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Abstract

A minimally invasive diagnostic assay for early detection of Alzheimer’s disease (AD) is required to select optimal patient
groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care.
Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in
clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ,22 nt length
and are now recognized to regulate ,60% of all known genes through post-transcriptional gene silencing (RNAi). They have
potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially
blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and
progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both
as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and
validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-
miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls
(NC) with .95% accuracy (AUC of 0.953). There was a .2 fold difference for all signature miRNAs between the AD and NC
samples, with p-values,0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was
also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a
role in AD etiology.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disease manifested by dementia typically observed in the elderly.

Symptoms include disorientation, loss of memory, visual-spatial

skills, and psychiatric symptoms. Approximately 24 million people

worldwide have dementia, of which the majority (,60%) is due to

AD [1]. The neuropathology of AD is characterized by the

presence of amyloid plaques, neurofibrillary tangles, synaptic loss

and selective neuronal cell death in the brain [2]. Amyloid plaques

result from abnormal levels of extracellular amyloid beta (Ab)

peptide, which are products of sequential enzymatic cleavages of

ß-amyloid precursor protein (APP) by ß- secretase (BACE1) and c-

secretase. Neurofibrillary tangles on the other hand are associated

with the presence of intracellular hyper-phosphorylated tau

protein. Compared with normal tau, which contains two to three

phosphate groups, the p-tau contains 5–9 phosphate groups per

protein and inhibits the normal tau-promoted microtubule

assembly [3].

AD is currently diagnosed using a combination of clinical

criteria [4], which includes a neurological exam, mental status

tests, and brain imaging [5]. An AD diagnosis is also sometimes

reached by eliminating other causes of dementia. Based on these

criteria, an accurate diagnosis can be difficult, especially for

patients having mild or early-stage AD. Accordingly, needs exists

for biomarkers that are indicative of AD and may be used for

earlier diagnosis on living patients. Earlier diagnosis of AD and

subsequent intervention is also thought to be socially desirable in

terms of increasing economic efficiency, in addition to significantly

reducing health care costs by delaying entry of AD patients into

nursing homes for long term care [6]. However, the need for

biomarkers in neurodegenerative diseases is not limited to

diagnostic purposes only. The testing and ultimate implementation

of emerging therapies will also require identification of affected

and ‘‘at-risk’’ individuals to target them for clinical trials. AD

patients are known to have neuropathology in their brains for over

10 to 20 years before any symptoms occur. With ongoing research

to develop new AD treatments, an increasing need to establish an

early diagnosis of AD could become important [7]. So in addition

to traditional diagnostic value, biomarkers are now being

investigated for use in patient stratification, following patient

response to treatment and making regiment changes if a drug is

not providing the desired benefit.

Currently, bio-fluid derived markers and neuroimaging tech-

niques are being explored as possible biomarkers for early-stage

and pre-clinical AD diagnosis, because it is in these initial stages
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that disease-modifying therapies are likely to have the greatest

chance of preserving normal brain function [8]. Among these,

cerebrospinal fluid (CSF) is a very attractive and potent source of

biomarkers for brain-related conditions, since it could serve as

surrogate readout of the brain condition, in terms of both

metabolic and biochemical profiles. In AD, CSF concentrations of

soluble Ab (1–42) are reduced by 40–50% compared to age-

matched healthy controls [9]. Recently, multiple reports also

highlighted the value of looking at the ratio of Ab40 and Ab42

peptides in the CSF, which could help serve as an indicator of AD

[10][11][12]. Another well accepted indicator for AD is the level

of phopho-tau (p-tau) in CSF [13], which is now considered as an

in vivo surrogate biomarker of neurofibrillary pathology in AD. To

further strengthen this hypothesis, there have now been reports

which also found positive correlations between ratio of Ab40 and

Ab42 peptides and p-tau in CSF [14]. Unfortunately, both tau and

p-tau cannot be used to correctly identify AD since changes of

these molecules have also been implicated in other neurodegen-

erative diseases [15].

Another source of biomarkers that has been the focus of

attention of researchers, especially in cancer biology and

cardiovascular diseases is blood [16] [17] [18]. An advantage of

using blood-based markers is the ease and possible frequency of

collection of sample from patients. In contrast, CSF biomarkers

would require invasive and delicate lumbar punctures, which can

be performed only by trained physicians. There have been

multiple reports of plasma/serum markers identified, which could

potentially distinguish various neurodegenerative conditions in-

cluding AD [19], Parkinson’s disease (PD) [20] and schizophrenia

[21]. For example, in PD, it was recently reported that

deregulation of the RNA splicing factor SRRM2 in peripheral

blood cells correlated with PD, and not with other neurodegen-

erative diseases [22]. Another area of interest is the auto-immune

response to amyloidogenic proteins associated with diseases and

their applications in therapeutic treatments such as vaccination

with amyloid antigens and antibodies in PD, AD and potentially

other neurodegeneration ailments. It was recently reported that a-

synuclein reactive antibodies in the blood sera could serve as

diagnostic markers for PD [23] . a-synuclein is classified as a

natural amyloidogenic protein and conversion from its soluble

cytosolic state to an aggregated insoluble form is one of the key

events in the pathogenesis of PD. In AD, six plasma biomarkers

including AAT (a1-antitrypsin) and ApoJ were identified to be up-

regulated with disease [24]. AAT was further validated by ELISA

and it was also found to be present in neurofibrillary tangles and

senile plaques [25].

