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Abstract

Background: Social media is a useful platform to share health-related information due to its vast reach. This makes it
a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of
extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information
extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to
more technical and formal medical reports.

Methods: Current methods in ADR mention extraction rely on supervised learning methods, which suffer from
labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent
Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM) . Deep neural networks, due to their large
number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is
hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation.

Results: To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled
data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our
method, achieving state-of-the-art performance in ADR mention extraction.

Conclusion: In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention
extraction from social media and propose a novel semi-supervised learning based method which can leverage large
unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed
method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a
good performance.
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Background
Social media is a useful platform to share health-related
information due to its vast reach. This makes it a good
candidate for public-health monitoring tasks, specifi-
cally for pharmacovigilance. We study the problem of
extraction of Adverse-Drug-Reaction (ADR) mentions
from social media, particularly from Twitter. Medical
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information extraction from social media is challenging,
mainly due to short and highly informal nature of text, as
compared to more technical and formal medical reports.
Current methods in ADR mention extraction rely on

supervised learning methods, which suffer from labeled
data scarcity problem. The state-of-the-art method uses
deep neural networks, specifically a class of Recurrent
Neural Network (RNN) which are Long-Short-Term-
Memory networks (LSTMs) [1]. Deep neural networks,
due to their large number of free parameters rely heavily
on large annotated corpora for learning the end task. But
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in the real-world, it is hard to get large labeled data, mainly
due to the heavy cost associated with the manual anno-
tation. To this end, we propose a novel semi-supervised
learning based RNN model, which can leverage unla-
beled data also present in abundance on social media.
Through experiments we demonstrate the effectiveness
of our method, achieving state-of-the-art performance in
ADR mention extraction.
Adverse-Drug-Reactions (ADRs) are a leading cause of

mortality and morbidity in health care. In a study, it was
observed that from a death count in the range of (44,000-
98,000) due to medical errors, 7000 deaths occurred
due to ADRs [2]. Postmarket drug surveillance is there-
fore required to identify such potential adverse reactions.
The formal systems for postmarket surveillance can be
slow and under-efficient. Studies show that 94% ADRs are
under-reported [3].
Social media presents a useful platform to conduct such

postmarket surveillance, given the large audience and vast
reach of such platforms. Such platforms have been used
for real-time information retrieval and trends tracking,
including digital disease surveillance system [4]. A recent
study shows that Twitter has 3 times more ADRs reported
than were reported through FDA. Out of 61,000 tweets
collected, 4400 had mention of ADRs as compared to
1400 ADRs reported through FDA during the same time-
period [5]. This makes Twitter a great source for building
a real-time post-marketing drug safety surveillance sys-
tem. However, information extraction from social media
comes with its own set of challenges. Some of them
are: 1) Short nature of the text (Twitter has a 142 char-
acter limit), making the language more ambiguous. 2)
Sparsity of drug-related tweets 3) Highly colloquial lan-
guage as compared to more technical and formal medical
reports.
Consider for example the tweets, ‘Cymbalta, you’re driv-

ing me insane’; ‘@< USER > Ugh, sorry. This effexor
is not making me feel so awesome’. In the first tweet,
‘driving me insane’ and in the second one, ‘not making
me feel so awesome’ are ADR mentions which indicate
some level of discomfort in the user’s body. These tweets
clearly demonstrates how information extraction from
social media suffers from above-mentioned problems.
Recent work in deep learning has demonstrated its

superiority over traditional hand-crafted feature based
machine learning models [6, 7]. However, due to a
large number of free parameters, deep learning mod-
els rely heavily on large annotated datasets. In the
real-world, it is often the case that labeled data is
sparse, making it challenging to train such models. Semi-
supervised learning based methods provide a viable
alternative solution to this. These methods rely on
a small labeled data and a large unlabeled data for
training.

