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 31 

Abstract 32 

The emergence of SARS-CoV-2 variants of concern has prompted the need for near real-time 33 

genomic surveillance to inform public health interventions. In response to this need, the global 34 

scientific community, through unprecedented effort, has sequenced and shared over 11 million 35 

genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique 36 

opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, 37 

a platform that currently tracks over 40 million combinations of PANGO lineages and individual 38 

mutations, across over 7,000 locations, to provide insights for researchers, public health officials, 39 

and the general public. We describe the interpretable and opinionated visualizations in the variant 40 

and location focussed reports available in our web application, the pipelines that enable the scalable 41 

ingestion of heterogeneous sources of SARS-CoV-2 variant data, and the server infrastructure that 42 

enables widespread data dissemination via a high performance API that can be accessed using an 43 

R package. We present a case study that illustrates how outbreak.info can be used for genomic 44 

surveillance and as a hypothesis generation tool to understand the ongoing pandemic at varying 45 



geographic and temporal scales. With an emphasis on scalability, interactivity, interpretability, and 46 

reusability, outbreak.info provides a template to enable genomic surveillance at a global and 47 

localized scale. 48 

 49 

Introduction 50 

In December 2019, a series of cases of pneumonia of unknown origin appeared in Wuhan, China, 51 

and on 7 January 2020, the virus responsible for the diseases was identified as a novel coronavirus, 52 

SARS-CoV-21. The first SARS-CoV-2 genome was made publicly available on 10 January 20202,3. Since 53 

then, the global scientific community, through an unprecedented effort, has sequenced and shared 54 

over 11 million genomes through GISAID, as of May 20224,5. To keep track of the evolving genetic 55 

diversity of SARS-CoV-2, Rambaut et al. developed a dynamic phylogeny-informed nomenclature 56 

(PANGO) to classify SARS-CoV-2 lineages6. As of May 2022, over 2,000 lineages have been 57 

designated, which has enabled public health agencies such as Public Health England (PHE), the 58 

Centers for Disease Control (CDC), and the World Health Organization (WHO) to identify Variants of 59 

Concern (VOC), Variants of Interest (VOI/VUI), and Variants Under Monitoring (VUM/VBM) based on 60 

the phenotypical characterization of these lineages7. Currently, there are five designated VOCs: 61 

B.1.1.7* (Alpha; * denotes the lineage and any of its sub lineages) lineage resulting in increased 62 

transmissibility8, B.1.351* (Beta) lineage exhibiting immune evasion9, the P.1* (Gamma) lineage 63 

exhibiting immune evasion10, the B.1.617.2* lineage exhibiting increased transmissibility due to the 64 

P681R mutation in the Spike gene11, and more recently, the B.1.1.529* (Omicron) lineage exhibiting 65 

very rapid growth and the ability to substantially avoid antibody neutralization12,13.   66 

 67 

The emergence of VOCs with fitness advantages has led to global “sweeps'' with newly emerged 68 

VOCs displacing previously circulating variants. More importantly, the growth of each VOC has led 69 

to a renewed surge in infections worldwide. This has prompted the need for near real-time genomic 70 

surveillance to inform early public health interventions to control the rise of infections. In response 71 

to this need, thousands of academic, non-academic, and public health labs have been depositing 72 

sequences predominantly on the sharing platform of the GISAID Initiative5,14. This extraordinarily 73 

high sampling rate of infecting viruses provides a unique opportunity to track the evolution of the 74 

virus in near real-time. For example, in December 2021 alone, over a million new genomes were 75 

submitted to GISAID15. Traditionally, phylodynamic approaches have been employed to 76 

retrospectively characterize lineage dynamics during outbreaks of viruses such as Zika16–18, West 77 

Nile19 and Ebola viruses20,21. Existing tools like NextStrain22 and frameworks such as Microreact23 78 

primarily rely on a phylogeny to elucidate transmission chains and monitor the evolution of the 79 

virus. However, these tools were not designed to track thousands of new genomes per day, and 80 

given that building phylogenies for large sets of genomes is computationally intensive and time 81 

consuming, obtaining timely insights from the data is often problematic24. However, the high 82 

sampling rate of the virus has opened up the possibility of tracking the pandemic using the available 83 

near real-time genomic data without the need for computationally intensive modeling.  84 

 85 

Here, we present outbreak.info, a platform that currently tracks over 40 million combinations of 86 

PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for 87 

researchers, public health officials, and the general public. In the following sections, we describe the 88 

data pipelines that enable the scalable ingestion and standardization of heterogeneous data on 89 



