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Adolescent idiopathic scoliosis (AIS), environment,
exposome and epigenetics: a molecular
perspective of postnatal normal spinal growth
and the etiopathogenesis of AIS with
consideration of a network approach and
possible implications for medical therapy
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Abstract

Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS).
Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different
intrauterine environments are important in etiology, but what these environmental factors may be is unknown.
Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ
twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is
one important epigenetic mechanism operating at the interface between genome and environment to regulate
phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word
exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external
and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic
factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth
we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of
the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a
new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways
particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to
have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are
considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in
AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible
network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through
screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify
susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-
based medical therapy for AIS cannot be assessed at present, and must await new research derived from the
evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are
applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.
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Introduction
The principal aim of this paper is to examine the etio-
pathogenesis of adolescent idiopathic scoliosis (AIS)
from the standpoint of epigenetics. To our knowledge
this has not previously been addressed. Epigenetics, a
relatively recent field now vast and vigorous, evaluates
factors concerned with gene expression in relation to
environment, disease, normal development and aging,
with a complex regulation across the genome during the
first decade of life. Butcher and Beck [1] describe epige-
netics as follows:
“Although environmental measures are logical covar-

iants for genotype-phenotype investigations, another non-
genetic intermediary exists: epigenetics. Epigenetics is the
analysis of somatically-acquired and, in some cases,
transgenerationally inherited epigenetic modifications
that regulate gene expression, and offers to bridge the
gap between genetics and environment to understand
phenotype. The most widely studied epigenetic mark is
DNA methylation. Aberrant methylation at gene promo-
ters is strongly implicated in disease etiology, most nota-
bly cancer.”
There is controversy relating to the definition of epi-

genetics which we outline. Taking the broad definition,
a view of AIS etiopathogenesis and normal spinal devel-
opment is presented from an epigenetic standpoint, pre-
dicated on a model for other diseases.
Research into the causation of adolescent idiopathic

scoliosis (AIS) draws heavily from mechanical and biolo-
gical disciplines, but still lacks an agreed theory of etio-
pathogenesis [2,3]. Genetic factors are believed to play
an important role in the etiology of AIS with consider-
able heterogeneity [2,4,5]. Hence treatment is empirical
and not based on sufficient understanding of etiology to
support the current mechanically-based therapy [6]. The
research problem is complicated by the suspicion that
AIS may result not from one cause, but several that
interact. Genetic, and now genomic, research on AIS
has not yet provided the therapeutically-required etiolo-
gic understanding. In other diseases and particularly dis-
eases of developmental origin [7-13] and late-onset
chronic non-communcable diseases (NCDs) [14-22],
research on the role of environmental factors and epige-
netics after a slow start [23] has exploded in the last
decade [1,17,18,24-32]. Not so for AIS research where,
except for monozygotic twin studies and very recent
mentions on the net [33,34], there are only sporadic
reports suggesting that environmental factors are at
work in etiology.
Genotype-environment (GxE, nature/nurture) interac-

tions are being extensively researched in human growth
[35-40], behavioural studies [41-43], early-life conditions
[7-13,44,45], placentation [29] and gastrointestinal dis-
eases [46-48]. The increasing incidence of idiopathic

club foot in Denmark and Sweden has led to the specu-
lation that factors associated with population density
namely, environmental stress (traffic pollution, noise)
and stress of urban living (misuse of tobacco, alcohol,
drugs), could be reasons for this epidemiological change
[49].
DNA methylation (DNAm) is an important epigenetic

mechanism operating at the interface between genome
and environment to regulate phenotypic plasticity with a
complex regulation across the genome during the first
decade of life [50]. Recent data suggests that epigenetic
responses including DNAm is involved not only in cel-
lular differentiation but also in modulation of genome
function in response to signals from the various envir-
onments [45]. The window of developmental plasticity
extends from preconception to early childhood and is
exerted particularly during life-history phase transitions
[13]. Developmental origins of health and disease and
life-history transitions are purported to use placental,
nutritional, and endocrine cues for setting long-term
biological, mental and behavioural strategies in response
to local physical, biological and/or social conditions
[13,45,51].
Epigenetics is now generally defined as information

heritable during cell division but not contained within
the DNA sequence itself [14]. There are three major
ways organisms alter their DNAs inherited messages:
enzymes methylate DNA to modulate transcription; his-
tone modifications and nucleosome positioning to
induce or repress target sequences; and non-coding
small RNAs (including microRNAs and short interfering
RNAs) which attach themselves to messenger RNA to
modify the expression of specific genes [10,46,52,53].
DNA-cytosine methylation is a central epigenetic modi-
fication that has essential roles in cellular processes
including genome regulation, development and disease
[54]. According to Cropley et al [55] epigenetic mechan-
isms provide multicellular organisms with a system of
normal gene regulation that silences portions of the
genome and keeps them silent as tissues differentiate.
Long-term silencing can be reprogrammed by demethy-
lation of DNA which starts afresh in each generation in
germ cells and early embryos through which effects on
nutrition in utero may influence health in later life
[56-58] (Appendix I).
Errors in this complex system termed epimutations

arising from environmental and stochastic (random)
events, can give rise to abnormal gene silencing, that
may result in a great deal of phenotypic variation and
common disease, At present, there are only a handful of
clear examples; but importantly this can occur in the
absence of any underlying genetic defect [59]. Altera-
tions in the epigenetic status can be directly modified by
various environmental insults or maternal dietary factors
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[44,60]. Epigenetics helps to explain the relationship
between an individual’s genetic background, environ-
ment, aging, and disease [17]. Sex differences in epige-
netic processes may alter the risk or resilience to
develop a particular disorder [61]. Increased understand-
ing of epigenetic-disease mechanisms could lead to
innovative diagnostic tests and disease-risk stratification
to targeted intervention and therapies [16,46].
The Human Epigenome Project (HE) and other epige-

nomic projects [62-66] are evaluating epigenetics in
developmental origins of human disease [9,11], and for
musculoskeletal disorders in bone development [67-69]
and dysmorphology [70].
Apart from the emerging role of epigenetic mechanisms

in the etiology of neural tube defects [60], Prader-Willi
syndrome [71,72], and the recent theoretical interpreta-
tions of Burwell and colleagues [73-76] and McMaster
[77], epigenetics does not figure in any causal analysis of
postnatal normal spinal growth, or in the etiopathogenesis
of AIS (Figure 1), This reflects current scientific opinion
that genetic rather than environmental factors determine
the etiology of AIS in accordance with the genetic variant
hypothesis of disease [17,78] (Appendix II).