In this work, we present a novel semi-supervised Recur-
rent Neural Network (RNN) [8] based method for ADR
mention extraction, which leverages a relatively larger
unlabeled dataset. We demonstrate the effectiveness of
our method through experimentation on an ADR men-
tion annotated tweet corpus [9]. Our method achieves
superior results than the current state-of-the-art in ADR
extraction from Twitter. In summary, our main contribu-
tions are:

• We propose a novel semi-supervised sequence
labeling method based on Long-Short-Term-Memory
(LSTM) network [1] which are known to capture
long-term dependencies better than vanilla RNNs.

• For the unsupervised learning part, we explore a novel
problem of drug name prediction given the drug’s
context from tweets. The goal is to predict the drug
name which is masked, given it’s context in the tweet.

• For supervised learning, we explore different word
embedding initialization schemes and present results
for the same.

• We demonstrate that by training a semi-supervised
model, ADR extraction performance can be improved
significantly as compared to current methods.

• On the Twitter dataset with ADR mentions
annotated [9], our method achieves an F-score of
0.751 outperforming the current state-of-the-art
method by ∼ 3%.

Related work
The task of ADR mention extraction falls under the cate-
gory of sequence labeling problems. The state-of-the-art
method for solving sequence labeling problems is the
Conditional Random Field (CRF) [10]. ADRMine [11],
is a CRF-based model for ADR extraction task. It uses
a variety of hand-crafted features, including word con-
text, ADR lexicon, POS-tag and word embedding based
features as input to CRF. The word embedding based fea-
tures are trained on a large domain-specific tweet corpus.
The problem with the above-mentioned approach is its
dependency on hand-crafted features, which is time and
effort consuming. A Long-Short-Term-Memory (LSTM)
network based model is proposed [9] to get around this
problem. Instead of using hand-designed features, word
embedding based features are passed to a Bi-directional
LSTM model which is trained to generate a sequence
of labels, given the input word sequence. State-of-the-
art results are achieved, surpassing CRF-based ADRMine
results.
Some recent work also focuses on the problem of

Adverse-Drug-Event (ADE) detection [12, 13]. Here the
goal is to identify whether there is occurrence of an
adverse-drug-reaction event or not. This is closely related
to the problem addressed in the paper, with the difference
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being that instead of identifying where in the text
adverse-drug-reactions are mentioned, we have to identify
whether there is an occurrence or not.

Method
ADR-mention extraction using semi-supervised
Bi-directional LSTM
In this section, we present our approach for ADR extrac-
tion. Our method is based on a semi-supervised learning
method which operates in two phases: 1) Unsupervised
learning: In this phase, we train a Bidirectional-LSTM
(bi-LSTM) [8] model to predict the drug name given its
context in the tweet. As training data for this task, we
select tweets with exactly one mention of any prescription
drug. Since we already know the drug name beforehand, it
doesn’t need any annotation effort. 2) Supervised learn-
ing: In this phase, we use the trained bi-LSTMmodel from
phase 1 and (re)train it to predict the sequence of labels,
given the tweet text.

Unsupervised learning
For this phase, we attempt a novel task of drug name pre-
diction from its context in a tweet. This stage works as
follows:

• Given a tweet, identify the drug name mentions using
a curated drug name lexicon.

• Once drug names are identified in the tweet, replace
all drug name mentions with a single dummy token
(< DRUG >).

• In the spirit similar to the Continuous Bag of Words
(CBOW) model of the well-studied word2vec model
[14], we use the context of the masked drug name in
the tweet as input to predict the actual drug name.

The intuition for the unsupervised stage is that the net-
work will learn the context around the drug which will
contains both positive and negative ADR mentions. Since
the sequence classificationmodels rely on context for clas-
sification, a rich knowledge of the context can serve as a
good prior. Consider for example an ADR mention tweet,
“Since last week,lamotrigine causing steven johnson syn-
drome”. As first step of the unsupervised stage, drug name
mention “lamotrigine” is identified through a curated
drug name lexicon. It is thenmasked with a dummy token.
The transformed tweet is, “Since last week, < DRUG >

causing steven johnson syndrome”. Now, for the drug name
prediction task’s training, the input is presented to the net-
work in the form: {tweet text, target drug name}, where
tweet text is the drug name masked tweet and the target
drug name is “lamotrigine” in this case. Due to the com-
mon misspelling errors on social media, people may refer
to drug names differently and potentially with spelling
errors. For such cases, we rely on drug name matching