SARS-CoV-2 variants, the server infrastructure that enables the dissemination of the processed data, 90 

and the client-side applications that provide intuitive visualizations of the underlying data.  91 

 92 

Results 93 

The growth rate of a given viral lineage is a function of epidemiology and its intrinsic biological 94 

properties (Fig 1a). For example, the B.1.177 lineage, characterized by an A222V amino acid 95 

substitution in the spike gene, increased in prevalence in Europe during the summer of 202025. 96 

While initially thought to be more transmissible, it was eventually shown that the increase in 97 

prevalence was due to a resurgence in travel and not due to increased transmissibility. In contrast, 98 

a few months later, the B.1.1.7 lineage was shown to be 40-60% more transmissible than previously 99 

circulating lineages and this intrinsic biological property led to the rapid growth in its prevalence 100 

worldwide26,27. Epidemiological factors such as mobility28,29, mask usage30, and public health 101 

interventions31 vary over time and across geographies worldwide, while biological properties are a 102 

function of the mutations found in a given lineage (Fig 1a). Hence, to maximize the utility of genomic 103 

data for surveillance, we built outbreak.info to enable the exploration of genomic data across 104 

three dimensions: geography, time, and lineages/mutations. We use the PANGO nomenclature to 105 

estimate the prevalence of SARS-CoV-2 lineages over time and at varying geographic scales. Using 106 

a phylogenetically-informed nomenclature allows us to determine genetic features such as the 107 

“characteristic mutations” of a lineage without directly building a global phylogeny. By avoiding a 108 

global phylogeny, we can update our databases daily using the continuously growing number of 109 

SARS-CoV-2 genomes. In addition, we closely track reports from health agencies such as the PHE, 110 

the CDC and the WHO that designate VOC/VOI/VUMs based on epidemiological analyses. In addition 111 

to genomic data, the server also ingests two other types of data: (1) epidemiological data curated 112 

by Johns Hopkins University32, and (2) public literature, clinical trial, protocol, and dataset metadata 113 

from sources such as bioRxiv, medRxiv, and LitCovid33. Here, we describe how each of these data 114 

sources is used in cohesion to assist in genomic surveillance.  115 

 116 

The overall workflow of genomic data is shown in Fig 1b. Genomic data is ingested from GISAID, 117 

processed via a custom-built data pipeline, Bjorn, and stored on a server which can be accessed 118 

via an application programming interface (API). We built two client-side applications, a web interface 119 

and an R package which consume this API (Fig 1b). The web interface consists of three main tools 120 

focussing on different facets of the underlying genomic data: (1) Lineage and/or Mutation Tracker, 121 

(2) Location Tracker, and (3) Lineage Comparison Tool. We designed an opinionated interface for 122 

each tool that focuses on one primary dimension of the genomic data with additional 123 

customizability of one or more secondary dimensions (Fig 1c). The Lineage and/or Mutation Tracker 124 

focus on a specific lineage, mutation or a combination of these. The Location Tracker focuses on a 125 

given location and provides a snapshot of currently circulating lineages. Finally, the Lineage 126 

Comparison Tool can be used to explore the prevalence of mutations across different lineages. In 127 

addition to the web interface, we have built an R package that authenticates against GISAID 128 

credentials and allows programmatic access to the processed data for downstream analyses.  129 

 130 



 131 

Figure 1. outbreak.info enables the exploration of genomic data across three dimensions. a, Growth rate 132 

of a lineage is a function of epidemiology and intrinsic biological properties of a lineage. Further, epidemiology 133 

varies over time and by geography while intrinsic biological properties are determined by the mutations 134 

present in a given lineage. b, Genomic data is ingested from GISAID, processed using the custom-built data 135 

pipeline, Bjorn, and stored on a server which can be accessed via an Application Programming Interface (API). 136 

The API is consumed by two clients: A JavaScript based web client and an R package that provides 137 

programmatic access by authenticating against GISAID credentials. c, The web interface contains three tools 138 

that allow exploration of genomic data across three different dimensions: lineage/mutation, time, and 139 

geography.  140 

 141 

Lineage and/or Mutation Tracker 142 

The ongoing SARS-CoV-2 pandemic has been punctuated by the emergence of VOCs with fitness 143 

advantages over previously circulating variants, resulting in “waves” of infections. Fig 1a shows the 144 

changing prevalence of the three most dominant VOCs in the United Kingdom, but this 145 

phenomenon is observed globally with heterogeneity across geography. A fundamental part of 146 

genomic surveillance is to identify the emergence of such variants by closely tracking the growth of 147 

circulating lineages. Given the geographic variation in epidemiological, social, and economic factors, 148 

it is important to estimate variant prevalence at varying geographic scales. The Lineage/Mutation 149 

