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Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance
to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that
type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix
proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound
healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or
diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications,
however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of
rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current
body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.

1. Introduction

Endothelial cell dysfunction (ECD) is a broad term which
implies dysregulation of endothelial cell functions, includ-
ing impairment of the barrier functions of endothelial
cells, vasodilation, disturbances in proliferative capacities,
migratory as well as tube formation properties, angiogenic
properties, attenuation of synthetic function, and deterrence
of white blood cells from adhesion and diapedesis [1].
Several factors contribute to ECD including smoking, high
blood pressure, diabetes, high cholesterol levels, obesity,
hyperglycemia, advance glycation end products (AGEs),
and genetic factors [1, 2]. Diabetes is a chronic metabolic
disorder characterized by inappropriate hyperglycemia due
to lack of or resistance to insulin, which contributes to
ECD. About 170 million people worldwide are affected by
diabetes including 20.8 million diabetic patients in the USA,
numbers projected to double by 2030 [3]. Diabetes can be
stratified into two groups with type 1 diabetes being insulin
dependent and type II insulin independent. Both type 1 and
type 2 cause hyperglycemia, which in turn causes endothelial
dysfunction by its different glycooxidative products. Type 2

diabetes causes insulin resistance which is also responsible
for endothelial dysfunction [4]. Obesity, which is individu-
ally a risk factor for EC dysfunction is also closely related
to type 2 diabetes [5]. These two amplify the ECD more
frequently. Angiogenesis or neovascularization is a global
term which typically involves arteriogenesis and vasculoge-
nesis [6]. These complex processes require multiple factors
to stimulate vascular sprouting, remodeling, and recruitment
of endothelial cells as well as establish stable vasculature
[6, 7]. Angiogenic responses are known to be defective in
some tissues (e.g., peripheral limbs) while enhanced in other
tissues (e.g., retina) during diabetes [8]. Here, we discuss
the contribution of endothelial dysfunction and subsequent
aberrant angiogenic responses in diabetes. Figure 1 illustrates
several pathophysiological conditions under diabetes and the
major subsequent symptoms associated (Figure 1).

2. Endothelial Dysfunction

Endothelial dysfunction is a systemic pathological condition
which can be broadly defined as an imbalance between
vasodilating and vasoconstricting substances produced by
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Peripheral artery disease

(i) Atherosclerosis

(ii) Thrombosis

(iii) EC dysfunction
(↓NO bioavailability)

(iv) Vasoregulation dysfunction

(v) Nonhealing wounds
(vi) CRP ↑
(vii) PAI-1 ↑

Diabetic retinopathy

(i) Leakiness of blood vessels

(ii) Blindness
(iii) VEGF ↑
(iv) H-Ras ↑
(v) Cytokines ↑ (TNF-α, IL-1β)

(vi) MMP-9 ↑
(vii) PKCΔ ↑
(viii) Chemokines ↑ (CCL2, CCL5)

Diabetic nephropathy

(i) Edema

(ii) Arteriosclerosis of renal artery
(iii) Angiotensin II ↑
(iv) Cytokines (TGF-β, IL-18) ↑
(v) Cell adhesion molecules ↑
(E-selectin, ESAM, VCAM)
(vi) MAPK ↑
(vii) NFκB ↑
(viii) IκB ↓

Erectile dysfunction
(i) NO ↓
(ii) PDE5 ↑
(iii) ROS ↑

Heart disease and stroke

(i) Atherosclerosis

(ii) Thrombosis

(iii) Hypertension

(iv) Impaired Na+, Ca2+, K+

(v) LDL cholesterol ↑
(vi) VEGF ↓
(vii) Akt/PI3K ↓
(viii) eNOS/NO ↓

Diabetic neuropathy

(i) Pain or numbness

(ii) Muscle weakness
(iii) DAG ↑
(iv) PKC ↑
(v) Polyol/aldose reductase ↑
(vi) Glutathione ↓
(vii) ICAM ↑
(viii) ROS ↑
(viv) AGE/RAGE ↑

Figure 1: Diabetic vascular disease effects and symptoms. Various pathophysiological conditions affected in the body due to diabetic vascular
disease are illustrated. Prominent symptoms of diabetes mediated abnormalities are indicated for each condition.