In addition to the existing proteomic, metabolomics and

genomic class of circulating biomarker molecules, miRNA is

another novel class of circulating molecules that has gained

significant attention. MiRNAs belong to the class of non-coding

regulatory RNA molecules of ,22 nt length that modify gene

expression at the post-transcriptional level by primarily binding to

the 39 un-translated region (UTRs) of their target messenger

RNAs [26] [27] [28]. It is estimated that 1–4% genes in the

human genome encode for miRNAs and a single miRNA can

regulate as many as 200 mRNAs [29]. There is increasing

evidence suggesting that miRNAs play critical roles in many key

biological processes, such as cell growth, tissue differentiation, cell

proliferation, embryonic development, and apoptosis [30]. Re-

cently it had been shown, that not only are they active in the cell in

which they are produced, but they can be exported out of their

production ‘‘host’’ cell, and cause down regulation of target

mRNAs in a distant ‘‘target’’ cell [31] [32]. It is this particular

property of miRNAs of being abundantly found in stable

functional condition in all biological circulating fluids including

plasma, urine, tears, saliva and CSF [33], which makes them

promising candidates as biomarkers. They are found enclosed in

exosomes and other vesicular structures [34] [35], and even freely

circulating in fluids, protected by RNA binding proteins including

NPM1 [36], HDL [31,37] or Argonaute2 [38] [39]. Circulating

profiles of miRNAs have been shown to discriminate different

tumor types, [40][41],[42][43][44] indicate staging and progres-

sion of the disease [45] and serve as prognostic markers [46][47].

Although, most of the initial findings highlighting diagnostic

potential of miRNAs were in the field of oncology, significant work

has recently been published investigating the role of miRNAs in

different neurodegeneration diseases. Their role is not limited to a

diagnostic viewpoint, but also provides a further understanding of

disease etiology. In schizophrenia, a seven-miRNA signature (hsa-

miR-34a, hsa-miR-449a, hsa-miR-564, hsa-miR-432, hsa-miR-

548d, hsa-miR-572 and hsa-miR-652) was identified in mononu-

clear leukocytes, which were found to be correlated with patients’

negative symptoms, neurocognitive performance scores, and

event-related potentials [48]. From a disease etiology point of

view, functional role of hsa-miRNA-219 was illustrated by

evidence that it modulated NMDA receptor-mediated neurobe-

havioral dysfunction by targeting CaMKIIgamma, a component

of the NMDA receptor signaling cascade in the pre frontal cortex

(PFC) of mice [49]. In Alzheimer’s, miRNA profiling experiments

have resulted in identification of disease-specific miRNAs that

have been validated in two or more independent studies [50]. For

example, hsa-miR-106, hsa-miR-153 and hsa-miR-101 have been

shown to target APP [51][52][53][54] , while hsa-miRNA-29 and

hsa-miR-107 have been shown to target BACE1, linking them to

regulation of amyloid production in AD brains [55]. In view of

these studies, researchers have focused attention on these miRNAs

to determine if differential levels are found in circulating fluids, for

example blood or CSF. Hsa-miR-29a/b amongst others was an

example in which, a miRNA discovered to be linked to AD brain

pathology was also found to be down-regulated in serum of AD

patients [56].

In contrast to the above approaches, there is an unbiased global

approach of miRNA profiling. This is not limited to miRNAs that

have been shown to have a direct connection with disease, or

enriched in the tissue of interest. This approach allows researchers

to profile global miRNA expression levels using relatively small

amount of purified RNA in a specific and sensitive manner. It

provides an opportunity to study the underlying mechanisms

involved in AD etiology, which might not have been previous

associated with the disease. Illustrating this approach, miRNAs

were identified in CSF and brain tissues that were found to be

differentially regulated between AD and age and sex-matched

normal control (NC) populations. Of particular interest were

expression patterns of hsa-miR-9 and hsa-miR-132, which based

on their known (and predicted targets) were linked to the

alterations in stem cell commitment, neuronal differentiation and

actin remodeling [57]. Furthermore, the targets of miRNAs

identified included genes associated with pathways such as brain

insulin signaling and regulation of oxidative stress in the brain, that

were previously not particularly well-associated with AD. Howev-

er, there was no obvious relationship observed between altered

miRNA profiles in CSF and specific brain regions thought to be

most affected by the disease. In fact, most of the altered miRNAs

in the CSF were determined to be of immune cell origin, like miR-

146b, which is implicated in innate immunity response [58]. It was

found to be down regulated in AD patients, indicating an activated

immune response.