Tracker can be used to dynamically query the temporal and geographic variation in the prevalence 150 

of a (i) VOC/VOI and its sublineages (e.g., Delta and its sublineages), (ii) a lineage (e.g., B.1.1.7), (iii) a 151 

lineage and one or more mutations (e.g., B.1.1.7 with S:E484K), (iv) a mutation (e.g., S:E484K), or (iv) 152 

a group of mutations (e.g., S:E484K and S:N501Y) (Fig 1b). In addition, users can specify various 153 

location scales, such as a country, state, or county (or their local equivalents), to estimate the 154 

prevalence of a given lineage and/or mutations. To provide meaningful insights from these 155 

prevalence estimates, we designed an opinionated interface to address a specific set of questions 156 

listed in Table 1. 157 



 158 

Figure 2. Lineage and/or Mutation Tracker. a, Prevalence of VOCs in the United Kingdom from Sep 2020 to 159 

May 2022. b, Search and filter options for Lineage/Variant of Concern tracker. c, Prevalence of S:Y145H + 160 

S:A222V mutations across different lineages globally. d, Prevalence of BA.2 in the United Kingdom. e, Mutation 161 

map showing the characteristic mutations of AY.4. f, Summary statistics of BA.2 lineage. g, Geographic 162 

distribution of the cumulative prevalence of BA.2 lineage globally. h, Cumulative prevalence of BA.2 in each 163 

country globally. i, Research articles, and datasets related to BA.2.  164 



Table 1. Questions addressed by the Lineage and/or Mutation Tracker 165 

Question Relevant visual elements 

What is the prevalence of a 

set of mutations within 

different lineages? 

Mutations such as S:N501Y, S:DEL69/70, and S:E484K have been shown to 

have functional impact on the phenotype exhibited by a lineage such as 

increased pathogenicity or immune evasion34,35. Furthermore, these 

mutations have been acquired independently by many lineages. Convergent 

evolution can be used as a metric to assess the importance of any advantage 

conferred on a lineage by a mutation. Hence, if a query contains a set of 

mutations (e.g., S:E484K and S:N501Y), we estimate the prevalence of that set 

of mutations across all lineages globally. (Fig 2c).  

What is the trend shown by 

the prevalence of a lineage 

and/or a set of mutations 

over time? 

Tracking the growth rate of a lineage or a set of mutations over time is very 

important to inform public health interventions. We estimate the prevalence 

of a given query as a proportion of the total number of sequences collected 

on a given day at a given location. To convey the uncertainty in estimating the 

prevalence, we calculate binomial proportion confidence intervals using 

Jeffrey’s interval (Fig 2d).  

What are the “characteristic 

mutations” of a lineage? 

The mutations that are characteristic of a lineage can be used to generate 

hypotheses about the phenotype exhibited by a lineage based on prior 

studies on the functional impact of mutations. This is especially important to 

assess any potential impact a lineage might have on therapeutics such as 

monoclonal antibody drugs. We define the “characteristic mutations'' of a 

lineage as those mutations found in at least 75% of the genomes classified as 

the lineage (Fig 2e). These mutations are displayed in a “mutation map”.  

What is the total number of 

sequences that belong to a 

lineage and/or a set of 

mutations? 

 

In how many countries was a 

lineage and/or a set of 

mutations detected? 

 

When was this lineage and/or 

a set of mutations first 

detected? 

In order to assess how quickly a variant spread and the extent of the 

geographic spread, we show summary of relevant statistics such as the total 

number of sequences that match the query, the cumulative prevalence of 

these mutations, the first and last date a sequence matching the query was 

detected worldwide for a customizable set of locations (Fig 2f).  

What is the geographic 

prevalence of a lineage 

and/or a set of mutations? 

Many lineages including VOCs Beta and Gamma show variation in growth 

rates across different locations. Hence, it is essential to be able to access the 

geographic distribution of a given lineage. To facilitate this, we show the 

cumulative prevalence of lineages since they were first detected across the 

sub-admin levels of a given location for a lineage/mutation query (Fig 2g). 

Choropleths are useful visual elements to map geographic variation in 

prevalence but to further highlight the uncertainty in these estimates and to 

account for cognitive biases in evaluating locations with different areas, we 

use a dot chart to show the uncertainty in the point estimate of prevalence 

over the last 60 days and a bar chart to show the number of sequences used 



to calculate it (Fig 2h). These two charts can be sorted by the prevalence of 

the query or the total number of sequences that match the query. This allows 

the user to account for the effects of sampling bias on prevalence estimates. 