the endothelium or overall functions of the endothelium
[2]. Normal functions of endothelial cells include produc-
tion of nitric oxide (NO), regulation of platelet adhesion,
coagulation, immune function, control of volume, and
electrolyte content of the intravascular and extravascular
spaces. Endothelial dysfunction is primarily due to reduction
in NO bioavailabilty, and a marker for vascular health.
Endothelial dysfunction can result from and/or contribute
to several disease processes, as occurs in diabetes mellitus,
hypercholesterolemia and hypertension, and also due to
environmental factors, such as smoking tobacco products
and exposure to air pollution [9].

Specifically, endothelial dysfunction is associated with
reduced nitric oxide production, anticoagulant properties,
increased platelet aggregation, increased expression of adhe-
sion molecules, increased expression of chemokines and
cytokines, and increased reactive oxygen species production
from the endothelium [10]. These all play important roles
in the development of diabetic vascular complications

including atherosclerosis and other vascular pathologies.
Importantly, endothelial dysfunction has been shown to be of
prognostic significance in predicting vascular events [11, 12],
so endothelial function testing may potentiate the detection
of cardiovascular diseases such as myocardial infarction,
peripheral vascular disease, ischemic stroke, and others [13,
14].

An important feature of endothelial dysfunction is the
inability of arteries and arterioles to optimally dilate in
response to an appropriate stimulus by vasodilators acting on
the endothelium. This endothelial dysfunction is notoriously
associated with decreased NO bioavailability, which is due
to impaired NO production by the endothelium and/or
increased inactivation of NO by reactive oxygen species
[15, 16]. Figure 2 illustrates the various steps involved in
blood vessel leading to vascular endothelial dysfunction
and inflammation under diabetes (Figure 2). Reduced NO
bioavailability decreases the ability of endothelial cells to
execute their functions in regulating vascular tone and
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Leukocyte
migration

Cholesterol

Platelet
activation

Glucose

LDL

Endothelial
cells

Smooth
muscle cells

ROS

O2 ↑

VCAM

ICAM

iNOS ↑
Foam
cells

Cytokines ↑

Arginase ↑

activaty

ONOO− ↑↑ NO + O2

↓ L-Arg

↑ ADMA

↓ NO

↓ eNOS
↓ BH4

Figure 2: Hyperglycemic effects on the blood vessel. Atherosclerotic plaque formation initiated through uptake of LDL from blood by
endothelial cells. Foam cells produce proinflammatory cytokines that are released into the lumen of blood vessel (far right). Increased
ROS production through iNOS leads to increased ROS generation. Steps involved in leukocyte adhesion and migration (bottom left).
Increased glucose leads to decreased L-arginine and BH4, which leads to decreased NO production in endothelial cells. All of these factors
are proinflammatory and atherogenic.

growth, thrombosis, immune cell responses, and vascular
barrier functions.

3. Diabetes

Diabetes mellitus is a group of metabolic diseases in which
a person has high blood glucose either because the body
does not produce enough insulin, or because cells do not
respond to the insulin that is produced by the pancreas. This
resulting high blood sugar produces the classical symptoms
of polyuria: frequent urination polydipsia (increased thirst)
and polyphagia (increased hunger) [17].

Type 1 diabetes results from the body’s failure to produce
insulin due to autoimmune or idiopathic destruction of
cells, and may require the injection of insulin to control
symptoms. In type 1 diabetes, the pancreas cannot synthesize
enough insulin to maintain euglycemia. Type 1 diabetes is
more common among children and young adults and insulin
injections are used for treatment, thus type 1 diabetes is also
referred to as insulin dependent diabetes mellitus (IDDM) or
Juvenile Diabetes [17, 18].

In case of type II diabetes, there is normal production of
insulin hormone but the body cells are resistant to insulin,
a condition in which cells fail to use insulin properly, or
sometimes combined with an absolute insulin deficiency.
Cells and tissues are not responsive to insulin, so glucose
remains elevated in the bloodstream. Type 2 diabetes is
commonly manifested by middle-to-late-aged adults (40

years); however, its prevalence is increasing in younger
populations. As insulin was initially not considered necessary
for treatment of type 2 diabetes, it is known as non-
insulin dependent diabetes mellitus (NIDDM) or Adult
Onset Diabetes [17, 19].