In this paper we briefly evaluate postnatal normal
spinal growth and the etiopathogenesis of AIS in rela-
tion to the epigenetic explosion and the terminologic
disagreements; the latter arise from the different
requirements of geneticists, molecular biologists, devel-
opmental biologists and pathogetieticists. Our interpre-
tation for AIS attempts to overcome these difficulties. It
is predicated on the premise that in all scolioses, idio-
pathic, and secondary, spinal deformity cannot occur
without normal vertebral growth-plate function being
compromised ultimately in three dimensions by abnor-
mal processes. This focus on vertebral growth does not
imply that asynchronous ribcage growth [79-83], inter-
vertebral discs and vertebral bone may not contain fac-
tors in AIS pathogenesis. The tenets outlined here for
AIS are applicable to other developmental growth disor-
ders including infantile and juvenile idiopathic scoliosis.
The aims of this paper are:
1. To review sporadic reports suggesting that environ-

mental factors are involved in AIS etiology.
2. To note that the risks of developing late-onset

chronic non-communicable diseases (NCDs) including
cancer, diabetes, cardiovascular disease, respiratory

Figure 1 Venn diagram showing relationship between genetic variation, epigenetic variation and disease simultaneously (Modified
from Feinberg [18]).
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disease, obesity and schizophrenia, are attributed to
genetic and environmental factors.
3. To discuss the meaning of the word exposome. Cur-

rently, it refers to the totality of environmental expo-
sures, exogenous and endogenous from conception
onwards, some of which lead to occupational health
problems.
4. To use the word exposome also in relation to phy-

siologic and etiopathogenetic factors that respectively
affect normal spinal growth and may induce/promote
the deformity of AIS.
5. To suggest that the harmful effects produced by

exposome factors leading to dysfunction involve inter-
ference with normal cellular processes and molecular
pathways in cells, tissues, structures and organs.
6. To define epigenetics, its origin and two current

meanings, modification and interactions.
7. To outline epigenetics in relation to normal embryo-

nic development, involving epigenetic modification and
interactions.
8. To present a causal analysis of the normal postnatal

normal spinal growth putatively involving epigenetic
interactions and modification.
9. To apply a new collective term and concept, physio-

logic growth-plate exposome, to the mainly endogenous
(internal) environmental processes that affect normal
spinal growth.
10. To present a causal analysis of abnormal deform-

ing postnatal spinal growth in AIS, putatively involving
epigenetic interactions and modification.
11. To apply a new collective term and concept,

pathophysiologic scoliogenic exposome to abnormal pro-
cesses in developmental pathways particularly of the
internal environment that have putative epigenetic
deforming effects on the growth plates of vertebrae at
cell, tissue, structure and organ levels, and currently
expressed as etiopathogenetic hypotheses.
12. To consider that the pathogenesis of AIS may

involve a one–hit to multi-hit model.
13. To suggest research on chromatin modification

including DNA methylation (DNAm) which plays an
important role in gene expression, using tissues from
AIS subjects including vertebral growth plates excised at
surgery
14. To touch on network medicine and consider a net-

work approach to AIS etiopathogenesis by constructing
AIS diseasomes.

Environmental risk factors for adolescent idiopathic
scoliosis (AIS)
Thirty years ago Wynne-Davies [84] examining the
etiology of some common skeletal deformities including
infantile idiopathic scoliosis, concluded that all are likely
to have a common multifactorial genetic background

associated with differing intrauterine or postnatal envir-
onmental factors. Most authors state that genetics stipu-
lates the course of adolescent idiopathic scoliosis (AIS).
In the last 20 years, sporadic reports have suggested
environmental factors are involved in the etiopathogen-
esis and phenotypic expression of AIS. The evidence is
outlined here together with an interpretation of AIS
pathogenesis and the environment by some workers
[85-87].
Monozygotic (MZ) twins and spinal radiology in AIS
MZ twins have a significantly higher concordance for
AIS than dizygotic twins, with scoliosis curves in MZ
twins developing and progressing together. Based on
these data, Kesling and Reinker [88] concluded there is
strong evidence for a genetic etiology for AIS, and famil-
ial idiopathic scoliosis [89,90].
MZ twins have been used to demonstrate the role of

environmental factors in determining complex diseases
and phenotypes, but the true nature of the phenotypic
discordance remains poorly understood [24,50]. In AIS,
concordance rates in MZ twins are 0.73-0.92 [88,91,92]
with lower figures of 0.13 and 0.10 reported respectively
from the Danish Twin Registry [93] and Swedish Twin
Registry [94]. These findings are quite surprisingly dif-
ferent, and suggest that variation in diagnostic criteria is
important in the results of these studies [Armour J per-
sonal communication]. The Swedish Twin Registry
study revealed a unique environment effect of 0.60 [94]
suggesting environmental factors are important in the
etiology of AIS from different intrauterine environments
[88]. In 32 MZ twins, van Rhijn et al [95] found several
parameters - gender, direction of convexity, apical level
and kyphotic angle - were determined more by genetic
factors than the lateral Cobb angle, suggesting that
curve severity may be affected by the environment. Mir-
roring of curves was found in each of two MZ twin sets
with idiopathic scoliosis [88,96]. In another MZ twin
pair concordant for AIS, the twins had different apical
levels, curve magnitudes, and age at detection which
stress the importance of environmental (non-genetic)
factors in etiopathogenesis [97].
Concordance rate of less than 100% in MZ twins for