What is the latest research 

available on this lineage 

and/or set of mutations? 

With the growth of new variants over the pandemic, we have seen many 

studies that focus on important aspects of a lineage such as the ability to 

evade immune response and the impact on vaccine efficacy. In order to aid 

in the discoverability of preprints, publications, datasets and other resources, 

we show the entries that match a given lineage or mutation query from our 

up-to-date Research Library 33 (Fig 2i). 

 166 

Location Tracker 167 

Some VOCs have only been regionally dominant. For example, Beta and Gamma were dominant in 168 

South Africa9 and Brazil36 respectively. Similarly, B.1.62137 was only dominant in Columbia, A.2.5 was 169 

only dominant in Panama, and B.1.177 exhibited a high growth rate only in European countries due 170 

to a resurgence of travel in the summer of 202025,38. Factors such as the attack rate, population 171 

immunity due to previous infection or vaccination, and social mobility vary from one region to the 172 

next and have a significant impact on the growth rates exhibited by a given lineage. To account for 173 

such localized factors, it is important to have the ability to track the growth of lineages at different 174 

geographic scales. We built the Location Tracker on outbreak.info to facilitate the surveillance of 175 

SARS-CoV-2 lineages at a country, state/province, or county/city level. The Location Tracker provides 176 

a snapshot of circulating lineages with a focus on the last 60 days, and allows users to compare the 177 

prevalence of a customizable set of lineages/mutations over time in that location. Furthermore, the 178 

tracker also integrates reported cases over time to provide insights on the impact of growth of 179 

various lineages on caseloads in the region. As with the Lineage/Mutation Tracker, we designed the 180 

user interface to answer a set of specific questions as shown in Table 2. 181 

 182 

Table 2. Questions addressed by the Location Tracker 183 

Question Relevant visual elements 

What are the most prevalent 

lineages over the last 60 days? 

In order to quickly provide a snapshot of the lineages currently circulating 

in a given location, we show a stream graph of the prevalence of lineages 

over the last 60 days (Fig 3a). In order to increase interpretability, we 

grouped lineages that are below 3% prevalence for at least five days over 

the last 60 days into a separate category, "Other". The prevalence over 

time can be skewed especially in recent days due to the lag between 

sample collection, sequencing, and the deposition of sequence data. To 

convey this uncertainty, the total number of samples collected are shown 

in an inverted bar graph below the stream graph. In addition, a stacked 

bar graph shows a snapshot of the cumulative prevalence of the lineages 

over the last 60 days (Fig 3b). Additionally, the user can adjust this window 

to look at different time windows, e.g. 180 days. 

What is the distribution of 

mutations across these 

lineages? 

The Location Tracker shows a snapshot of currently circulating lineages 

which will help identify a newly emerging lineage that exhibits a high 

relative growth rate. Often in such cases, the mutations found in the 

lineage might provide preliminary evidence on phenotypes exhibited by 



the virus such as increased transmissibility or immune evasion. To 

facilitate this process, we show the prevalence of mutations that are 

present in the spike gene of at least 75% of the sequences of currently 

circulating lineages (Fig 3c). A Lineage Comparison Tool is also available 

which expands upon this functionality with customizable queries to add 

lineages based on the name, VOC/VOI classification, prevalence of 

mutations, and prevalence within a location.  

How does the prevalence of 

different lineages or mutations 

within this location change 

over time? 

In addition to showing a snapshot of the lineages circulating over the last 

60 days, we developed a component to show the temporal variation in the 

prevalence of a customizable set of lineages/mutations for a given 

location. This offers additional flexibility to dynamically select lineages or 

mutations of interest and compare their prevalence over time with a 

customizable time window (Fig 3d).  

How does the lineage 

prevalence over time 

correspond to the number of 

daily reported cases in this 

region?  

The impact of lineage dynamics on the reported cases over time is of 

primary concern to public health. To accomplish this, we cross-linked the 

reported cases for each location using a standardized location identifier, 

and this is shown in a line graph below the prevalence of a lineage (Fig 3e). 

In addition, users can select a time range within the prevalence chart or 

the reported cases chart to compare trends over a shorter time span. 