A diabetic patient cannot metabolize carbohydrates,
proteins or fats due to improper production of insulin, a
blood glucose regulator, or resistance to insulin. Insulin helps
cells use glucose as a main energy source. However, diabetic
patients’ cells do not make use of glucose from the blood due
to abnormal insulin metabolism, resulting in elevated blood
glucose levels or hyperglycemia. Over time, high glucose
levels in the bloodstream can lead to severe complications
such as vision loss, cardiovascular diseases, kidney disorder,
and nerve damage [17–19].

4. Angiogenesis

Angiogenesis is a global term which indicates the physio-
logical process involving the growth of new blood vessels
or neovascularization. This is a vital process for embry-
ological growth, tissue development, and wound healing
in damaged tissues. Angiogenesis is also an important step
in the transition of tumors from a confined locale to
malignancy [20]. Neovascularization or angiogenesis has also
been interchangeably associated with vasculogenesis which
primarily refers to developmental formation of vascular
structures from circulating or tissue-resident endothelial
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progenitor cells that proliferate into de novo endothelial
cells. Angiogenesis predominantly relates to formation of
endothelium-lined microvasculature with supportive cells
(e.g., pericytes). Postembryonic vascular development plays
an important role throughout life to address tissue metabolic
and functional needs as well as reproductive physiological
responses. Arteriogenesis refers to maturation and enlarge-
ment of smaller preexisting arterial vessels through vascular
remodeling or collateral growth.

These processes require several biochemical and physio-
logical factors to stimulate vessel sprouting and remodeling
of the primitive vascular network, which in turn establish
stable and functional blood vessel networks. There are
several angiogenic factors which are involved in stimulation,
promotion, and stabilization of new blood vessels such as
VEGFs, FGFs, Angiopoietins, PDGF, MCP-1, TGF, various
integrins, VE-cadherin, ephrins nitric oxide, and others [20–
23]. Likewise mechanical stimulation such as physiological
shear stress is also important particularly in arteriogenesis
[24]. Angiogenesis and arteriogenesis/vascular remodeling
represents excellent therapeutic options for the treatment of
numerous cardiovascular diseases. Below is a table showing
the causes of excessive and deficient angiogenesis under
diabetes (Table 1).

4.1. Increased Production of Reactive Oxygen Species. Both
endothelial cells and vascular smooth muscle cells are capable
of producing reactive oxygen species from a variety of
enzymatic sources. In disease states such as diabetes, vascular
production of reactive oxygen metabolites can increase sub-
stantially [15]. Increased production of the superoxide anion
(O2

−) can lead to decreased tissue bioavailability of nitric
oxide (NO) via a facile radical/radical reaction that occurs
more rapidly than the reaction of O2

− with superoxide
dismutase (SOD) [25]. This phenomenon alters endothelial
regulation of vasomotion in a variety of disease conditions.
Importantly, this endothelial dysfunction is due to vascular
production of superoxide. There are several enzymes that
involve generating ROS such as NADPH oxidase, aldehyde
oxidase, xanthine oxidase, and glucose oxidase. Besides these,
mitochondrial uncoupling also produces ROS by various
mechanisms, which are all discussed below.

4.1.1. NADPH Oxidase. Recent evidence suggests that the
major source of vascular superoxide ion and hydro-
gen peroxide (H2O2) occurs through membrane-bound,
nicotinamide-adenine-dinucleotide- (NADH-) dependent
oxidase (NOX) [26]. NOX is a transmembrane enzyme
and generate superoxide by electron transfer from NADPH
to molecular oxygen. The product of this reaction is the
O2

−, which undergoes secondary reactions. O2
− inactivates

NO to yield peroxynitrite and can also spontaneously or
under catalysis by SODs form H2O2 [27, 28]. NADPH-
oxidase-derived ROS has been implicated in the regulation
of vasodilation directly or indirectly by decreasing NO
bioavailability [29, 30]. This observation provides a direct
link between NADPH oxidase and endothelial function
in humans. In pathological conditions such as diabetes,

atherosclerosis, hypertension, cardiac failure, and ischemia
reperfusion injury, ROS generation mediates endothelial
cell dysfunction, cell proliferation, migration, inflammation,
extracellular matrix deposition, fibrosis, angiogenesis, and
cardiovascular remodeling [31, 32].