AIS may be explained not only from environmental
influences but also by other factors including, uneven
cytoplasmic cleavage of the fertilized egg - thought to
cause the scoliosis mirroring of one twin pair, mutation
after fertilization causing a genotype mosaic [88], differ-
ences in placentation, amniotic sac, and vascularization
of separate cell masses [24]. In MZ twins with congeni-
tal scoliosis, environmental factors are reported to play a
leading role in the development of the condition [98].
According to Fraga et al [24] epigenetic differences

may underlie MZ twin discordance for common dis-
eases, and represent the link between environmental
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factors and phenotypic differences. The patterns of epi-
genetic modification of twin pairs diverge as they
become older and their lifestyles become distinct reflect-
ing accumulated exposure to a wide range of external
and internal factors including environmental factors
such as physical (and perhaps mental) activity, diet,
drink, smoking and other habits [99]. They referred to
the phenomenon as “epigenetic drift“ and associated it
with the aging process [100].
A food and growth connection?
A sudden increase in the incidence of idiopathic scolio-
sis in Jamaica after 1965 was evaluated by Golding
[101]. Attention was directed to endocrine additives
used to promote the growth of livestock and the meat-
to-food conversion in cattle and broilers. Taking Into
consideration the 10-year delay in the onset of the idio-
pathic scoliosis, this fitted remarkably well with increase
frequency of the scoliosis which occurred up to 1983
and its decline since.
Nutrition in the etiology of idiopathic scoliosis (IS)
A review of American and European articles from 1955-
1990 evaluated nutrition as an environmental factor in
the etiology of idiopathic scoliosis [102]. These authors
concluded:
“...there is at least an anecdotal association of IS with

poor nutrition, there is strong evidence from an animal
model and there is a partial understanding of the bio-
chemical mechanisms explaining nutrition as an etiologi-
cal factor. Given the fact that nutrition is an
environmental factor which can easily be changed,
further investigation of the link between nutrition and IS
in humans is warranted.”
Relative osteopenia and life-style factors
Studies on Chinese girls with AIS have revealed relative
osteopenia [113,114] suggesting a contribution from life-
style factors including nutrition, diet, calcium, vitamin D
intake and exercise level []
Good dietary practices and optimal nutritional status

are known to promote growth and tissue development,
as well as disease prevention [39,53,103,104]. Nutritional
epigenetics has emerged as a novel mechanism underly-
ing gene-diet interactions [104] with the strongest evi-
dence for transgenerational inheritance coming from the
survivors of the Dutch Hunger Winter [105]. Dietary
modification can have a profound effect on DNAm and
genomic imprinting [16,106], with plant-derived micro-
RNAs entering the bloodstream [53]. A major focus of
research on dietary influences on epigenetic status has
been on nutrition in utero, because the epigenome is
probably malleable particularly during this life-course
window [60,107,108], and because epigenetic marking by
early exposures is a compelling mechanism underlying
effects on lifelong health [108,109]. DNAm depends on
dietary methionine and folate, both of which are affected

by the nutritional state [14,17,110]. Ford et al [108] have
published a Table summarizing specific dietary compo-
nents with effects on DNAm; these include methyl
donors, bioactive polyphenols, zinc, selenium,and vita-
min A. In AIS, prevention by diet is discussed specula-
tively [111,112], and on the net [34].
Physical activities of patients with AIS
McMaster et al [115,116] reported AIS to be negatively
associated with participation in dance, skating, gymnas-
tics/karate and horse riding classes. They asked the
question: Do children who develop AIS have a long-
standing proprioception defect which makes them less
likely to participate in sporting activities? If so, by
encouraging sport and increasing proprioceptive abilities
common to all joints [117] might make those at risk less
likely to develop spinal asymmetry.
Geographic latitude and the prevalence of AIS
In a review of peer-reviewed published papers, Grivas et
al [118] found that a later age at menarche is associated
with a higher prevalence of AIS. The prevalence
decreases as geographic latitude approaches the equator,
suggesting a possible role for environmental factors in
the pathogenesis of AIS in girls. A slight delay of
menarcheal age in northern countries by lengthening
the period of spine vulnerability to etiologic factors, was
suggested as a pathogenetic mechanism.
Maternal age and socio-economic status
In a study of 404 children with idiopathic scoliosis pre-
dominantly from New York State there was an excess of
propositi born to mothers at ages 30-39 years [119].
Wynne-Davies [89,120] reviewing 94 children with AIS
found in girls and boys, maternal but not paternal age
was significantly in excess of normal. In a Swedish study
of perinatal and environmental aspects of 551 adolescent
patients with thoracic idiopathic scoliosis, maternal age
was higher, birth weight normal, scoliosis commoner in
higher socioeconomic groups, and the illegitimacy rate
half that expected [121]. These findings from the USA,
Scotland and Sweden are consistent and reveal increased
maternal age as a risk factor for AIS, suggesting mater-
nal factors can predispose to it. The intra-uterine envir-
onment is crucial in programming the fetus for various
health and disease outcomes throughout life [44].
Heated indoor swimming pools infants and delayed
epigenetic effects
In a case-control study in Scotland, McMaster et al
[115,116,122] reported a statistically significant correla-
tion between the introduction of infants to heated
indoor swimming pools and the development of AIS. A
neurogenic hypothesis was formulated to explain how
toxins produced by chlorine in such pools may act on
the infant’s immature central nervous system; through
vulnerability of the developing brain to circulating tox-
ins and delayed epigenetic effects with the bony trunk
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deformity of AIS not becoming evident until adoles-
cence [77]. There may be many such environmental fac-
tors acting in the first year of life to initiate AIS and
differing around the world, with one environmental fac-
tor involving heated indoor swimming pools being
detected in Scotland [77]. Whatever effects the neuro-
toxic products may have on the immature brain, the
process of puberty with its increased growth velocity is
suggested to play a role in the delayed phenotypic
expression of AIS [77].
Non-surgical treatments for AIS
Publications on environmental effects induced in the
spine by physical exercises and brace treatments will not
be considered here.
Hypothesis of developmental instability for scoliosis
Speculation that genetic and environmental factors are
involved the etiopathogenesis of idiopathic scoliosis
[123,124] was developed by Goldberg and colleagues
[85-87] who suggested that scoliosis is caused by envir-
onmental stress causing developmental instability:
“....scoliosis is not a disease or group of diseases but a

symptom or sign of environmental stress, significant
enough to overwhelm the intrinsic stability of the mor-
phological genome. As such, there is no specific etiology
but a large number of precipitating stressors....”[87].
Such environmental factors could be hormonal, nutri-

tional, alcohol, smoking, viruses, drugs, medicaments,
radiation, maternal reactivity to male-specific features of
the fetus, hypoxia during birth [111], factors associated
with population density [49], toxins in heated indoor
swimming pool [77], and lack of physical activity.
[115,116].
The hypothesis of devevlopmental instability applied to

scoliosis is contained within both the developmental ori-
gins of health and disease concept (DOHaD) [9,12,13]
and the common disease genetic and epigenetic model
for late-onset chronic non-communicable diseases
(CDGE) [14,17]. Both the DOHaD and CDGE models
for disease invoke epigenetic mechanisms [125] (Appen-
dix III).