Plasma miRNA Biomarkers for AD
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In this study, we decided to take a global profiling approach and

measured circulating plasma miRNA expression from a total 11

AD and 20 NC patients using the Nanostring platform [59]. We

measured a total of 654 human miRNAs, out of which 12 miRNAs

had differential expression in AD samples. Out of these, down-

regulation of 7 miRNAs (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-

15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and

hsa-miR-545-3p) was confirmed using singleplex qPCR. This

signature was then further validated using an independent cohort

of 20 AD and 17 NC samples, resulting in positive correlations

across the two independent cohorts with up to 95% prediction

accuracies. Using experimentally validated and predicted miRNA

targets, we identified novel and some established Alzheimer

related biological pathways, which could potentially lead to novel

targets for drugs and shed some light on AD etiology.

Materials and Methods

Plasma sample acquisition: Human plasma samples were

purchased from Precision Med (Solano Beach, CA-USA). Cohort

1 consisted of 11 Alzheimer (AD), 9 MCI and 20 NC patient

samples. Cohort 2 consisted of 20 AD and 17 NC patient samples.

Age, sex, diagnosis and MMSE scores are provided in Tables S1 &

S2 in File SI.

Total RNA extraction: Total RNA was extracted using

miRvana PARIS kit (Life Technologies) with modifications as

described [60]. Briefly, 1 mL of human plasma was added to an

equal amount of 26denaturing buffer and then spiked with 10 ml

of 0.05 mM synthetic Ath-159a (Table S3 in File SI) and 40 pM of

NegA (UUGUGGCGAGCGGAAUGGAAU) (synthetic miRNAs

used for normalization and extraction efficiency control for the

Nanostring assay). Phenol extraction was performed twice, and

total RNA was finally eluted in 70 ml of dH2O following

recommended protocol.

High-throughput expression profiling of miRNAs: 45 ml of

purified total RNA was concentrated down to 9 ml and used as

template for the nCounter miRNA expression assay v1 (Nano-

string Technology, Seattle, WA-USA). The sample preparation

was set up as recommended (Nanostring; C-0009-02) using 3 ml of

concentrated total RNA as starting amount for all samples in

triplicate. The reactions were set up for an overnight hybridization

for 16 hours at 65uC. The following day, the samples were

processed through the nCounter Prep Station (v.20081003) as

recommended followed by processing through the nCounter

Digital Analyzer (v.20081009). The analyzer resolution was set at

600 FOVs. Data was downloaded and analyzed on Excel. Briefly,

the data were first normalized for lane-to-lane variation using the

provided positive assay controls. This was followed by a global

mean normalization by using the counts of the highest 100

miRNA expressers. Each normalized value was then checked to

ensure that it was at least 2 SDs higher than the average of

background signal recorded for that lane. Any value below that

was converted to zero. Fold change values were then calculated by

taking the average of all AD/MCI and NC sample expression

values for individual miRNAs. Candidate miRNAs were chosen

which at least had a 1.5 fold difference between average AD/MCI

and NC samples and had average normalized counts .150.

Validation of candidate biomarkers using TaqMan qPCR:

Candidate miRNA biomarkers identified using the high-through-

put Nanostring platform were validated by using stem-loop

TaqMan RT-qPCR miRNA assays (Life Technologies). Briefly,

a RT primer pool was created with specific miRNA RT primers

(hsa-miR-301a-3p, hsa-miR-1975a, hsa-miR-191-5p, hsa-miR-

15b-5p, hsa-let-7g-5p, hsa-let-7d-5p, hsa-miR-545-3p, hsa-miR-

1274a, hsa-miR-142-3p, hsa-miR-600, hsa-miR-323b-5p-5p, hsa-

miR-563, hsa-miR-106a-5p and ath-159a) at a final concentration

of 0.056 in 16 TE. A 15 ml RT reaction was set up containing

6 ml of the RT primer pool, 0.3 mL dNTPs (100 mM), 3 ml of

Multiscribe RT (50U/ml), 1.5 ml of the 106Reverse Transcription

4366596). Three ml of total RNA (1:10 dilution) was added as

template for each sample and the reaction was incubated on ice for

5 min followed by 30 min at 16uC, 30 min at 42uC and 5 min at

85uC for enzyme inactivation. The reaction was then stored at

4uC. A second pool of pre-amplification primers was then created

with each PCR primer probe (206) for the same assays mixed at a

final concentration of 0.26in 16TE. A pre-amplification reaction

was set up containing 26 Pre-amplification master mix (Life

Technologies), 3.75 ml of the custom pre-amplification primer pool

and dH2O (making up the reaction volume to 22.5 ml). 2.5 ml of

the RT product was then added and cycled through the pre-

amplification program [95uC for 10 min, 55uC for 2 min, and

72uC for 2 min followed by 12 cycles of 95uC for 15 sec and 60uC
for 4 min]. This was followed by 99.9uC incubation for 10 min,

and the reaction was stored at 4uC. The reaction was diluted by

adding 175 ml of 0.16TE (pH 8.0) and mixed by inversion. Two

ml of the pre-amplification product was then used for singleplex

standard TaqMan qPCR reactions (in duplicate) following

standard protocol (Life Technologies; P/N 4364031-Rev D) on

an ABI7500 instrument. The DDCt method was used for the

analysis with the geometric mean of both hsa-miR-106a-5p and

ath-159a used for sample-to-sample normalization, and the

average relative Ct values of NC patients being used to calibrate

all the individual values. Linear fold changes were then calculated

and plotted on scatter plots using Prism (GraphPad Prism

Software, San Diego, USA).