4.1.2. Aldehyde Oxidases. Aldehyde oxidase (AO) produces
O2

− and H2O2 from aldehyde [33, 34]. These aldehydes
are the substrate for both AO and xanthine oxidase (XO).
In diabetes, lipid peroxidation and glycation of protein are
much more common than in normal healthy subjects [35].
Therefore, the contribution of oxidative stress from aldehyde
AO would be higher. AO-derived ROS may also play role in
cardiovascular complications in diabetes [36]. However, the
pathophysiological importance of this pathway for diabetic
vascular disease requires further study.

4.1.3. Xanthine Oxidases (XOs). Xanthine oxidase (XO)
activity accounts for significant increased of ROS production
in different tissues, as treatment with the XO inhibitor
(allupurinol) reduces the ROS production [37]. Increase of
both XO expression and activity results in imbalance of
ATP/ADP ratio and increased ROS production in skeletal
muscle of STZ-induced diabetic mice [38, 39]. These studies
demonstrate that superoxide generated through increased
XO seen in experimental diabetic mice is intimately involved
in the pathogenesis of diabetic vascular complications.

4.1.4. Glucose Oxidase. Glucose oxidase (GO) oxidizes glu-
cose, which leads to production of free radicals resulting
in oxidative stress during diabetes. There is evidence that
glycation of protein depends on the oxidation of glucose
since the product of glucose oxidation is attached to the
protein to generate AGEs [40]. AGEs mediate increased
NADPH subunit gp91 expression, NADH/NADPH oxidase
activity, and decreased manganese super oxide dismutase
(MnSOD) levels [41]. This finding indicates that AGEs play
key pathophysiological roles in increasing oxidative stress
in diabetes along with subsequent endothelial dysfunction
through decreasing endothelial nitric oxide synthase (eNOS)
phosphorylation.

4.1.5. Mitochondrial Dysfunction. One of the major intra-
cellular sources of ROS production is mitochondria. ROS
formation is a byproduct of oxidative phosphorylation across
the mitochondrial respiratory chain. Although mitochon-
drial complexes 1 and 3 are mainly responsible for generation
of ROS, dysfunction of complexes 2 and 4 may result
in electron leak and increased ROS production [32, 42].
Hyperglycemia in humans or animal models of diabetes is
associated with impaired mitochondrial activity predomi-
nantly in vascular tissues resulting in mutations within mito-
chondrial DNA, ROS production, apoptosis, and endothelial
dysfunction [43–45]. However, the vascular damage by mito-
chondrial ROS can be prevented by upregulation of MnSOD
and UCP-1, which reduces PKC activation, formation of
AGEs, and NF-κB activation in endothelial cells [46].
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Table 1: Comparison of aberrant angiogenesis under diabetes.

Defective angiogenesis Excessive angiogenesis

Phenotype Causes Phenotype Causes

Reduced angiogenesis and
collateral formation

Reduced VEGF, FGF, EPC circulation,
cytokines, ECM/BM degradation;

increased AGEs and MMP
Retinal capillary occlusion Elevated intraocular pressure

Vascular occlusion,
inflammation

Increased free fatty acids, polyol pathway,
cytokines, ICAM, VCAM

Increased vascular
permeability

Increased VEGF

Reduced wound healing;
transplant failure

Reduced VEGF and growth factors;
sorbitol-inositol imbalance; increased
ACE, Ang-II and tissue factor mRNA

Capillary sprouting
Increased VEGF, FGF, PDGF;
cytokines (TGF-β); integrins

Embryonic vasculopathy
(anomalous vasculogenesis
and angiogenesis)