Chronic diseases, external and internal environments,
phnotypic plasticity, exposome
The risks of developing late-onset chronic non-commu-
nicable diseases (NCDs) including cancer, diabetes, car-
diovascular disease, respiratory disease, obesity and
schizophrenia, are attributed to both genetic and envir-
onmental factors; 70-90% of disease risks are thought to
be due to differences in environments [19,126]. Hanson
et al [20] comment that progress in this field has been
slow due to an excessive emphasis on fixed genomic
variations (hard inheritance) as the major determinants
of disease susceptibility. However, new evidence demon-
strates the much greater importance of early-life

developmental factors, involving epigenetic processes
and ‘soft’ inheritance in modulating an individual’s vul-
nerability to NCDs. According to Rappaport and Smith
[19] epidemiologists increasingly use genome-wide asso-
ciation studies (GWAS) to investigate NCDs, and rely
on questionnaires to characterize “environmental expo-
sures”. The risk factors for NCDs include smoking,
unhealthy diet, lack of physical activity and alcohol
abuse [21,22].
Exposome
The word exposome [127] refers to the totality of envir-
onmental exposures from conception onwards that cre-
ate dysfunction which in some individuals leads to
occupational health problems [128]. The exposome com-
prises exogenous and endogenous factors: exogenous
factors in the external environment - chemicals (toxi-
cants) entering the body from air, water and food, eg
diet, food supplements, life style, drugs, chemicals; and
endogenous factors in the internal environment - chemi-
cals produced in the body eg, oxidative stress, lipid per-
oxidation [111,112,129], gut flora, and other natural
processes, including biomarkers. Any harmful effects
leading to dysfunction evidently interferes with normal
cellular processes and molecular pathways in cells, tis-
sues, structures and organs with the individual response
to environmental factors being genetically influenced
[129]. There are likely to be critical periods of exposure
in development with vulnerability to the exposome
[126]. Human evolution through natural selection has
involved reduced exposure to challenges from external
and internal environments [130].

Definitiions: epigenetics, origin and its recent double
meaning in health and disease
Epigenesis in biology describes the morphogenesis and
development of an organism with organ systems that
are not preformed.
Epigenetics
The word epigenetics was coined by Waddington [131]
to link the two fields of developmental biology and
genetics, hitherto considered as separate disciplines
[132-134]. There are now several definitions of epige-
netics [14,18,25,135-140] (Appendix IV). Waddington’s
broad view of epigenetics fell out of favor in modern
biology to be replaced with a much narrower one defin-
ing epigenetics as:
“ ....modifications of the DNA or associated proteins,

other than DNA sequence variation, that carry informa-
tion content during cell division.” [10,14,17,25,29].
These changes result from chemical alterations to

DNA or associated histone proteins termed epigenetic
modification, occurring in health and disease from sto-
chastic (random) and environmental factors modulating
transcription from chromatin [29,141]. The best known
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example of epigenetic modification is DNA methylation
(DNAm). Cell type-specific DNAm patterns are estab-
lished during mammalian development and maintained
by tissue-specific gene expression in adult somatic cells
[142]. DNAm plays an important role in programming
gene expression, including the regulation of changes in
gene expression in response to aging and environmental
signals [104,143]. Loss of methylation, which may result
from enzymic mechanisms will lead to heritable
abnormalities in gene expression, and these may be
important in oncogenesis and aging [104,142-144].
Methylome refers to the genome-wide state of DNAm

[18]. Advances in sequencing methods have allowed
measurement of the first complete genome-wide DNAm
map (methylome ) in human cells [54,145,146].
Epigenotype refers to information in a cell that is

maintained through mitosis and/or meiosis but does not
involve DNA sequence itself [14].
Epigenome, is the sum total of all the epigenetic infor-

mation in a cell; there are as many epigenomes as there
are cell types [26]. It has been likened to an archive of
the prenatal environment [44]. The epigenome parallels
the word genome, and refers to the overall epigenetic
state of a cell. Although all (nucleated) human cells
effectively contain the same genome (and therefore the
same genetic instruction sets), they contain very differ-
ent epigenomes depending upon cell type, developmental
stage, sex, age, environmental cues, various other para-
meters and maintain different terminal phenotypes
[147,148]. Epigenomics refers to the genome-scale analy-
sis of epigenetic marks [18].
Epimutations and disease. According to Martin et al

[59], epigenetic silencing is a pervasive mode of gene
regulation in multicellular animals. Epigenetic silencing
is not irreversible and requires active maintenance. This
requirement for active maintenance of epigenetic states,
creates the potential for errors on a large scale. When
epigenetic errors - or epimutations - activate or inacti-
vate a critical gene, they may cause disease. They define
epigenetic disease as: “...one caused by stable alteration
in the epigenetic state of a gene (epimutation) without
any contributory genetic mutation.”
Epigenetic modification and interactions. Very recently,

some workers have returned to using Waddington’s
more inclusive definition to bridge more fully the gap
between genotype and phenotype, introducing the term
epigenetic interactions [138-140,149]. This concept does
not entirely accord with the view that an epigenetic sys-
tem should be heritable, self-perpetuating and reversible
[141]. Whether or not the term epigenetics retains its ori-
ginal meaning or becomes restricted to chromatin modi-
fication remains to be seen [149]. Taken together both
terms, modification and interactions, enrich and broaden
our view of development, evolution and disease [149].

How may these new epigenetic concepts of modifica-
tion and interactions be related to normal development?

