.
2005) decreases the estimated 95 per cent CI of R0 to
(25, 41) for London (see the electronic supplementary
material, figure S6). Though this is a substantial quanti-
tative change, it does not alter the qualitative conclusion
that homogeneous population models require high
values of R0 in order to be consistent with the data.
4. DISCUSSION AND CONCLUSION

A major goal of biomathematical modelling is to seek
conceptual simplicity in the face of biological complexity.
In general, the questions of interest should dictate the
form and complexity of the model used to address
them. In the present context in particular, the
appropriate degree of aggregation over population
inhomogeneities (such as spatial, socio-economic, genetic
and age variation) may depend on the goals of the inves-
tigation (Levin et al. 1997; May 2004). For measles,
analyses based on models of homogeneous mixing popu-
lations have proved useful in the study of seasonality
(Fine & Clarkson 1982; Bjørnstad et al. 2002; Ferrari
et al. 2008) and effects of climate drivers (Lima 2009).
J. R. Soc. Interface (2010)
Metapopulations of weakly coupled homogeneously
mixing populations are central to current understand-
ing of spatio-temporal disease dynamics (Grenfell
et al. 2001; Xia et al. 2004). In addition, such models
can yield insight into the fundamental predictability
of disease outbreaks (Stone et al. 2007) and have been
found adequate to predict the effects of variation in
birth rate and some dynamical features associated
with the institution of vaccination programmes (Earn
et al. 2000). Homogeneous mixing models were also
the basis of early work on local extinctions and vacci-
nation strategies (Bartlett 1957), though age structure
and infectious period distribution may have sub-
stantial roles to play in these questions (Schenzle 1984;
Keeling & Grenfell 1997; Lloyd 2001b; Conlan et al.
submitted). In particular, estimates of the parameter
R0 are known to be highly sensitive to assumptions on
age structure (Wallinga et al. 2001). Interpretations of
homogeneous mixing models must be made in the
context of their limitations.

Clinical and household studies of infectious diseases
yield information regarding the transmission and
progression of infection on the scale of individuals or
families (Hope Simpson 1948, 1952; Bailey 1956). Such
studies are complemented by data on disease prevalence
or incidence on larger spatial scales. The recent develop-
ment of likelihood-based approaches capable of dealing
with the full spectrum of unavoidable complexities
(Cauchemez & Ferguson 2008; Cauchemez et al. 2008;
King et al. 2008)—unobserved variables, measurement
error, process noise, nonlinearity, non-stationarity and
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covariates—means that we can now viewa disease from the
population point of view with something like the same
clarity that we have for many years been able to view indi-
vidual infections. Specifically, although we have long
understood how to describe the population dynamics of
infectious diseases using mathematical models, we have
only recently gained the ability to fit these models to
data using statistically sound methods. When biological
quantities estimated in this way agreewith those estimated
from clinical or household studies, it can be interpreted as
confirmation of the assumptions embodied in the model.
Disagreement between the small- and large-scale points
of view, however, raises interesting scientific questions. In
the present study, we find broad agreement with previous
studies concerning manyof the model’s parameters. On the
other hand, we find significant departures with respect to
three important quantities—R0, the infectious period
and the intensity of extra-demographic stochasticity.