Signature Generation and Prediction: The miRNAs identified

and validated as having significantly different expression between

AD and NC samples (fold change.1.5, p value,0.05) based on

Cohort 1 (11 AD and 20 NC samples) were selected for predictive

model building. The expression values of 7 miRNAs (hsa-let-7d-

5p, hsa-miR-191-5p, hsa-miR-301a-3p, hsa-miR-545-3p, hsa-let-

7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p) based on the Taqman

qPCR values of Cohort 1 were used to build linear classifier to

separate AD from NC samples. All possible non-zero subsets of the

7 miRNA (127 signatures) were used for the linear discriminatory

analysis (LDA) and the performance of the predictive model was

evaluated based on the classification results of the samples from

Cohort 2 (20 AD and 17 NC). The performance of the predictive

model was evaluated based on accuracy, specificity, sensitivity and

area under curve (AUC) numbers.

For the LDA the MASS package was used in R statistical

environment [61]. The AUC numbers were also calculated in R

using the package ‘‘verification’’. (http://cran.r-project.org/web/

packages/verification/index.html) [62].

Pathway analysis: The IPA Ingenuity software was used to

identify pathways enriched in the 7-miRNA targets. We applied

IPA’s miRNA Target Filter to identify both experimentally

validated and predicted mRNA targets. Next we identified those

neurology related pathways, which were significantly enriched in

genes targeted by at least 2 signature miRNAs. Both experimen-

tally validated interactions and predictions characterized as ‘‘high’’

confidence were considered based on TargetScan. In our second

approach we applied an unbiased pathway enrichment analysis

without any filter on pathway functions. We considered pathways

enriched in genes targeted by at least 2 miRNA with ‘‘high’’ or

‘‘moderate’’ prediction confidence for the analysis. Given that

majority of the miRNA work thus far has been in the field of

Plasma miRNA Biomarkers for AD
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Oncology, experimentally validated miRNA target genes were

excluded.

Results and Discussion

The aim of this study was to generate miRNA profiles from the

plasma fraction of human blood, and determine if there were

significant differences in both miRNA content, and expression

levels of individual miRNAs between patients diagnosed with

Alzheimer’s (AD), mild cognitive impairment (MCI) or normal

control (NC) patients. Plasma samples were obtained from

Precision Med (Solano Beach, USA). Cohort 1 contained 11

AD, 9 MCI and 20 NC samples, while cohort 2 containing 20 AD

and 17 age matched NC samples. Total RNA was extracted and

spike-in synthetic miRNAs (Ath-159a and Neg-A) were added to

control for extraction efficiency as described in the methods

section. Each sample was then used for high-throughput expres-

sion profiling using the nCounter miRNA expression assay

(Nanostring; Seattle,USA) in triplicate as described. The global-

mean of top-100 miRNA expressers in the samples tested was used

to content normalize the miRNA expression across all samples as

described previously [63][64]. Post normalization and back-

ground correction, the final linear counts were averaged for both

AD/MCI and NC samples and fold change values were

calculated. There were 227 miRNAs identified which at least

had an average expression count .100 (considered significantly

expressed over background in this study). Out of the 227 miRNAs,

we identified 12 miRNAs, which had at least a 1.5 fold difference,

and had an average of .150 normalized linear counts (Fig. S1).

These included hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-

miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p, hsa-miR-323b-

5p, hsa-miR-545-3p, hsa-miR-563, hsa-miR-600, hsa-miR-1274a

and hsa-miR-1975. All sequence and miRBase accession numbers

(v19) are provided in Table S3 (File SI).

For further validation, we focused on only AD and NC patients,

and proceeded to validate these candidate biomarker miRNAs

using the Stem Loop TaqMan RT-qPCR miRNA assay (Life

Technologies). A 1:10 dilution of total RNA was made, and run

through the TaqMan assay and analyzed as described in the

methods section. Due to lack of a consensus normalization control

for circulating miRNAs, we took an unbiased approach and

focused on miRNAs characterized with the least variation in ranks

among the samples as determined by the nCounter assay. We

applied an algorithm with several iterative steps to determine the

top ‘‘rank invariant’’ miRNA as described [65] and hsa-miR-106a

was identified. Hence we used the geometric mean of the spike-in

(ath-159a) and endogenous miRNA (hsa-miR-106a) for normal-

ization of our validation data obtained by TaqMan qPCR to take

care of both the extraction efficiency variation as well as

endogenous miRNA differences. In order to further confirm that

our choice of endogenous miRNA had no effect on the validity of

the signature, we re-analyzed the validation data set using only the

spike-in (ath-159a) for normalization across all samples. We

achieved consistent down-regulation of the identified signature

miRNAs with p-values,0.005 (Table S4 in File SI).