systems which can handle noisy drug mentions to identify
drug names from novel tweets [15].
For creating training data, we use a large collection of

tweets with exactly onemention of the drug name in them.
Since we are predicting the drug name from a tweet which
is already present in it, in order to avoid the network to
learn a trivial function which maps drug name in input
to drug name in output without considering the context
in account, we mask the drug name in the tweet with a
dummy token. This will force the network to look at the
context as well. For feature-extraction, we use a bi-LSTM
basedmodel. Themodel takes as input, a sequence of con-
tinuous word vectors as input and predicts a correspond-
ing sequence of word vectors as output. The equations
governing the dynamics of LSTMs are defined as follows:

�gu = σ
(
Wu ∗ �ht−1 + Iu ∗ �xt

)

�gf = σ
(
Wf ∗ �ht−1 + If ∗ �xt

)

�gc = tanh
(
Wc ∗ �ht−1 + Ic ∗ �xt

)

�mt = �gf � +�gu � �gc

�go = σ
(
Wo ∗ �ht−1 + Io ∗ �xt

)

�ht = tanh
(�go � �mt−1

)

(1)

here σ is the logistic sigmoid function, Wu,Wf ,Wo,Wc

are recurrent weight matrices and Iu, If , Io, Ic are pro-
jection matrices. In a conventional LSTM, the sequence
is read from left to right. In bi-LSTM, two sequence
directions are considered, one from left to right and the
other one opposite to it. The final hidden layer’s activa-
tion is the concatenation of vectors from both directions.
Mathematically,

ht =
[�ht ;←−h t

]
(2)

To generate the final representation of the tweet, average-
pooling is applied over all hidden state vectors.

h =
T∑
t=1

ht (3)

where T is the maximum time-step. Finally a softmax
transformation is applied to generate a probability dis-
tribution over all drug names followed by a categorical
cross-entropy loss.

Supervised sequence classification
For this phase, we take the bi-LSTM model trained from
the previous phase and use it in a setup similar to state-of-
the-art [9]. At each time-step of the sequence, a softmax
layer is applied which gives a probability distribution over
sequence labels. Formally,

yt = softmax(Wh + b) (4)



Gupta et al. BMC Bioinformatics 2018, 19(Suppl 8):212 Page 4 of 84

here W and b are weight matrices for the softmax layer.
The final loss for the sequence labeling is sum of cat-
egorical cross-entropy loss at each time-step defined as
follows:

LADR = −
n∑

t=1

dl∑
i=1

ŷti log yti (5)

where ŷt is the one-hot representation of the actual label
at time-step t, and yti is the ith component of the network
prediction yt as described above.
The hidden state h and the parameters Wu, Wf , Wo,

Wc, Iu, If , Io, Ic are shared during training of both phases.

Overall system pipeline
The overall system pipeline is described in Fig. 1. The
first stage of the pipeline involves training the Bi-LSTM
model on the unsupervised drug name prediction task.
The weights updated during the training for the unsuper-
vised stage are saved. For the second stage in the pipeline
(supervised ADR extraction), a bi-LSTM model is initial-
ized with the weights saved from the unsupervised stage
and is trained for the supervised ADR extraction task.
During prediction (testing) stage, the network weights
obtained as result of training on both tasks are used.

Results
Dataset description
For the supervised-learning phase, we use the Twitter
dataset annotated with ADR mention which were col-
lected during the period of 2007-2010. Tweets were col-
lected using 81 drug names as keyword search terms,
which can be downloaded from [16]. In the original
dataset, a total of 960 tweets are annotated with word-
level ADR mentions. Twitter’s search API’s license pro-
hibits the sharing of actual tweet content, so the released
tweets dataset contains tweet ids along with the mention
annotation. Out of the total of 960 tweets released as part
of the original dataset, we were able to recover a total of
645 tweets text using Python library tweepy [17]. The rest

of the tweets were not available, mostly due to deletion by
users. According to the given train-test split in the base-
line paper, 470 tweets are used for training and 170 tweets
are used for testing.
For generating the unlabeled dataset (for the drug name

prediction task), we used the Twitter’s search API [18]
with the drug names used in the original study as keyword
search terms [16].
The drug names used as keywords for searching related

tweets are: humira, dronedarone, lamictal, pradaxa,
paxil, zoledronic acid, trazodone, enbrel, cymbalta,
quetiapine. We crawled the tweets over a period of two
months. For simplicity, we removed the tweets with more
than one drug mentions, resulting in a total of 0.1 Million
tweets.