The quantity R0 is central in epidemiological theory
because it has interpretations in terms of so many quan-
tities of interest, including mean age of first infection,
mean susceptible fraction, exponential-phase epidemic
growth rate and vaccination coverage required for eradi-
cation. It is important to realize that the conjunction of
these interpretations occurs only in the context of very
simple models. Simple models necessarily lack flexi-
bility. In reality, these interpretations diverge owing
to heterogeneities in age, spatial location, host genetics,
etc. It is therefore unrealistic to expect that estimates of
R0 (or any other single quantity) derived from fitting a
simple model to one sort of data should agree with esti-
mates derived from other data sources. Rather, the key
question should be: which biological interpretations are
relevant in the context of the data used to inform the
model? From a statistical point of view, this corre-
sponds to the question: to what features of the data
are the parameter estimates sensitive? Our estimate of
the basic reproductive ratio, R0, like those of earlier
studies focusing on aggregated case-count time series,
is somewhat greater than estimates based on serological
surveys and age-stratified incidence data. It is possible
that this reflects the sensitivity of the time-series-
derived estimates of R0 to peak incidence. Specifically,
peak incidence strongly influences the estimates of
both R0 and reporting rate r, but since r is well ident-
ified by other features of the data (namely, the long-run
cumulative incidence), we suspect that the model
requires a high R0 to match the observed peak epidemic
case counts. Alternatively, the high R0 estimates may
reflect the sensitivity of estimated R0 to early phase epi-
demic growth. If this is in fact the case, our estimates of
R0 may more accurately reflect contact rates among the
core group of school-age children than they do those of
the population at large. In this case, the model is effec-
tively extrapolating these rates to the adult population,
about which these data have little direct information
since so few adult cases occur. In contrast, from this
point of view, the interpretation of R0 in terms of its
definition as mean number of secondary infections in
a fully susceptible population is hopelessly extrapolated.
Likewise, the interpretation of R0 in terms of mean age
of first infection is unjustified, since it necessarily
depends on the age structure of transmission, which is
J. R. Soc. Interface (2010)
not part of the model. Perhaps the most direct infor-
mation pertaining to mean age at first infection in
these data comes from the lag between changes in
birth rate and their subsequent effects on incidence.
This lag is explicitly captured in our model by
the delay, t, between birth and recruitment into the
susceptible pool.

Since the comparatively high estimate of R0 does not
appear to be a mere artefact of time discretization, the
question remains as to why the population-level data
suggest a more communicable disease than do the indi-
vidual-level data. Existing estimates of R0 are sensitive
to assumptions about the age structure of transmission
that have not yet been fully resolved (Wallinga et al.
2001). Perhaps transmission in schools is relatively
more effectual than within households. Alternatively,
it may be that this discrepancy points to a need for a
better description of infectious- and/or latent-period
distribution, of the disease’s age structure or both. In
our results, the departure of the estimated latent and
infectious periods from plausible values obtained from
household studies grows with city size, and so the
most likely explanation for this correlation is the spatial
heterogeneity of transmission within towns and cities.
The latter, we have shown, cannot usefully be captured
via the simple device of an exponent in the transmission
term. More detailed explorations of disaggregated data
and/or models with explicit spatial structure have the
potential to shed light on this question. Finally,
the strong evidence in favour of extra-demographic sto-
chasticity raises the question of precisely why such
stochasticity aids in the explanation of the data. To
what extent does this finding indicate the presence of
genuine environmental stochasticity? To what extent
does it indicate model misspecification? To address
these questions, again, analysis based on more detailed
models is called for. In the case of measles, there are
sufficient data to entertain models featuring spatial
inhomogeneity (Grenfell et al. 1995; Xia et al. 2004;
Bjørnstad & Grenfell 2008), age structure inhomogen-
eity (Schenzle 1984; Bolker & Grenfell 1996; Keeling
& Grenfell 1997) or both (Bolker & Grenfell 1995).
Although it has been demonstrated that such models can
do a good job of accounting for gross features of the data,
there has been less emphasis on requiring these models to
account for all features of the data.