 184 



 185 

Figure 3. Location report. a, Relative prevalence of all lineages over time in South Africa. Total number of 186 

sequenced samples collected per day are shown in the bar chart below. b, Relative cumulative prevalence of 187 

all lineages over the last 60 days in South Africa. c, Mutation prevalence across the most prevalent lineages in 188 

South Africa over the last 60 days. d, Comparison of the prevalence of VOCs grouped by WHO classification: 189 

Alpha, Beta, Delta, and Omicron over time in South Africa. e, Daily reported cases in South Africa are shown 190 

in the line chart below.  191 



Case Study: outbreak.info as a hypothesis generation tool to investigate geographic 192 

variation in lineage dynamics of VOCs 193 

As the pandemic has continued to progress, we have seen the emergence of VOCs with significant 194 

fitness advantages that were able to outcompete previously circulating lineages. As of May 2022, 195 

there have been five designated VOCs: Alpha (B.1.1.7 + sublineages, indicated by *), Beta (B.1.351*), 196 

Gamma (P.1*), Delta (B.1.617.2*), and Omicron (B.1.1.529*). Of these, Alpha, Beta and Gamma were 197 

estimated to have emerged between September and December 202010,39,40 and were subsequently 198 

outcompeted globally by the Delta variant that was first detected in December 202041. The Omicron 199 

lineage, first detected in November 202112, was able to outcompete Delta and grew much more 200 

rapidly relative to previous VOCs during their emergence (Fig 4a). Whereas Delta and Omicron 201 

variants exhibited high growth rates with little variation globally, Alpha continued to circulate in low 202 

prevalence in Brazil and South Africa, where Gamma and Beta variants were dominant respectively 203 

(Fig 4b, 5c). Additionally, the prevalence of sublineages within Delta and Omicron variants varies 204 

geographically. The Location Tracker on outbreak.info can be used to track the growth of VOCs 205 

within a given location, thus facilitating the comparison of lineage growth rates across locations. 206 

The Location Tracker can also be used to track the relative prevalence of sublineages within these 207 

VOCs, shedding light on any geographic variation in these dynamics. Here, we examine trends in 208 

the prevalence of the five VOCs globally and highlight the geographic variation in growth rates of 209 

Alpha, Beta, Gamma, Delta, and Omicron variants.  210 

 211 

The earliest samples of the Alpha variant were sequenced in Southern England in late September 212 

202039. There were multiple introductions of the lineage into the United States (U.S.) as early as late 213 

November42. The Alpha variant showed a transmission advantage of 40-50% in the U.S.27, in line 214 

with observations in the United Kingdom and the Netherlands. In the U.S., Alpha was able to 215 

outcompete previously circulating lineages and continued to increase in prevalence until the 216 

introduction of the Delta variant around April 2021 (Fig 4d). In contrast to the U.S., the Alpha variant 217 

circulated at very low prevalence in Brazil, while the Gamma variant remained dominant in the 218 

country10 until the introduction of the Delta variant around April 2021 (Fig 4b). Similarly, in South 219 

Africa, the Beta variant continued to spread until the emergence of the Delta variant and the Alpha 220 

variant never became dominant (Fig 4c). Whereas the Beta and Gamma variants were able to 221 

outcompete Alpha in South Africa and Brazil respectively, Gamma only reached a maximum 222 

prevalence of 8% in the U.S. in May 2020, and Beta circulated at a prevalence of <1% (Fig 4d). The 223 

growth of a lineage is determined by epidemiological factors such as number of introductions, travel 224 

between locations, and by intrinsic biological properties such as transmission advantage or immune 225 

evasion. Both Beta and Gamma variants show varying degrees of immune evasion43. Regions of 226 

Brazil had attack rates as high as 75% in October 202044, indicating that immune evasion was the 227 

primary reason for the rapid growth of the P.1 lineage in Brazil. In contrast, states in the U.S. had 228 

an estimated attack rate between 0.1% and 16% in June 202045. Given this difference in attack rates, 229 

we can hypothesize that the intrinsic transmission advantage of the Alpha variant was able to 230 

outcompete the advantage conferred by immune evasion of Gamma in the U.S., but the opposite 231 

was true in Brazil and South Africa. In all three countries, the introduction of the Delta lineage 232 

displaced previously circulating Alpha, Beta, and/or Gamma lineages in the summer of 2021.  233 

 234 

The Delta variant of SARS-CoV-2 was first detected in Maharashtra, India in December 202041, has 235 

been shown to be 40%-60% more transmissible than Alpha46,47, and causes a reduction in vaccine 236 



efficacy relative to previously circulating lineages48. Vaccination campaigns against COVID-19 started 237 

in December 2020 and despite the progress of these campaigns49, the Delta variant continued to 238 

cause a renewed surge in infections globally. The Delta variant report, which can be accessed 239 

directly on the landing page of the lineage reports view, can be used to understand the dynamics 240 

of its sublineages. Fig 4a shows the global prevalence of the Delta variant over time. This growth 241 

reflects the transmission advantage that Delta has over previously circulating lineages including 242 