Implementation details
We use Keras [19], a popular deep learning python
library for implementation. For text pre-processing on
both supervised and unsupervised corpus, we applied the
following steps:

• Normalizing HTML links and
user-mentions:We replaced all HTML link
mentions with the token “< LINK >”. Similarly, we
replaced all user handle mentions (for ex. @JonDoe)
with the token “< USER >”.

• Special Character Removal:We removed
all punctuations and special symbols like ‘#’ from
tweets.

• Emoticons Removal:We removed all
emoticons, in general all non-ascii characters which
are special types of emoticons.

• Stop-word and rare words removal:We
removed all stop-words and set the vocabulary size to
top-15000 most frequent words in the corpus.

We used the word2vec [14] embeddings trained on a
large generic Twitter corpus [20] as input to the model.
Word vector dimension is set to 400. Bi-LSTMparameters

Fig. 1 Overall System Diagram System diagram illustrating the connection between unsupervised learning and supervised learning phase
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are set to the best reported setting from [9], with hidden
unit’s dimension equal to 500. For training the supervised
model, we use the adam optimizer [21] with batch-size
equal to 1 and for training the unsupervised model, we
used the batch adam optimizer [21] with batch-size set to
128 empirically. The supervised model was trained for a
total of 5 epochs, and the unsupervised model was trained
for 30 epochs.
To convert the ADR extraction problem into a sequence

labeling problem, we need to assign the annotated enti-
ties with appropriate tag representations. We follow the
IO encoding scheme, where each word belongs to either
of the following categories: (1) I-ADR (inside ADR) (2)
I-Indication (inside Indication ), where indication is the
symptom indicating presence of some disease caused by
the drug (3) O (Outside any mention) (4) < PAD >

(if the word is padding token). An example tweet anno-
tated with IO-encoding:@BLENDOSO LamictalO andO
trileptalO andO seroquelO ofO courseO theO seroquelO
IO takeO inO severeO situationsO becauseO weightI−ADR
gainI−ADR isO notO coolO. It should be noted that simi-
lar to the baseline [9], we report the performance on the
ADR label only. This is because the number of Indication
annotations are very less in number:45 in training, 16 in
testing.

Evaluation
For performance evaluation, we use approximate-
matching [22], which is used popularly in biomedical
entity extraction tasks [9, 11]. Approximate matching
considers a predicted ADR span correct if it overlaps with
one or more actual ADR spans. For instance, given the
tweet “The Seroquel gave me lasting sleep paralysis” with
the true ADR span “sleep paralysis”, predicted spans of
“lasting sleep paralysis” or simply “paralysis” are counted
as correct.
We report the F1-score, Precision and Recall computed

using approximate matching as follows:

Precision (P) = #ADR approximately matched
#ADR spans predicted

(6)

Recall (R) = #ADR approximately matched
#ADR spans in total

(7)

F1-score = 2PR
P + R

(8)

Table 1 presents the results of our approach along with
comparisons. Since the number of tweets used for train-
ing and testing differs from the one used in baseline [9],
we re-ran their model using the source-code released by
them [23]. It should be noted that the original model
used RMSProp [24] as an optimizer, so for a fair compar-
ison with our method, we also report the baseline results
with optimizer as adam instead of RMSProp. Replac-
ing RMSProp with adam, although gives an improve-
ment over the original baseline, it still underperforms our
method. Our approach gives state-of-the-art results, with
an improvement of ∼ 3% F1 over the original baseline
and an improvement of 1.88% F1 over the re-implemented
baseline.