Progress on inference methodology for parameter
estimation from measles time series has emphasized
SEIR-type models for homogeneous populations
(Ellner et al. 1998; Bjørnstad et al. 2002; Cauchemez &
Ferguson 2008; Keeling & Ross 2008). The study of
age structure and spatial effects for measles has
placed less emphasis on inferring parameters from
data (one exception is Xia et al. 2004). This may be
partly because of the additional difficulties of inference
for such systems and partly because models based on
homogeneous mixing do an impressive job of describing
key dynamic features (Earn et al. 2000; Grenfell et al.
2002). Regardless of one’s view of the importance of
paying further attention to population inhomogeneities,
there is a natural methodological question: how appli-
cable are the techniques presented here for larger,
more complex models? There is a computational price
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to pay for the convenience of plug-and-play statistical
methods. For the results in table 2, one application of
the plug-and-play-iterated filtering inference procedure
(based on 50 iterations, with a Monte Carlo size of
104) implemented via the POMP package in R (R Devel-
opment Core Team 2006; King et al. 2009) took 5 h to
run on a desktop machine. Computational effort
scales roughly linearly with the number of parameters
plus the number of state variables, so one can see that
only a modest amount of additional structure could
be included without hitting computational limitations.
To increase computational efficiency, however, the
iterated filtering algorithm can be implemented in a
non-plug-and-play mode, in which the filter is either
tailored to the particular model or takes advantage of
available analytic properties of the transition densities.
Such extensions, which would be required for much
larger models, are a topic for future research. One can
seek inspiration for future possibilities from numerical
climate models, for which filtering operations
(the computationally intensive step in the iterated
filtering algorithm) have been carried out on systems
with 5 � 106 state variables (Anderson & Collins
2007). Filtering in such high-dimensional situations
requires the development and evaluation of
appropriate approximations for the system under
investigation.

In this article, we have carried out the first
scientific investigation based on a new framework for
continuous-time, discrete-state population dynamics
with both demographic and extra-demographic noise
(probabilistic and statistical properties of this model
class were investigated by Bretó et al. (2009). Extra-
demographic stochasticity (interpreted as noise in the
rates of a discrete population Markov population
model) is equivalent to the possibility of multiple indi-
viduals moving simultaneously between compartments
(Bretó et al. 2009), and, as such, may be due to social
events that affect the behaviour of many individuals
(e.g. sporting events) or events that change disease
transmissibility, such as variations in temperature and
humidity. Variability in the rates gives the model
additional flexibility that can also describe model mis-
specification. Analogously, when carrying out linear
regression, it is customary to fit a line to data while
understanding that the variation of the data around
the line corresponds to unknown and unmodelled deter-
ministic effects as well as to random fluctuations. For
linear regression, one typically treats both these sources
of uncertainty equally, and certainly all the usual stan-
dard errors and test statistics do not discriminate
between them. We maintain that the same approach
can be applied to dynamic models; in other words, the
distinction between model misspecification and process
stochasticity should be noted, though it will not usually
affect the subsequent analysis.

The term extra-demographic stochasticity encompasses
all sources of variability beyond the intrinsic demographic
stochasticity that would be present in a homogeneous
population. There are many circumstances in which such
variability can be expected to be important. In particular,
the variability of rates in our new framework offers an
approach to modelling superspreading events
J. R. Soc. Interface (2010)
(Lloyd-Smith et al. 2005). These events occur when varia-
bility between individuals, environmental effects or an
interaction between the two results in a highly skewed
distribution for the number of secondary cases caused by
an index case. Superspreading has been documented in
measles, but is of greater dynamic importance in other
diseases such as severe acute respiratory syndrome
(Lloyd-Smith et al. 2005). Conventional population
models amenable to non-plug-and-play statistical analyses
have been unable to include such effects readily. This is,
therefore, one more example in which the flexibility of
plug-and-play methodology holds the potential to
encourage the development of scientifically appropriate
models.
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APPENDIX A. COMPARTMENT MODELS
WITH STOCHASTIC RATES

Compartment models provide a unifying framework
to describe population dynamics (Jacquez 1996;
Matis & Kiffe 2000). Here, we write down a general
compartment model to obtain formal representations
of the transition rates presented in §2. Specifically, we
present a framework in which these rates can be inter-
preted as a system of ordinary differential equations, a
discrete population stochastic process with demo-
graphic stochasticity or a discrete population stochastic
process with both demographic and extra-demographic
stochasticity.