Epigenetics - relevance for normal development
Developmental biology and embryonic development. Fig-
ure 2 shows that in normal embryonic development,
epigenetic changes may occur at each of cell, tissue,
structure and organ levels. A cell’s environment, loca-
tion and surroundings provide epigenetic factors that
influence the cell’s identity and activities [119] as it rolls
down Waddington’s metaphorical epigenetic landscape
[150]. Francis [151] states that the fate of each cell is
largely determined by its position in the embryo and the
nature of its neighbour cells with which it chemically
interacts; this is termed patterning in skull development
[74,75,138,139]. These intercellular interactions influ-
ence the environment within the cell, which in turn
influences which genes are epigenetically activated or
inactivated. At organ level, the growing brain influences
the development of the skull presumably involving
mechanical interaction (mechanotransduction) as an epi-
genetic interaction [137,140].
Epigenetic modifications and regulation
Figure 3[152-154] shows predominant epigenetic modifi-
cations: DNA methylation (DNAm) modifications to
histones, non-coding RNAs and parent-of-origin
imprinting for placental development. (Appendix V)
[155-172] [see Figure 2, reference [10] and
[29,46,141,153]].
Epigenetic interactions
Figure 4 shows epigenetic interactions for normal ver-
tebral growth constructed mostly from the descriptions
of Herring [136,137] and Lieberman [138,139], and for
chemicals from other workers [173-175].(Appendices IV
& VI).
How may epigenetic modification and interactions

relate to normal postnatal spine growth?

Normal postnatal spine development - physiologic
growth-plate exposome
Figure 5 shows factors that affect growth of the normal
spine through vertebral growth plates. They are shown
as three groups: genetic, internal environment, and
external environment. Besides genetic control, the
growth of normal vertebral growth plates is influenced
by factors mainly within the internal environment; these
include hormones [133,136,176,177], growth factors
[176] chemicals [173-175] and mechanical forces
[133,136,137,178,179]; the latter are created by the ver-
tebral growth force [136,180], gravity (a weak force
[181-183], upright posture and muscular contractions
under central nervous system control acting against
gravity. External environmental factors include gravity,
nutrition and lifestyle.
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We propose the term, physiologic growth-plate expo-
some for the mainly internal normal environmental pro-
cesses that affect normal spinal growth. The effects of
this physiologic exposome on vertebral growth plates is
viewed as epigenetic. This will involve epigenetic interac-
tions. How much epigenetic modification is involved is
unknown.

Adolescent idiopathic scoliosis - pathophysiologic
scoliogenic exposome
Figure 5 shows etiopathogenetic hypotheses for AIS
which express abnormality(ies) in normal developmental
pathways of one or more of the normal internal envir-
onmental processes. Whether one (one-hit model) or
several (multi-hit model) abnormalities are involved in

Figure 2 Normal embryonic development over time initiated by genetic factors (green) and environmental factors (internal blue,
external orange ) leading to the normal phenotype (blue). Small arrows represent epigenetic interactions occurring at call, tissue, structure
and organ levels (Modified from Jamniczky et al [140]).

Figure 3 Epigenetic modifications in placental development and possible consequences of its disturbance which can be caused by
environmental factors. X-chromosome inactivation (lyonization) is not shown [152-154] (Modified from Nelissen et al [29]).
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pathogeenesis for different individuals with AIS is
unknown. We propose a new term and concept, patho-
physiologic scoliogenic exposome be applied to abnormal
processes in normal developmental pathways particularly
of the internal environment that have putative epigenetic
deforming effects on the growth plates of vertebrae
[184-191] at cell, tissue, structure and organ levels, and
currently expressed as etiopathogenetic hypotheses
(Appendix VII) [192-242]. This will involve epigenetic
interactions. How much epigenetic modification is
involved is unknown.
Figure 6 shows etiopathogenetic hypotheses acting at cell,

tissue, structure and organ levels linked to possible epige-
netic mechanisms affecting vertebral growth plates, possibly
in a diverse network of developmental pathways [243].
Trunk velocity of growth and asymmetric internal pressure
as environmental stress
Trunk growth, hormonally stimulated, provides an
important internal environment in which scoliosis curves
progress [96]. Likewise, asymmetric internal pressure of
the intervertebral disc and vertebral growth plate in sco-
liosis suggests an abnormal stress environment generates
a positive feedback of cellular changes, resulting in
curve progression due to a combination of factors
[244,245]. These will include cyclical loads and asymme-
trical changes in disc fluid content which affect vertebral
growth (deforming three joint complex) [222].

Pathogenic asymmetry inducing and exacerbating
processes
AIS asymmetry-inducing processes [238,240] - be they
mechanical or biological - affecting vertebral growth
plates, may render other factors including velocity of
growth and hormones, abnormally increased or physio-
logic [3,6], to exacerbate the scoliotic deformity [243].
The etiologic, and potentially therapeutic, problem is to
establish in each AIS girl, which process(es) in what
pathway(s), is (are) abnormal, or exacerbating the
deformity.
Longitudinal studies
In a cohort of normal individuals born in the UK in
1946 and surveyed longitudinally to the present,
research is in hand to analyse tens of thousands of pos-
sible methylation sites in the DNA looking for changes
that could explain the link between birth weight and
breast cancer risk [246]. A similar study could evaluate
AIS subjects.

Epigenetics at the epicenter of modern medicine
Feinberg [17] writes:
“Epigenetics, the study of non-DNA sequence-related

heredity, is at the epicenter of modern medicine because
it can help to explain the relationship between an indivi-
dual’s genetic background, the environment, aging, and
disease...” (see Appendix II).

Figure 4 Epigenetic interactions as applied putatively to normal vertebral growth. (Drawn from descriptions mostly of Herring [136] and
Lieberman [138]).
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The therapeutic potential of epigenetics for preventing
and treating common human illness is threefold [17].
1) The possibility of new therapies because epigenetic

changes are by definition reversible, unlike sequence
mutations in disease.
2) Using medication to target biochemical pathways

that are disturbed epigenetically in disease.
3) To intervene at the junction between genome and

environment, to modify the effects of deleterious genes,
and to influence the effects of the environment on phe-
notypic plasticity - ie, cells’ ability to change their beha-
vior in response to internal or external environmental
cues.
The potential of these therapeutic and epigenetic epi-

demiologic approaches to AIS is at present unknown,
and is restricted by the absence of established environ-
mental factors involved in its etiopathogenesis.