VOCs Alpha, Beta, and Gamma. As the Delta variant continued to spread, its genetic diversity 243 

increased and as of May 2022, over 200 sublineages of Delta have been designated50.  244 

 245 

The Omicron variant was first detected in November 2021 by genomic surveillance teams in South 246 

Africa and Botswana. This variant was associated with a rapid resurgence of infections in Gauteng 247 

Province, South Africa and was designated a VOC by the WHO within 3 days of uploading the first 248 

genome12. The variant grew in prevalence very rapidly and within three weeks, the variant was 249 

detected in 87 countries and as of May 2022, Omicron has a prevalence of over 95% globally (Fig 250 

4a). While increased transmissibility confers a bigger fitness advantage compared to immune 251 

evasion when population immunity is low, the opposite is true as population immunity increases 252 

either due to vaccination or previous infection51. The Omicron variant was found to have a five fold 253 

higher chance of reinfection compared to Delta52, and Omicron infections presented with a higher 254 

viral load than wild type but still lower than Delta53. As viral load is one of the determinants of 255 

transmissibility, this indicates that Omicron is intrinsically not as transmissible as Delta, but it 256 

exhibits better immune evasion. This combination gave Omicron a large fitness advantage over 257 

Delta as evidenced by its rapid growth rate worldwide (Fig 4a). The continued spread of the variant 258 

has resulted in the emergence of many sublineages and as of May 2022, over 100 sublineages of 259 

Omicron have been designated. Importantly, there is significant geographic variation in the relative 260 

prevalence of newly designated sublineages such as BA.2.12.1, BA.4, and BA.5. While BA.2 continues 261 

to be the dominant sublineage within Omicron in countries such as Denmark and the United 262 

Kingdom (Fig 4e, 4f), we see the BA.2.12.1 sublineage slowly displacing BA.2 in the United States (Fig 263 

4g). In South Africa, sublineages BA.4 and BA.5 have completely displaced the previously dominant 264 

BA.2 (Fig 4h) and have led to another surge in reported cases (Fig 3e). The three variants, BA.2.12.1, 265 

BA.4, and BA.5 have been shown to evade antibodies elicited by prior BA.1 infection in in vitro 266 

neutralization studies54,55. This observed escape was higher than what was observed for BA.256, 267 

highlighting the possibility that these variants led to a renewed surge in infections as these variants 268 

continue to spread globally. While the growth of Alpha and Delta variants globally was driven 269 

primarily by higher intrinsic transmissibility, the growth of the new variants within Omicron seems 270 

to be driven primarily by enhanced immune evasion. The increasing prevalence of immunity due to 271 

vaccination or prior infection worldwide, further supports this hypothesis.  272 

 273 

This case study illustrates how outbreak.info can be used to not only track and compare the 274 

prevalence of lineages across locations, but also to derive and support hypotheses regarding the 275 

complex interplay between epidemiology and the intrinsic phenotypic characteristics of emerging 276 

SARS-CoV-2 lineages as the virus continues to spread.  277 

 278 



 279 

Figure 4. Prevalence of Variants of Concern: Alpha, Beta, Gamma, Delta, and Omicron lineages over time in 280 

the (a) Worldwide, (b) South Africa, (c) Brazil, and (d) United States. Lineages with a prevalence over 3% over 281 

the last 60 days in (e) Denmark, (f) United Kingdom, (g) United States, and (h) South Africa. 282 



Discussion 283 

The Omicron variant, first detected in late November 2021, has outcompeted Delta and is currently 284 

the most dominant lineage globally. However, it is important to note that regardless of how 285 

prevalent previously circulating VOCs were, all five VOCs emerged independent of each other. While 286 

the current hypothesis for the emergence of VOCs is prolonged virus evolution in a chronically 287 

infected individual57, we still lack a thorough understanding of this process. Given the underlying 288 

stochasticity of this process, predicting the emergence of a new VOC is not currently feasible. As a 289 

result, continued surveillance of all currently circulating lineages is of utmost importance to public 290 

health globally — particularly as SARS-CoV-2 continues to spread and evolve worldwide.  291 