Reduced VEGF, IL-1, TGF-β Vascular remodeling
Increased laminin, fibronectin,
collagen IV, ECM components,

lipidosis

4.1.6. Comparison of ROS-Induced Pathogenesis and Subse-
quent Complications in Both Types of Diabetes. The com-
bined effects of genetic susceptibility, environmental factors,
and dietary deficiencies are known responsible for type 1
diabetes. Autoreactive T cells recognize and liberate ROS and
proinflammatory cytokines [47]. Research-based evidence
supported that there is an increase in ROS generation
from activated phagocytes following viral attack [48]. NOX-
derived as well as mitochondrial ROS have implications in
β cell destruction and onset of diabetes. Hyperglycemia can
increase assembly of NOX enzymes through its p47 phox
subunit and therefore enhance superoxide production and
facilitates β cell destruction [49]. The superoxide leaked from
mitochondria can form H2O2 and work to uncouple glucose
metabolism from insulin secretion. Ultimately, high level of
oxidative stress can cause β cell death [46, 50].

Previously, Takasu et al. have demonstrated in rat model
that alloxan induces type 1 diabetes which causes redox-
mediated β cell DNA fragmentation culminating in cell
death [51]. In contrast, recent studies show that alloxan
resistant strain of mice shows increased ROS dissipation
and resistance to β cell death [51]. Streptozotocin also
produces XO-mediated superoxide that binds with NO
to generate peroxynitrite [52]. Antioxidant defense of β
cell mitochondria is exceptionally low due to its reduced
glutathione peroxidase, SOD, and catalase activity [53].
This can make β cells vulnerable to excess oxidative stress
and subsequent cytokine-mediated autoimmune attack [54].
Therefore, ROS whatever the source is directly or indirectly
responsible for development of type 1 diabetes.

The hallmark of type 2 diabetes is insulin resistance as
well as β cell dysfunction. ROS is involved in progression
of insulin resistance, which leads to β cell dysfunction
developing into type 2 diabetes [55, 56]. There are couples
of mechanisms to ROS-induced onset of type 2 diabetes
[57–64]. Tirosh et al. suggested that ROS disrupts insulin-
induced cellular redistribution of insulin receptor substrate-
1 (IRS-1) and phosphatidylinositol 3 kinase (PI3K) and
thus impairing GLUT4 translocation in 3T3-L1 adipocytes
[62]. Another mechanism is that hyperglycemia-induced
excess ROS presumably lead to activation of JNK pathway.

This activation of JNK pathway activates inflammatory
cytokines which eventually involved in insulin resistance and
dysfunction of β cell in type 2 diabetes [57, 63]. These studies
suggest that ROS is increased in both types of diabetes.

ROS causes loss of insulin type 1 diabetes by destructing
the β cells but it causes insulin resistance in type 2 diabetes
by β cell dysfunction of [49, 55, 56]. Endothelium-dependent
vasodilation is impaired in diabetic animals and humans.
Excessive production of vascular superoxide contributes to
this impairment of endothelium-dependent vasorelaxation
[65]. There is evidence that pretreatment of diabetic rat
aorta with SOD and/or antioxidant probucol prevents the
impairment of endothelium-dependent relaxation in aortic
rings [66]. Likewise, pretreatment with either SOD or
catalase has been shown to improve endothelium dysfunc-
tion in streptozotocin-induced diabetic rats suggesting that
vascular production of both superoxide and H2O2 may
contribute to endothelial dysfunction [67]. Another rele-
vant mechanism involves direct inactivation of endothelial-
derived relaxing factor (EDRF) by advanced glycation end
products, (AGEs) and increased adhesion of leukocytes to the
endothelium [68]. Besides, this increased production of the
superoxide anion can lead to decreased tissue bioavailability
of nitric oxide (NO) via a facile radical/radical reaction
that occurs more rapidly than the reaction of superoxide
anion with superoxide dismutase [25]. This phenomenon
alters endothelial regulation of vasomotion in a variety of
disease conditions. Importantly, this endothelial dysfunction
is due to vascular production of superoxide. Therefore, ROS-
induced loss of insulin or insulin resistance is responsible for
ultimate onset of type 1 and type 2 diabetes and their vascular
complications, respectively. Finally, ROS-induced endothe-
lial dysfunction is mediated by decreased NO bioavailability,
inactivation of EDRF by AGEs that are common pathways in
both type, of diabetes.