Network medicine and AIS
Barabasi [247] introduced the term network medicine
which provides a network-based approach to human
diseases by constructing diseasomes. According to Bara-
basi et al [248] given the functional interdependencies
between the molecular components in a human cell, a
disease is rarely a consequence of an abnormality in a
single gene, but reflects the perturbations of the com-
plex intracellular and intercellular network that links tis-
sue and organ systems. Interactome describes the
complex biological systems and cellular networks within
cells [249].
Barabasi [247] states that network analysis is poised to

play its biggest role at the cellular level since most cellu-
lar components are connected to each other through
intricate regulatory metabolic and protein-protein inter-
actions with proteomic assessment where research is

Figure 5 Putative genetic and epigenetic approach to causal factors affecting vertebral growth plates (GPs) in health and AIS
pathogenesis (CNS = central nervous system). Moving from left-to-right in columns: 1) Exposome (yellow ); 2) external environment
(epigenetic, orange), internal environment (epigenetic, blue) and genetic (green); 3) factors controlling normal vertebral growth, genetic (green),
internal environment (blue) and external environment (orange) containing the physiologic growth-plate exposome; these factors are considered to
cause epigenetic changes (follow vertical arrows) in normal structures and contribute to the epigenome of vertebral growth plate cells; 4)
etiopathogenetic hypotheses for AIS containing the pathophysiologic scoliogenic exposome (pink) and genetic susceptibility (pink); 5) the resulting
AIS deformity (red); 6) the long vertical red arrow to the right represents craniocaudal pathophysiologic components affecting the trunk over
time leading to the AIS deformity. (Adapted to normal spinal growth and AIS pathogenesis from the multihit pathogenetic model for
inflammatory bowel disease of Maloy and Powrie [47] and the genetic/epigenetic model for common human diseases of Bjornsson et al [14]).
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needed [3,250]. The paradigm of network medicine is,
“think globally, act locally“.[248].
In AIS, consideration is needed for the possible crea-

tion of a network approach to etiopathogenesis by con-
structing AIS diseasomes.

Summary and Conclusions
1. Genetic factors are believed to play an important role
in the etiology of AIS in accordance with the genetic
variant hypothesis of disease.
2. Sporadic reports, particularly for monozygotic twins

but also other findings, suggest environmental factors
are involved in the etiopathogenesis and phenotypic
expression of AIS.
3. Research on the role of environmental factors and

epigenetics has exploded in the last decade but not so
for AIS (Figure 1).
4. Apart from the emerging role of epigenetic

mechanisms in the etiology of neural tube defects [60],

the Prader-Willi syndrome [71,72], and theoretical inter-
pretations of Burwell and colleagues [73-76] and
McMaster [77], epigenetics does not figure in any causal
analysis of postnatal normal spinal growth, or in the
etiopathogenesis of AIS (Figure 1).
5. There are three major ways organisms modify their

DNAs inherited messages without changing DNA
sequence: enzymes methylate DNA to modulate transcrip-
tion; histone modifications and nucleosome positioning to
induce or repress target sequences; and non-coding small
RNAs to modify the expression of specific genes where
there is therapeutic potential (Figure 3, Appendix V)
6. DNA methylation is an important epigenetic mechan-

ism operating at the interface between genome and envir-
onment to regulate phenotypic plasticity with a complex
regulation across the genome during the first decade of life
7. DNA methylation depends on dietary methionine

and folate, both of which are affected by the nutritional
state of the individual.

Figure 6 Postnatal development of AIS in the spine over time to puberty initiated by genetic factors (pink) and environmental factors
(internal pink for AIS, ? external orange) leading to AIS deformity (red). Etiopathogenetic hypotheses acting at cell, tissue, structure and
organ levels are linked to putative epigenetic mechanisms affecting vertebral growth plates. For example, in the asynchronous spinal neuro-
osseous growth concept [208-211] subclinical tether of a relatively short spinal cord causes a lordoscoliotic maladaption of the spine leading to
relative anterior spinal overgrowth (RASO) and the AIS deformity. These adaptive changes in the anterior spinal column are viewed as occurring
at cell, tissue and organ levels, and resulting from mechanically-induced effects in vertebral growth plates from epigenetic interactions and/or
epigenetic modification in vertebral growth-plates (Adapted from Jamniczky [140]).
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8. Epigenetic modification provides multicellular
organisms with a system of normal gene regulation that
silences portions of the genome and keeps them silent
as tissues differentiate as epigenotypes (Figure 3).
9. Errors in this complex system from environmental

and stochastic (random) events termed epimutations can
give rise to abnormal gene silencing, that may result in a
great deal of phenotypic variation and common disease.
10. Epigenetic interactions operating at cell, tissue, struc-

ture and organ levels, have been defined very recently by
some workers in keeping with Waddington’s inclusive
definition of epigeneticss; the term is used to describe addi-
tional mechanisms for modulating cellular effects in
response to changes in the internal and external environ-
ments without altering DNA sequence (Figure 4).
11. A molecular perspective encompassing epigenetic

modification and interactions at vertebral growth plates
for normal postnatal spinal growth and the etiopatho-
genesis of AIS is given.
12. The word exposome, means the totality of environ-

mental exposures, external and internal, from concep-
tion onwards that create dysfunction leading in some
individuals to occupational health problems,
13. The woed exposome is used here also in relation to

physiologic and etiopathogenetic factors that respectively
affect normal spinal growth and may induce the deformity
of AIS namely, physiologic growth-plate exposome and
pathophysiologic scoliogenic exposome (Figures 5 &6).
14. The concept of a one-hit to multi-hit model for

AIS pathogenesis is mentioned.

Future potential
1. The potential of epigenetic-based medical therapy for
AIS cannot be assessed at present. It must await new
research derived from the evaluation of epigenetic con-
cepts for spinal growth in health and deformity.
2. Consideration is needed for the creation of a net-

work approach to AIS etiopathogenesis by constructing
AIS diseasomes,
3. These approaches, epigenetic and network, may possi-

bly lead through several approaches - screening, genetic
[195,198,199,251], epigenetic, biochemical [3,173-175,229,
230], metabolic phenotypes [251] and pharmacogenomic
[5,251], to the modulation of abnormal molecular path-
ways [108,179,252] by the development of novel preventive
and curative measures based on diet, novel epigenetic
drugs [13,108] and other approaches [52].
4. The tenets outlined here for AIS etiopathogenesis

are applicable to other musculoskeletal growth disor-
ders, including infantile and juvenile idiopathic scoliosis.