Out of the 12 miRNAs identified using the nCounter assay; we

could not confirm the differential expression of 5 miRNAs using

the described methods. These included hsa-miR-323b-5p, hsa-

miR-563, hsa-miR-600, has-miR-1274a and hsa-miR-1975. The

remaining 7 miRNAs showed significant differences between AD

and NC patient cohorts (Fig. 1 & Table 1). For example, hsa-miR-

191-5p was down regulated in AD samples by 3 fold according to

Nanostring analysis, while it was found to be down-regulated by

,4 fold by TaqMan analysis. This close trend was observed for

hsa-miR-15b-5p, hsa-let-7d-5p, hsa-let-7g-5p and hsa-miR-142-

3p. All fold change values had a p-value,0.05. We could not

however replicate the up-regulation observed for hsa-miR-301a-

3p and hsa-miR-545-3p in AD/MCI patient samples using the

nCounter assay, and in fact we observed significant down-

regulation of these two miRNAs in the TaqMan analysis. These

two miRNAs were originally chosen to be validated because they

were found to be up-regulated in the AD/MCI patient samples as

opposed to the rest of the miRNAs, which were down-regulated.

But if you consider only the AD patient samples, then the

difference between AD and NC samples was not-significant in the

nCounter assay (Table 1). It is also noteworthy that all candidate

miRNAs, which could not be confirmed by TaqMan assays, had

normalized linear counts (from Nanostring) of less than 500. The

average count of all the validated miRNAs on the other hand was

higher than 3,000. This suggests the importance of setting a higher

threshold for future plasma based Nanostring experiments to

lessen the false-positive rate.

The relative Ct values (observed Ct values of individual

miRNAs minus the geometric mean of ath-159a and hsa-miR-

106a-5p Ct values) for all the samples and candidate miRNAs

(hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p,

hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) were

then used to build a signature model as described in the methods

section. This signature was then used to predict the disease status

of cohort 2 patients (20 AD, 17 control). Total RNA extraction

was carried out, followed by TaqMan RT-qPCR analysis. We

achieved significant correlation with average fold changes between

the two cohorts for the signature miRNAs being closely replicated

(Table 1 and Fig. S2). The relative Ct values (observed Ct values of

individual miRNAs minus the geometric mean of Ath-159a and

hsa-miR-106a-5p Ct values) for all the samples and candidate

miRNAs (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-

142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p)

from cohort 2 were then used as input for the signature miRNA

prediction algorithm, which was developed based on Cohort 1

data as described above. The performance of the models based on

both individual miRNAs as well as selected combinations of the

biomarker miRNAs are shown in Fig. 2. The over-all signature

accuracy was calculated as the fraction of misclassified samples

(AD or NC). The sensitivity characterizes the predictive models

ability to identify true positives, which in this study was calculated

as the number of correctly identified AD samples divided by the

total number of AD samples. On the other hand, the specificity

was the number of correctly classified NC samples (true negatives)

divided by the total number of NC samples. The AUC was

calculated as the area under the receiver operating characteristic

(ROC) curve, which is the plot of the sensitivity vs. the false

positive rate (1- specificity). The ROC curve was generated by

varying the threshold for the prediction probability.

The combination of hsa-miR-545-3p, hsa-let-7g-5p and hsa-

miR-15b-5p resulted in the highest specificity (94.1%), sensitivity

(95%) and AUC (0.953). The signature combinations ranged from

just two miRNAs (e.g. hsa-miR-15b-5p and hsa-miR-545-3p) up

to 6 miRNAs (e.g. hsa-miR-191-5p, hsa-miR-301a-3p, hsa-miR-

545-3p, hsa-let-7g-5p, hsa-miR-15b-5p and hsa-miR-142-3p).

Each signature had different combinations of the candidate

miRNA biomarkers and resulted in varying specificity and

sensitivity. Selected signatures with specificity .0.9, sensitivity

.0.8 and AUC.0.9 are listed in Table S5 (File SI). The signature

accuracy for individual miRNAs was lower in comparison to

combination signatures. The best stand-alone miRNAs in terms of

specificity were hsa-miR-142-3p and hsa-miR-301a-3p, with both

having 100% specificity. But hsa-miR-142-3p had better sensitivity

Plasma miRNA Biomarkers for AD
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(65%) as compared to only 25% sensitivity for hsa-miR-301a-3p.

Hsa-let-7g-5p and hsa-miR-191-5p had the best sensitivity at 95%,

but only hsa-miR-191-5p had enriched specificity of 76%. Over-

all accuracy of hsa-miR-191-5p, hsa-miR-15b-5p and hsa-let-7d-

5p was the three best as stand-alone miRNA biomarker

candidates.