 292 

The global community has generated over 11 million genomes of SARS-CoV-2 as of May 2022, 293 

shared on platforms such as GISAID15. The wealth of primary genomic data can enable downstream 294 

applications such as tracking the prevalence of different virus lineages in near real-time. However, 295 

the sheer volume of genomic data that continues to increase daily presents challenges to running 296 

analyses ad hoc. We developed outbreak.info to serve as a template for tracking the spread of 297 

the pandemic over varying geographic and temporal scales at scale, across the world, in near-real 298 

time. This new paradigm centralizes the computation of key statistics based on the analysis of 299 

disparate data streams. We designed the server infrastructure of outbreak.info keeping two 300 

goals in mind: scalability of the API as existing data sources increase in size and new data sources 301 

are incorporated and reusability of the computed data by providing programmatic access through 302 

an R package (Fig 5). This approach enables us to quickly adapt to and incorporate new modes of 303 

surveillance such as the CDC’s National Wastewater Surveillance System58. Furthermore, the easy 304 

dissemination of any computed data on outbreak.info via the R package enables users to further 305 

interrogate and utilize this data for more sophisticated downstream analyses. To maximize 306 

accessibility of these data, the web interface of outbreak.info has been designed to offer a high 307 

degree of customizability, allowing users to answer specific biological questions and use the 308 

platform as a hypothesis generation tool. The guiding principles for the web interface have been 309 

interactivity via responsive user interface (UI) elements powered by a high performance API, and 310 

interpretability via intuitive visualization of data based on discussions with researchers, 311 

epidemiologists, and public health officials.  312 

 313 

outbreak.info has been enabled by unprecedented global genomic sequencing efforts, and we 314 

developed every element of the application to fully leverage this capacity. However, genomic 315 

sampling varies globally with the vast majority of sequences coming from high income countries; 316 

even within well-sampled regions, there is geographic and temporal variation14. To communicate 317 

the increased uncertainty due to low sampling, we calculate confidence intervals of estimates 318 

wherever applicable, provide histograms of sampling density, and mask data when there are very 319 

few data points available. Furthermore, sampling can be selective as samples of the Alpha variant 320 

and BA.1 lineage (sublineage of Omicron) show S gene target failure on a widely used qPCR assay. 321 

Such sampling biases impact the insights that can be derived from quantities such as the prevalence 322 

of a lineage/mutation. We communicate these limitations through a dedicated “caveats” page with 323 

warnings regarding the interpretation of data interspersed throughout the interface.  324 

outbreak.info continues to provide a mechanism for researchers, epidemiologists, and public 325 

health officials to easily track the growth of variants, across any number of locations. The platform, 326 

backed by robust infrastructure, allows users to quickly access key statistics for known VOCs, 327 



emerging variants, and any combination of mutations without having to run any time consuming 328 

analyses. This allows researchers to focus on data exploration, hypothesis generation and more 329 

complex downstream analyses. Beyond the SARS-CoV-2 pandemic, outbreak.info serves as a 330 

model for providing scalable and reusable metrics to track the spread of any pathogen  during an 331 

outbreak via interactive and interpretable visualizations. 332 

 333 

 334 

Figure 5. Software infrastructure of outbreak.info. The infrastructure can be broadly divided into (1) Data 335 

ingestion pipelines, (2) Server-side hosting the database and API server, and (3) Client-side applications that 336 

use the API from the server.  337 

 338 

Methods 339 

 340 

Ingestion of genomic data 341 

We built a data pipeline, Bjorn, to count mutations from a given set of genomes in a scalable 342 

manner daily (Fig 6). The pipeline consists of the following steps: (1) Download SARS-CoV-2 genomes 343 

from the GISAID provision; (2) Divide sequences into chunks of 10,000; (3) Align these sequences 344 

using minimap259; (4) Convert the alignment into a FASTA file using gofasta 345 



(https://github.com/virus-evolution/gofasta); (5) count mutations and deletions from this alignment; 346 

(6) standardize and filter the metadata: country, division, location, pangolin lineage, date of 347 

collection, and date of submission and (7) combine results from all chunks and convert to a JSON 348 

object. We standardized geographic identifiers using shapefiles from GADM60. The final JSON object 349 

is loaded into an Elasticsearch index within the BioThings framework61. The code for Bjorn is 350 

available at https://github.com/andersen-lab/bjorn.  351 

 352 

Figure 6. Flowchart describing the steps in Bjorn. 353 

 354 

Ingestion of epidemiological data 355 

We built the EpiData pipeline to ingest reported global cases, and deaths from Johns Hopkins 356 