APPENDIX I
Dual inheritance. Holliday [58] points out that genetic
inheritance in higher organisms normally refers to the

transmission of information from one generation to the
next. Nevertheless, there is also inheritance in somatic
cells, characterized by the phenotypic stability of differ-
entiated cells that divide (such as fibroblasts and lym-
phocytes), and also mitosis of stem line cells, which
gives rise to another stem line daughter cell, and one
that will differentiate.

APPENDIX II
Feinberg [18] places epigenetics in perspective as follows
(Figure 1):
“Traditionally, the pathology of human disease has

been focused on microscopic examination of affected tis-
sues, chemical and biochemical analysis of biopsy sam-
ples, other available samples of convenience, such as
blood, and noninvasive or invasive imaging of varying
complexity, in order to classify disease and illuminate its
mechanistic basis. The molecular age has complemented
this armamentarium with gene expression arrays and
selective analysis of individual genes. However, we are
entering a new era of epigenomic profiling, i.e., genome-
scale analysis of cell-heritable nonsequence genetic
change, such as DNAm. The epigenome offers access to
stable measurements of cellular state and to biobanked
material for large-scale epidemiological studies. Some of
these genome-scale technologies are beginning to be
applied to create the new field of epigenetic
epidemiology.”
According to Feinberg [18] the new filed of epigenetic

epidemiology will measure and catalog epigenetic varia-
tion within and across populations in genome-scale ana-
lyses to characterize the correlation properties of
methylation, similar to the catalog of SNP/CNV and
linkage disequilibrium (non-random association of
alleles at different loci), already showing promise in neu-
ropsychiatric disease.

APPENDIX III
Phenotypic plasticity, time dependency and the CDGE,
model for chronic disease. A common theme to disease
epigenetics is the disruption of phenotypic plasticity; this
is the ability of cells to change their behavior in
response to internal or external environmental cues over
time [12,14-16]. Feinberg and colleagues [14,17,18] sug-
gested the hypothesis that epigenetics provides an added
layer of variation that might mediate the relationship
between genotype and internal and external environ-
mental factors which they termed the common disease
genetic and epigenetic hypothesis (CDGE). This conjec-
tural model overlies the genetic hypothesis of disease
with an epigenetic component interacting with it
[17,78]. The CDGE, model better explains the age degen-
eration of epigenetic patterns than does the genetic
hypothesis [14].
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Genetic variant hypothesis of disease and non-genomic
factors. Butcher and Beck [1] write:
“A spate of high-powered genome-wide association stu-

dies (GWAS) have recently identified numerous single-
nucleotide polymorphisms (SNPs) robustly linked with
complex disease. Despite interrogating the majority of
common human variation, these SNPs only account for a
small proportion of the phenotypic variance, which sug-
gests genetic factors are acting in concert with non-
genetic factors. Although environmental measures are
logical covariants for genotype-phenotype investigations,
another non-genetic intermediary exists: epigenetics.” [see
[125]].

APPENDIX IV
Haig [133] states that epigenetics has different meanings
for different sciientists. Molecular biologists are familiar
with the definition as:
“The study of mitotically and/or meiotically heritable

changes in gene function that cannot be explained by
changes in DNA sequence [135].
In contrast, functional morphologists would be more

familiar with the definition:
“... the entire series of interactions among cells and cell

products which leads to morphogenesis and differentia-
tion.” [136]. Herring continues, “Thus all cranial devel-
opment is epigenetic... Among the numerous epigenetic
factors influencing the vertebrate face is mechanical
loading. Loading seems to be particularly significant for
formation and growth of skeletal tissues... Epigenetic
influences range from hormones and growth factors to
ambient temperature and orientation in a gravitational
field.” [see [137-140]].
Feinberg [17] states that epigeneticss is at the heart of

developmental biology, with the modern definition and
Waddington’s definition having converged. That is
because “...the epigenetic state of an organism pro-
gresses from gamete to zygote to somatic tissue, all of
which have profoundly different epigenomes, while the
DNA is the same [18]. This view does not accommodate
the concept of epigenetic interactions [137-140].
A few scientists take a more relaxed, or stricter view,

either including RNA modification or limiting to vertical
(generational) transmission [17].
Epigenetics does not invoke inheritance of mutational

changes. leaving open what kinds of mechanism are at
work [17]. An epigenetic system should be heritable,
self-perpetuating and reversible [141]. Bird [25] wishing
to avoid the constraints imposed by stringently requiring
heritability in the definition of epigenetics, suggested the
following:
“...the structural adaptation of chromosomal regions so

as to register, signal or perpetuate altered activity states.”

APPENDIX V
DNA methylation (DNAm). The predominant epigenetic
mechanisms involve DNA methylation, modifications to
chromatin, genomic imprinting [106,155,156], and non-
coding RNAs [46,52]. DNAm in mammals occurs
almost exclusively as the covalent addition (or mark) of
a methyl (CH3) group mainly to the nucleotide cytosine
at cytosine-guanine dinucleotide sequences catalyzed by
DNA methyltransferases (CpG islands, where ‘p’ indi-
cates interstitial phosphate group between the DNA
bases [10,17,26,29,63,141]). Promoters are key targets for
epigenetic modification [63]. There are also covalent
modifications of DNA-bound histones [157,158], notably
acetylation, phosphorylation, methylation and ubiquiti-
nation [1,159-161]. Cytosine methylations of gene pro-
moters which are reversible, are generally associated
with silencing of genes, whereas histone acetylations are
generally associated with activation of genes [26,99].
Many groups have studied the genomic distribution of
DNA cytosine methylation and other chemical modifica-
tions of histone proteins to the epigenome [145,161].
Imprinting leads to the mono-allelic expression of cer-
tain genes depending on the parent origin of the allele
controlled by imprinting control regions marked by DNA
and histone methylation on one of the two parent
alleles, perturbations of which induce diseases, including
the Prader-Willi syndrome [52]. Recently it has become
appreciated that hydroxymethylation of cytosine is a
minor, but prevalent, form of base modification in addi-
tion to 5-methylation [162].
DNAm and folic acid. The source of methyl groups