There have been previous reports published in the literature,

which highlighted specific miRNA profiles differentiating patients

suffering from various neurodegenerative diseases and healthy

individuals. But most studies were focused on the analysis of only

those miRNAs, whose expression level changes had been

previously identified to be linked to pathology development in

the disease organ [6,50], [51], [52] [55] [56]. With its advantage of

the potential biomarker’s known connection to disease withstand-

ing, there are a couple of drawbacks to this approach. Due to the

nature of circulating fluids being the common reservoir for all

secreted molecules from all organs and tissues, the candidate

miRNA biomarker could be involved in diseases of various other

organs, hence making the correlation harder. Also, higher

expression of a miRNA in an affected organ is not necessarily

accompanied by an increase in its plasma level, as was previously

shown [66] [67]. In a related approach, instead of focusing on the

Figure 1. Scatter plots of validated miRNAs differentiating Alzheimer and NC samples in Cohort 1. Total RNA extracted from plasma
samples was used for validating miRNA expression values using singleplex TaqMan assays. Ath-159a (spike-in) and hsa-miR-106a-5p (endogenous)
was used for normalization. All values were then normalized relative to the average of the 20 NC samples and plotted on the Y-axis.
doi:10.1371/journal.pone.0069807.g001
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disease etiology, some studies have focused on a selected panel of

miRNAs, which were determined to be enriched in brain and

neurons [68], thus increasing the likelihood that any changes in

plasma or serum is a result of changes in neurons versus other

organs. Since MCI and early stages of AD are associated with

neurite and synapse destruction, they also included miRNAs

known to be present in neurite and synapses [42,69][70] and

involved in neurite- and synapse-associated processes [71]. They

identified differential levels of circulating serum miR-132 and the

miR-134 family of miRNAs, which could differentiate MCI from

NC population. They also reported that in a separate longitudinal

study, these biomarker miRNAs could identify MCI patients at an

asymptomatic stage 1–5 years before clinical diagnosis. In the light

of recent trial outcomes, this early diagnosis offers promise for

better patient stratification and subsequent successful outcomes of

Alzheimer drug trials.

In contrast to the above approaches, our approach was more

closely aligned to the global miRNA profiling strategy employed

by Cogswell et al. [57]. As opposed to CSF samples that cannot be

routinely collected from patients, blood is a far more accessible,

amenable and less-intrusive source of biomarkers. In support of

the hypothesis that plasma biomarkers can act as a surrogate for

events in the brain, it was recently reported that a number of

plasma proteins were significantly associated with whole brain and

hippocampal atrophy in AD [72]. In addition, a panel of signaling

proteins in the plasma was also described to predict AD

phenotype, suggesting that it is conceivable that a compromised

blood-brain barrier in AD and other neurodegenerative disorders,

will allow the exchange of molecules between the CNS and the

periphery [73] [74].

Further supporting the potential of plasma biomarkers to serve

as accurate indicators of neurodegenerative disease; an indepen-

dent study across 3 centers, including ADNI (Alzheimer’s Disease

Neuroimaging Initiative) examined over 1000 samples and found

four analytes (apoE, B-type natriuretic peptide, C-reactive protein,

pancreatic polypeptide) which were altered in clinical MCI/AD

across all three independent cohorts. In addition, regression

analysis showed CSF Ab42 levels and t-tau/Ab42 ratios to

correlate with the number of APOE4 alleles and plasma levels of

B-type natriuretic peptide and pancreatic polypeptide [75].

Consistent with putative biomarkers identified in CSF, the ratio

of plasma Aß1–42/1–40 has also been proposed as a more

accurate indicator than each peptide on its own. A low plasma

ratio was associated with significantly higher risk of conversion to

MCI or AD, whereas the levels of Aß42 or Aß40 on their own did

not have any diagnostic value [76].

Recent reports have described the horizontal transfer of

biomolecules by secreted extracellular vesicles, which is increas-

ingly becoming established as a general mode of intercellular

communication [77]. Exosomes are released by fusion of

multivesicular bodies (MVBs) with the plasma membrane and

secretion of the intraluminal vesicles (ILVs) into the extracellular

space. They are 50–100 nm in diameter and carry specific protein

and RNA cargo, including significant number of both precursor

and mature miRNAs [78]. Interestingly, neurons and the major

types of glia also release vesicles raising the possibility, that this

form of inter-cellular communication is a common mechanism in

the CNS as well. The fact that a mixed population of such vesicles

has also been detected in CSF [79] offers a way in which miRNAs

could be transported from neurons and other cell types, crossing

the blood brain barrier . Another important study supporting the

ability of exosomes to cross the blood brain barrier was recently

published, in which researchers engineered mouse dendritic cell

derived exosomes to target neurons by the RGV peptide, and

achieved ,60% reduction of BACE1 mRNA and protein using

RNAi in the mouse brain [80].

In an effort to understand how our signature miRNAs were

indicative of AD, we adopted a pathway analysis approach to

identify potential pathways that were enriched for targets of these

signature miRNAs. Is it now established that there exists a ‘‘many

to many’’ relationship between miRNAs and its target mRNAs.

This means that while a single miRNAs can target multiple

mRNAs, a single mRNA can also be targeted by multiple miRNAs

[81]. The relationship of a single miRNA to potentially target as

many as 200 different mRNA targets is well documented [82]

[83], but there is also evidence of single mRNAs being targets of

multiple miRNAs [84]. To put this complex ‘‘many to many’’

relationship in a biological context, a comprehensive analysis of all

miRNA targets suggested that a set of miRNA targets regulated by

a single miRNA generally constitutes a biological network of

functionally-associated molecules in human cells [85]. This might

help to extract some biologically relevant targets amongst the high

numbers of ‘‘predicted targets’’ of individual miRNAs and

potentially serves as a filter when using pathway analysis tools to

understand the functional pathways which are affected by miRNA

profile changes.