University32. We used shapefiles from Natural Earth62 to standardize geographic identifiers, and 357 

obtain populations for countries and states outside the U.S. For the U.S., we used the county level 358 

shapefiles and population estimates from the 2019 population estimates by the Census Bureau  to 359 

standardize geographic identifiers and get population estimates. We standardized reported date 360 

formats, and geographic identifiers across the two resources. The code for the EpiData pipeline is 361 

available at https://github.com/outbreak-info/biothings_covid19. 362 



 363 

Calculation of confidence intervals on prevalence 364 

Most estimates of prevalence on outbreak.info are binomial proportions. We calculate 95% 365 

confidence intervals for these estimates using a Jeffrey's Interval, the 2.5 and 97.5 quantiles of the 366 

beta distribution 𝛽(𝑥 + 0.5, 𝑛 − 𝑥 + 0.5) where x is the number of successes and n is the number of 367 

trials. 368 

 369 

Creation of outbreak.info API 370 

In order to scale with the increasing size of existing data sources and the heterogeneity of newly 371 

emerging data sources, we used the BioThings framework61. The JSON outputs of our data pipelines 372 

are ingested by the BioThings framework and the processed data is stored in individual 373 

Elasticsearch indices. A Tornado server is used to create API endpoints that leverage the search 374 

capabilities of Elasticsearch to perform complex aggregations of the underlying data. These API 375 

endpoints allow the client-side applications to query the underlying data within reasonable query 376 

times while accounting for the scale of the ingested data. The BioThings Hub maintains historical 377 

data by default, allowing us to roll back to previous data backups if issues are discovered with new 378 

data after they are deployed. The code for the server-side application is available at 379 

https://github.com/outbreak-info/outbreak.api.  380 

 381 

outbreak.info web application 382 

The web application was built using Vue.js63, a model–view–viewmodel JavaScript framework which 383 

enables the two-way binding of user interface elements and the underlying data allowing the user 384 

interface to reflect any changes in underlying data and vice versa. The client-side application uses 385 

the high performance API to interactively perform operations on the database. Customized data 386 

visualizations on the client were built using D3.js64, giving us the ability to develop novel, and 387 

intuitive visual elements as part of the user interface. We designed these visualizations to answer 388 

specific questions of interest to epidemiologists, researchers, and public health officials. We further 389 

added functionality to enable the 1-click copy or download of every chart in the interface as a png 390 

or svg. The code for the client-side application is available at: https://github.com/outbreak-391 

info/outbreak.info   392 

 393 

R package 394 

We developed an R package for outbreak.info to allow researchers and other individuals to easily 395 

access the data via the API for downstream analyses and visualizations. The R package is composed 396 

of three parts: functions that allow the user to access genomic data, functions to access the 397 

epidemiological data, and functions to access the Research Library metadata. They all consist of a 398 

base function that contains arguments for all possible parameters that can be used to query the 399 

API. While users can utilize this base function directly to access data, several wrapper functions are 400 

available that inherit the arguments from the base function in addition to pre-specified parameters 401 

to simplify the process of querying the API. For example, while getGenomicData() can be used 402 

directly to access data regarding the daily global prevalence of a specified lineage, doing so would 403 

require a user to be familiar with the name of the endpoint as specified in the API URL (in this case, 404 

global-prevalence). Instead, the user can access this data with the more intuitively named 405 

getPrevalence().Therefore, these wrapper functions allow users to easily and quickly obtain the 406 

data they need. The R package also contains an authenticateUser() function that allows users to 407 



authenticate against their GISAID credentials and access computed statistics from the primary 408 

genomic data provided by GISAID. 409 

 410 

In addition, as the API queries location by ISO3 code, rather than by location name, two functions 411 

have been created that allow users to forgo the step of searching for the ISO3 code themselves: 412 

getISO3Code() and getLocationIdGenomic(). The latter function uses the genomics API 413 

endpoint to obtain the ISO3 code for a given location. The ISO3 code can be obtained with either a 414 

full or incomplete location name; in the latter case, the user will be provided a list of matching 415 

locations and must specify the location they are interested in. This function is embedded in the 416 

parent getGenomicData() function, and is therefore inherited in all wrapper functions. Therefore, 417 

searching for data by location in the R package replicates the experience on the client-side web 418 

application. Documentation is available at: https://outbreak-info.github.io/R-outbreak-info  with 419 

vignettes located at https://outbreak-info.github.io/R-outbreak-info/articles/index.html. The R 420 

package can be downloaded and installed using the remotes package function: 421 

install_github("outbreak-info/R-outbreak-info").  422 
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