for DNAm is methionine an essential amino acid that is
converted to a biologically active methyl donor state, S-
adenosylmethionine, through a pathway involving folic
acid, both of which are affected by the nutritional state
[17,108,110, see Figure 1 of [108]]. Findings in subjects
with chronic kidney disease and uremia have established
a link between the epigenetic control of gene expression
and xenobiotic influences, such as folate therapy [163].
Accoeding to Park et al [104] nutrients involved in one-
carbon metabolism, namely folate, vitamin B12, vitamin
B6, riboflavin, methionine, choline and betaine, are
involved in DNA methylation by regulating levels of the
universal methyl donor S-adenosylmethionine and
methyltransferase inhibitor S-adenosylhomocysteine.
Other nutrients and bioactive food components such as
retinoic acid, resveratrol, curcumin, sulforaphane and
tea polyphenols can modulate epigenetic patterns by
altering the levels of S-adenosylmethionine and S-adeno-
sylhomocysteine or directing the enzymes that catalyse
DNA methylation and histone modifications.
MicroRNAs, short interfering RNAs and potential for

therapy. MicroRNAs (miRNAs) are a class of short
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endogenous non-coding RNAs that act as post-tran-
scriptional regulators of gene expression by attaching
themselves to messenger RNA [52]. MiRNAs play fun-
damental roles in the control of many biological pro-
cesses such as growth, development, differentiation and
cell, death by repressing their target genes, and in rela-
tion to cancer and some other diseases [52]. Some miR-
NAs are regulated by epigenetic mechanisms, especially
by methylation [52]. Short interfering RNAs, are a class
of double-strnded RNA (dsRNA) molecules, that can
guide methylation to complementary DNA, were first
elucidated in plants, to enable the precise targeting of
gene action [164]. Plant-derived miRNAs which enter
the blood stream have been shown to muffle or amplify
gene expression by binding to strands of messenger
RNA with potential for therapy [53].
DNAmn and metals. Epigenetics may be the critical

pathway by which metals produce their health effects
[108,165]. Copper [166-168], zinc [168] and selenium
[168,169] have each been linked to the pathogenesis of
AIS. Other metals disrupt DNAm [170,171].
DNAm in MZ twins, aging and epigenetic drift. Recent

studies using mostly peripheral blood lymphocytes (also
skin, muscle and fat) and a battery of powerful molecu-
lar genetic methodologies coupled with competitive
chromosomal hybridizations, suggest that phenotypic
discordance between MZ twins is to some extent due to
epigenetic factors that change over the lifetime of a mul-
ticellular organism [24,99]. It has been proposed that
epigenetic drift during development can result from sto-
chastic mechanisms (independent of environmental per-
turbations), or determined by such environmental
perturbations [24,99,172]. Eckhardt et al [63] found no
age-related DNAm change but did not report longitudi-
nal data. In a longitudinal study, Bjornsson et al [14]
found methylation changes over time with familial clus-
tering suggesting that methylation maintenance may be
under genetic control. In 46 MZ twin-pairs and 45 DZ
twin-pairs Wong et al [50] found that DNAm differ-
ences are apparent already in early childhood, even
between genetically identical individuals; and that indivi-
dual differences in methylation are not stable over time.
Unlike the primary DNA sequence, methylation status
will depend on the tissue being analysed [Armour J per-
sonal communication]. Epigenetic mechanisms may be
causal in the aging process and be influenced by diet
providing opportunities to improve health in later life
[108].

APPENDIX VI
In connection with epigenetic interactions in normal
development, Lieberman [138] writes:
“In normal development, “ .... hormones and growth

factors bind with specific receptors in the cell membrane

or nucleus. Activated receptors then trigger a cellular
response through mechanisms such as altering gene tran-
scription, altering ion transport in and out of the cell,
activating or inhibiting intracellular enzymes, stimulat-
ing protein synthesis, or inducing cellular proliferation.”
“Regulation of local growth occurs through interactions

between the genes that cause skeletogenic cells to synthe-
size, resorb, or otherwise modify skeletal tissue, and sti-
muli from other genes or cells. Such interaction between
cells and their environment (which includes other cells)
are generally categorized as epigenetic interactions...
Additional categories of epigenetic interactions influen-
cing morphogenesis include systemic hormones, growth
factors, and the effects of mechanical loading.”
“Bones do have a strong genetic component to their

growth and development, but a set of complex and con-
strained interactions between bone cells and their
mechanical environment can influence bone morphology,
particularly while the skeleton is still growing.” (see Her-
ring [136] in Appendix IV]).

APPENDIX VII
Some hypotheses and concepts of AIS etiopathogenesis
[2,6,192]
(1) Genetics [2,4,5,92,193-199].
(2) Biomechanical spinal growth modulation [181,182].
(3) Relative anterior spinal overgrowth (RASO)

[200-203].
(4) Dorsal shear forces and axial rotation instability

[204,205].
(5) Asynchronous spinal neuro-osseous growth

[206-211].
(6) Postural abnormalities including vestibular and

CNS dysfunction [2,212,213].
(7) Motor control problem [214-217].
(8) Body-spatial orientation concept [218].
(9) Neurodevelopmental concept [219].
(10) Thoracospinal concept [79-83,220,221].
(11) Deforming three joint complex hypothesis [222].
(12) Systemic melatonin deficiency [223-226].
(13) Systemic melatonin-signaling pathway dysfunction

[173,174,177,227-230].
(14) Relative osteopenia [113,114,231,232].
(15) Systemic platelet calmodulin dysfunction

[233-236].
(16) Developmental instability & symmetry control

dysfunction [85-87,237-241].
(17) Intrinsic growth plate asymmetry hypothesis

[74,75,188,237-241].
(18) Collective and escalator models [192].
(19) Leptin-hypothalamic-sympathetic nervous system

(LHS) dysfunction with disharmony between somatic
and autonomic nervous systems in the spine and trunk
[[6], see [3,242]].
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