For this study, we focused on only those mRNAs that were

targeted by at least 2 or more of the signature miRNAs. We first

compiled a list of top canonical pathways using Ingenuity Pathway

Analysis platform (IPA), which were functionally enriched with

gene targets of the 7 signature miRNAs (Table 2). This functional

enrichment was further overlapped to select pathways that were

identified as neurology associated pathways and contained genes,

Table 1. Differential expression of validated signature miRNAs for AD and NC samples.

miRNA name Nanostring Cohort 1 TaqMan Cohort 1 TaqMan Cohort 2

Fold Change P value Fold Change P value Fold Change P value

hsa-let-7d-5p 1.724 0.0266 3.01 0.0001 3.03 ,0.0001

hsa-let-7g-5p 1.786 0.0291 2.26 0.001 2.62 ,0.0001

hsa-miR-15b-5p 2.759 0.0128 3.45 0.001 3.65 ,0.0001

hsa-miR-142-3p 2.473 0.0283 3.84 0.0001 5.04 ,0.0001

hsa-miR-191-5p 2.924 0.0054 3.38 0.002 5.15 ,0.0001

hsa-miR-301a-3p 0.833 ns 2.98 0.0006 1.35 0.07

hsa-miR-545-3p 0.625 ns 2.49 0.03 2.37 0.01

doi:10.1371/journal.pone.0069807.t001
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Figure 2. The receiver-operating characteristic (ROC) plots for the miRNA signature. The true positive rate (TPR) is plotted as a function of
false positive rate (FPR) for the 7 miRNAs individually (upper panel) and for selected combination of them (lower panel). We used the linear
discriminant analysis (LDA) to build a model on the training data (11 AD and 17 controls) to predict the AD status of 37 patients (20 AD and 17
controls). These miRNA combinations are all characterized with high area under the curve (AUC) values (.0.93).
doi:10.1371/journal.pone.0069807.g002
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which were targeted by at least 2 signature miRNAs. Among the

top 10 pathways, we identified key pathways that had biological

links to Alzheimer’s biology. This included pathways like axonal

guidance signaling, ephrin receptor signaling [86], actin cytoskel-

eton signaling [87], clathrin-mediated endocytosis signaling [88]

and rhoA signaling [89]. These pathways, although diverse show

connections with AD pathology. For example, clathrin-mediated

endocytosis is proposed to be a dedicated system to traffic and

process APP and is now being studied under the framework of AD

biology. Furthermore, supporting the tau hypothesis, it has

recently been proposed that tau may mediate neurotoxicity by

altering the organization and dynamics of the actin cytoskeleton

[90]. Similarly rhoA signaling was implicated in AD pathology, by

its link to NGF (nerve growth factor) signaling.

Next we applied an unbiased pathway enrichment analysis

without any filter on pathway function (Table S6 in File SI).

Interestingly, although not associated with neurology pathways

directly, a canonical pathway linked to Type II Diabetes Mellitus

signaling was identified to be significantly enriched for targets of

the signature miRNAs. Amongst them included the insulin

receptor gene (INSR), suppressor of cytokine signaling (SOCS),

insulin receptor substrate 2 (IRS2) and tumor necrosis factor

receptor (TNFR). There was a recent report that suggested a link

with Insulin receptor signaling resistance and AD [91]. There was

also evidence from multiple GWAS studies, that ApoE [92], Clu

[93] and ABCA7 [94] gene polymorphisms were associated with

AD and furthermore there was also biochemical data directly

implicating lipid metabolism in both amyloid and tau pathology

[95]. However, due to the mixed effects seen after statin treatment

in AD clinical trials, the exact mechanism of lipid metabolism in

AD pathogenesis remains to be established and our miRNA

signature may point towards gene targets for potential future

therapy linked to this pathway [96].

This plasma 7-miRNA profile represents one of the first global

and non-invasive nucleic-acid based AD diagnostic assay, which

can reliably predict with .95% accuracy whether a patient is

suffering from AD. Furthermore, as a next step, it would be useful

to obtain and test longitudinal plasma samples from a cohort of

patients who have been diagnosed as MCI. Typically, ,50% of

MCI patients transition on to develop Alzheimer’s and it would be

insightful to determine if these miRNA biomarkers could identify

the more susceptible group of patients. There was some evidence

supporting the need of early detection biomarkers in the recent

trial results released for two potential AD drugs, both targeting

amyloid plaques. Bapineuzumab was developed jointly by Pfizer,

Johnson and Johnson and Elan [97], while Solanezumab [98] was

developed by Eli Lilly. Especially for Solanezumab, while the top

line results suggested that there were no significant differences

between patients on the drug or the placebo arm, there were some

significant improvements in cognition and functioning in patients

diagnosed with mild Alzheimer’s (as opposed to no significant

improvement for patients with moderate disease). This was

recently presented at the 137th annual meeting of the American

Neurological Association (Oct 7–9, 2012). Circulating blood

biomarkers have the potential to positively impact patient comfort,

ultimately leading to earlier diagnosis, which might enable patients

to get on to treatments earlier and prevent this devastating disease.