A compartment model is a vector-valued process
X(t) ¼ (X1(t), . . . , Xk(t)) denoting the (integer or real-
valued) counts in each of k compartments labelled 1
to k. To keep track of individuals moving between com-
partments, we define flow processes Nij(t) such that
Nij(t) – Nij(s) counts the number of transitions from
compartment i to compartment j between times s and
t. We introduce an extra compartment, labelled 0=,
which provides a source and a sink to describe passages
into and out of the system because of events such as
birth, immigration, emigration and death. The basic
characteristic of a compartment model is that X(t)
can be written in terms of the flows Nij(t) from i to j,
via a conservation of individuals’ identity. Namely, for
i ranging over 1, . . . ,k and j ranging over 0=, 1, . . . ,k,
we write

XiðtÞ ¼ Xið0Þ þ
X
j=i

N jiðtÞ �
X
j=i

NijðtÞ: ðA 1Þ



Box 1.
Euler scheme for a numerical solution of a Markov chain with stochastic rates. Here, (a, b) is the gamma distribution

with shape parameter a and scale parameter is b, with corresponding mean ab and variance ab2. In the case sij ¼ 0,
Gamma(d/sij

2, sij
2) is defined to take the non-random value d. Further details on the gamma, multinomial and Poisson

distributions can be found in introductory texts on probability and statistics (Casella & Berger 1990). In steps 5 and 7,
Ri counts the number of individuals who remain in compartment i during the current Euler increment.

(i) Set the initial value X(0) and time interval (0,T )
(ii) Set time increment d; define tn ¼ nd and N ¼ T/d.
(iii) FOR n ¼ 0 to N 2 1
(iv) Generate independent noise increments, DGij � Gamma(d/sij

2,sij
2).

(v) For i in 1, . . . ,k, generate process increments

ðDNi0;...;DNi;i�1;DNi;iþ1;...;DNik ;RiÞ
�MultinomialðXiðtnÞ;pi1;...;pi;i�1;pi;iþ1;...;pik ;1�S‘=ipi‘Þ;

where pij ¼ pij(fmij(tn, X(tn))g,fDGijg) is given by

pijðfmijg;fDGijgÞ¼
ð1�expf�

P
‘mi‘DGi‘gÞmijDGij

Skmi‘DGi‘

with mij ¼ mij(t, x), defined in equation (A 2).
(vi) Generate process increments (DN0=1, . . . ,DN0=k) via

DN0=i � Poissonðn0iðtn ;XðtnÞÞDG0=iÞ

(vii) Set Xi(tnþ1) ¼ Ri þ Sj=iDNji
(viii) END FOR
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Each flow Nij is associated with a rate function
nij ¼ nijðt;XðtÞÞ. The corresponding per capita tran-
sition rate mijðt;XðtÞÞ is defined, for i [ f1; . . . ; kg, by

nijðt;XðtÞÞ ¼ mijðt;XðtÞÞXiðtÞ: ðA 2Þ

There are many ways to develop concrete interpret-
ations of such a compartment model (Bretó et al.
2009). For example, an ordinary differential equation
interpretation is given by

d
dt

NijðtÞ ¼ nijðt;XðtÞÞ

for i = j with i and j ranging over 0=, 1, . . . ,k. In this
case, equation (A 1) becomes

dXi

dt
¼
X
j=i

n jiðt;XÞ: ðA 3Þ

This deterministic, continuous-population system is
known as the deterministic skeleton (Cushing et al.
1998; Coulson et al. 2004). Continuous-population sto-
chastic generalizations include stochastic differential
equation models (Ionides et al. 2006; King et al. 2008)
and ordinary differential equations with slowly varying
rates (Swishchuk & Wu 2003).

A Markov chain interpretation can be specified by
the infinitesimal transition probabilities (Brémaud
1999)

PfNijðtþdÞ�NijðtÞ ¼ 0g ¼ 1�dnijðt;XðtÞÞþoðdÞ;
PfNijðtþdÞ�NijðtÞ ¼ 1g ¼ dnijðt;XðtÞÞþoðdÞ;
PfNijðtþdÞ�NijðtÞ . 1g ¼ oðdÞ;
PfNijðtþdÞ�NijðtÞ , 0g ¼ 0:

9>>=
>>;

ðA4Þ
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This Markov chain model includes only demographic
stochasticity. Extra-demographic stochasticity is to be
expected in data (Bjørnstad & Grenfell 2001); in
particular, it arises because of variability in the rates of
equation (A 4). We write sij(t, X(t)) for an intensity
parameter corresponding to white noise in the rate nij(t,
X(t)). Bretó et al. (2009) developed a general framework
for adding white noise to the rates of Markov chain
compartment models. The requirement that rates be
non-negative rules out the use of Gaussian white noise;
the simplest and most convenient parametric choice avail-
able is Gamma noise, which is employed in the Euler
scheme of box 1. In box 1, DGij has dimension of time,
so DGij/d is an approximation to multiplicative noise
over a Euler time increment of duration d. Box 1 reduces
to a multinomial Euler scheme (Cai & Xu 2007) if all the
noise parameters are set to zero.