Discussion
Effect of drug-mask
For the unsupervised learning phase, we select the task of
drug name prediction given its context. In order to avoid
the network learning a degenerate function which maps
input drug name to output drug name, we mask all drug
names in input with a single token. In order to verify this,
we report the accuracy results without the drug-mask, i.e.
with drug name included in the input. The result is pre-
sented in Table 2. It is clear that removing the drug mask
from input degrades the end-performance by 0.535% in F-
score. This further validates our claim that masking the
drug names is effective.

Effect of embeddings and dictionary
We experiment with word embeddings trained on dif-
ferent corpora to observe its effect on performance. We
experiment with embeddings trained on a part of Google
News dataset, which consists of around 100 billion words
[25]. It can be observed that using Google News corpus
trained embeddings degrades the performance by 2.04%
in F-score. This is due to the fact that these embeddings
are trained on a large news corpus, which is grammat-
ically more sound and formal than the colloquial social
media language. Conceptually, the shift in the lexical data
distribution of the news corpus as compared to tweets
containing ADR causes the degradation in performance.
We also experiment with word embeddings trained on a
large medical-concept terms related tweet corpus [26, 27].
Intuitively, embeddings trained on similar domain (med-
ical in this case) should perform better, but surprisingly

Table 1 Performance of various deep neural network methods on ADR extraction task

Method F1-Score Precision Recall

Baseline [9] 0.729 ± 0.027 0.695 ± 0.109 0.776±0.121

Baseline (with adam optimizer) 0.737 ± 0.308 0.707 ± 0.096 0.774 ± 0.08

Semi-Supervised ADR extraction 0.751±0.036* 0.731±0.035* 0.774 ± 0.073

� Indicate statistical significant (p ≤ 0.05) using paired t-tests compared to the baseline
Highlighted portions reflect the best results across the respective column
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Table 2 Performance comparison of Semi-Supervised bi-LSTM (SS-BLSTM) under different word embedding initialization settings and
different unlabeled data settings. Results are reported averaged over 30 trials along with the std. deviation

Method F1-Score Precision Recall

SS-BLSTM (with drug mask removed) 0.747±0.037 0.723 ± 0.106 0.780±0.108

SS-BLSTM (with labeled tweets dictionary only) 0.745 ± 0.039 0.727±0.072 0.769 ± 0.097

SS-BLSTM (with GoogleNews [25] vectors) 0.736 ± 0.031 0.708 ± 0.095 0.774 ± 0.118

SS-BLSTM (with medical embeddings) 0.673 ± 0.021 0.642 ± 0.089 0.716 ± 0.118

Highlighted portions reflect the best results across the respective columns

it performs worst amongst all methods. The generic
embeddings trained on large tweet corpus captures poten-
tially large variation of semantics and linguistic properties
of text and due to the free-style nature of writing on
social media, this helps more than domain-knowledge, as
captured by medical-domain trained embeddings.
We also experimented with a different vocabulary ini-

tialization. In our proposed formulation, we construct
vocabulary from both unlabeled and labeled corpus,
resulting in a larger vocabulary size. When experimented
with a restricted vocabulary (only from labeled training
data), we observe that the F1-score drops by 0.8%. This
suggests the use of a larger vocabulary with more coverage
in similar settings.

Conclusions
We present a novel semi-supervised Bi-directional LSTM
based model for ADR mention extraction. We evaluate
ourmethod on an annotated Twitter corpus. By leveraging
a potentially large unlabeled corpus, our method outper-
forms the state-of-the-art method by ∼ 3% in F1-score.
We also demonstrate that word embeddings trained

on a large domain-agnostic Twitter corpus performs bet-
ter than more popular Google News Corpus trained
word-embeddings and surprisingly even better than med-
ical domain-specific word embeddings trained on tweets,
which suggests that language structure and semantics is
more important in downstream information extraction
tasks, compared to domain knowledge.
In future, we plan to explore drug and side-effect

(adverse-effect) mention relation extraction along with
ADR extraction and seek to validate if both can be formu-
lated in a multi-task learncing setup.
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