Supporting Information

Figure S1 Scatter plots of selected miRNA differentiat-
ing Alzheimer and NC samples in Cohort 1. Total RNA

extracted from plasma samples was run using the nCounter assay

on the Nanostring platform. Assay provided spike-in controls were

used to account for lane-to-lane variation, followed by the top 100-

miRNA expressers for content normalization. The normalized

counts are represented on the Y-axis.

(TIF)

Figure S2 Scatter plots of validated miRNAs differenti-
ating Alzheimer and NC samples in Cohort 2. Total RNA

extracted from plasma samples was used for validating miRNA

Table 2. The top-10 canonical pathways associated with Neurological identified pathways identified in IPA (Ingenuity) to be
significantly enriched with signature miRNA targets.

Ingenuity Canonical Pathways 2log(p-value) Ratio Molecules

Molecular Mechanisms of Cancer 1.79E01 6.07E-02 ADCY9,TGFBR1,ARHGEF12,PIK3R1,PTCH1,TAB2,SOS2, GNAQ,BMPR2,CRK,CCND1,BCL2L1,
GNAI3,CCND2,CCND3, CBL, FOXO1 (includes EG:2308), IRS1,FZD6, SMAD4, PRKD3,
RASA1, WNT1

Axonal Guidance Signaling 1.22E01 4.39E-02 EPHA7,ARHGEF12,BDNF,PIK3R1,PTCH1,SOS2,GNAQ,CRK, EIF4E,
PDGFB,ROCK2,GNAI3,WASL, IGF1,CFL2,FZD6,PRKD3, RASA1, WNT1

PTEN Signaling 1.2E01 9.68E-02 BCL2L1,GHR,TGFBR1,CBL,FOXO1 (includes
EG:2308),PIK3R1,FGFR1,SOS2,IGF1R,BMPR2,INSR,CCND1

Actin Cytoskeleton Signaling 1.08E01 5.88E-02 VAV2,ARHGEF12,PIK3R1,SOS2,RDX,CRK,PDGFB,F2,ROCK2, MYLK, WASL,CFL2,PPP1R12B,
ARHGAP35

Huntington’s Disease Signaling 1.06E01 5.88E-02 VTI1A,BDNF,HSPA1A/HSPA1B,PIK3R1,SOS2,GNAQ,CREB5, SNAP25,
TAF9B,BCL2L1,IGF1,IGF1R, PRKD3,RASA1

Ephrin Receptor Signaling 9.58E00 6E-02 ROCK2,EPHA7,GNAI3,WASL,CFL2,SOS2,GNAQ,CRK,MAP4K4, CREB5, RASA1,PDGFB

IL-8 Signaling 9.55E00 6.22E-02 ROCK2,HMOX1,BCL2L1,GNAI3,NAPEPLD,CCND3,CCND2,PIK3R1,
MAP4K4,PTGS2,PRKD3,CCND1

Cardiac Hypertrophy Signaling 9.28E00 5.31E-02 ADCY9,TGFBR1,CALM1 (includes others), PIK3R1,GNAQ,EIF4E, ROCK2, PLCD1,GNAI3,
CACNA1E, IGF1, IRS1,IGF1R

Clathrin-mediated Endocytosis
Signaling

9.27E00 6.15E-02 CD2AP,WASL,CBL,IGF1,SYNJ1,PIK3R1,USP9X,ITGB8,AAK1,CTTN, PDGFB,F2

RhoA Signaling 9.16E00 8.77E-02 ROCK2,MYLK,ARHGEF12,IGF1,CFL2,IGF1R,PPP1R12B,RDX,ARHGAP35,DLC1

The ratio represents the number of molecules identified as targets of at least 2 signature miRNAs divided by the total number of genes in the canonical pathway.
doi:10.1371/journal.pone.0069807.t002
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expression values using singleplex TaqMan assays. Ath-159a

(spike-in) and hsa-miR-106a (endogenous) was used for normal-

ization. All values were then normalized relative to the average of

the 20 Control samples and plotted on the Y-axis.

(TIF)

File S1 Contains Tables S1, S2, S3, S4, S5 and S6, with
the following legends: Table S1: Sample details from Cohort 1

samples. Table S2: Sample details from Cohort 2 samples. Table

S3: miRNA sequence and ID used in this study based on miRbase

v19 (Aug, 2012). Table S4: Differential expression of validated

signature miRNAs for AD and NC samples (cohort 1 and cohort

2; TaqMan) using hsa-miR-106a/ath-159a or only ath-159a for

normalization. Table S5: Performance characteristics of individual

and signature miRNAs in predicting disease status in cohort 2

patients. Table S6: List of pathways enriched with genes targeted

by at least 2 signature miRNAs. No pathway filters were set for this

analysis.
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