For measles, a well-studied compartment model cor-
responds to X(t) ¼ (S(t), E(t), I(t), R(t)). The state 0=
models both a source (corresponding primarily to
births) and a sink (corresponding primarily to
deaths); thus in §2 we write N0=S ¼ NBS, NS0= ¼ NSD,
NE0= ¼ NED, NI0= ¼ NID and NR0= ¼ NRD. The per capita
recruitment rate mBS(t) in §2 is given by

mBSðtÞ ¼ ð1� cÞbðt � tÞ þ cdðt � t0 mod 365Þ

�
ðt

t�365
bðt � t� sÞ ds: ðA 5Þ

Here, b(t) is the birth rate, treated as known from
annual birth data; d(t 2 t0 mod 365) contributes a
Dirac delta impulse to the recruitment rate when t
falls on the same calendar day as t0, and we take
t0 ¼ 251 for the school admission day in England
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and Wales. The corresponding population recruitment
rate is nBS ¼ mBS(t)N(t), where N(t) is the population
size, treated as known via smooth interpolation of
census data. The force of infection, mSE(t), is given
by equations (2.1) and (2.2). The calendar-day tim-
ings of the school holidays in equation (2.2) are as
follows: Christmas, 356–365 and 0–6; Easter,
100–115; summer, 199–252; autumn half-term,
300–308.

To complete the model specification, we need to
specify the measurement model. We write Zn ¼

NIR(tn)–NIR(tn21) for the complete case count in the
nth reporting interval, supposing that cases are quaran-
tined once they are identified. The corresponding case
report yn is modelled via an overdispersed binomial
distribution defined as a discretized normal random
variable. Specifically, for y . 0, we take

P½yn¼y j Zn¼z�
¼ Fðy þ 0:5; rz; rð1� rÞz þ c2r2z2Þ
�Fðy � 0:5; rz; rð1� rÞz þ c2r2z2Þ; ðA 6Þ

where F(.; m, s2) is normal(m,s2) cumulative distri-
bution function. For y ¼ 0, we replace y 2 0.5 by 21

in equation (A 6). Here, r is the reporting rate and c

the overdispersion parameter. Equation (A 6) rep-
resents a normal approximation to the binomial
distribution with extra variability added. For c2�1,
which is the case for all communities of population
greater than 105 in the sample we investigated, the for-
mulation in equation (A 6) approximates a binomial
distribution for small z and a lognormal distribution
for large z.

In the conventional SEIR Markov chain model given
by equation (A 4), individuals move from E to I and
then I to R at constant rates and so the latent and
infectious periods are exponentially distributed.
Gamma-distributed latent and infectious periods,
which are believed to be more realistic, can be realized
by dividing exposed and infectious classes into multiple
stages (Anderson & Watson 1980; Lloyd 2001a,b). We
implemented this and found a reduction in the estimates
of R0 (as predicted by Wearing et al. 2005) but no
substantial improvement in goodness of fit (figure S6,
electronic supplementary material). In §2, we calculate
R0 ignoring the negligible effects of mortality, taking
R0 ¼ b̄IP, where IP is the mean infectious period.
Naı̈vely taking IP¼ mIR

21 in box 1 produces a significant
distortion when mIR

21 is close to, or smaller than, the time
discretization step d. Throughout this work, we use d ¼ 1
day and we use the discrete-time formulas for IP and LP,

LP ¼ d

1� e�dmEI
; IP ¼ d

1� e�dmIR
: ðA 7Þ
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