4.1.7. Role of ROS in Impaired Angiogenesis in Diabetes.
Cardiovascular complications are the leading cause of
morbidity and mortality in patients with diabetes mel-
litus. In particular, diabetes is associated with a poor
outcome after vascular occlusion. This can be attributed in
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part to impaired neovascularization [69]. Three principal
events, vasculogenesis, angiogenesis, and collateral growth,
contribute to postnatal vessel growth, and each may be
affected by diabetes. Indeed, there are a number of equally
tenable hypotheses regarding the mechanisms underlying
alterations in blood vessel growth in diabetes, including a
reduction in vascular endothelial growth factor-A (VEGF-
A) signaling, changes in inflammation-related pathways, and
accumulation of advanced glycation end products [70–72].
Postnatal vasculogenesis can also be affected because the
proangiogenic effects of bone marrow mononuclear cells
(BM-MNCs) and endothelial progenitor cells (EPCs) are
reduced in diabetic mice and patients with either type 1 or
type 2 diabetes [73]. Evidence suggests that the effects of
ROS on vascular function depend critically on the amount
of ROS present. However, precise amounts and the species
of ROS involved are not fully understood. Low levels of
ROS (principally H2O2) under physiological conditions can
act as intracellular secondary messengers modulating proan-
giogenic pathways such as VEGF-A signaling and postnatal
vasculogenesis; conversely, higher levels of ROS can impair
neovascularization [74, 75]. These ROS include superoxide,
hydrogen peroxide, hydroxyl radical, lipid peroxides, and
peroxynitrite, which are recognized to play major roles in
vascular biology stimulating redox signaling [75, 76]. Each
of these species derives from specific enzymatic or chemical
reactions as discussed earlier.

Seminal works in experimental models of types 1 and
2 diabetes, as well as in human patients, suggest that there
is a strong link between ROS and diabetes [75, 77]. Several
studies have been performed in diabetic patients, animals,
and in high-glucose-treated endothelial cells that implicate
NADPH oxidase as an important source of hyperglycemia-
induced ROS formation [69, 78–80]. Ebrahimian et al.
demonstrated that diabetes-induced overproduction of ROS
impairs postischemic neovascularization [69]. This study
also reported that blockade of oxidative stress in the setting
of diabetes restores key pathways involved in angiogenesis,
such as VEGF-A signaling and postnatal vasculogenesis.
However, NADPH oxidase activity and ROS production
mediate angiogenesis in both cultured cells and in vivo
models of neovascularization [81]. Nishikawa et al. suggest
that glucose-induced mitochondrial production of ROS
stimulates several biochemical mechanisms involved in
diabetic complications, including retinopathy [46]. Studies
indicate that superoxide production by NADPH oxidase has
a primary role in VEGF expression and vitreoretinal neo-
vascularization in a mouse model for ischemic retinopathy
[82]. Moreover, increased expression of NADPH subunit
NOX2 correlates with increases in ROS and VEGF and
breakdown of the blood-retinal barrier during diabetic
retinopathy [83]. In addition, superoxide overproduction by
NADPH oxidase likely reduces NO bioactivity by scavenging
or through uncoupling of endothelial nitric oxide synthase
and may also lead to the formation of other signaling species
such as peroxynitrite [77, 84]. These alterations in NO
signaling might contribute to modulation of postischemic
neovascularization because NO is a well-known mediator
of BM-MNC mobilization and differentiation, as well as

basal neovascularization reaction [85]. However, previous
studies present evidence that NADPH oxidase activity and
expression are significantly increased in diabetic tissue [77,
81]. Evidence shows that blockade of NADPH oxidase
activity or the scavenging of ROS restores postischemic
neovascularization in diabetes. The subcellular distribution
of NADH oxidase activity responsible for the effects of
diabetic retinopathy is not clear. Though there is evidence
that NADH oxidase is expressed in retinal epithelium and
retinal pericytes, there is no clear information on the con-
tribution to increased angiogenesis [86]. In addition, there
are no studies available implicating the exact role of VEGF
in macular edema and retinal angiogenesis. Hyperglycemia-
induced overproduction of ROS also impairs EPC function
leading to impairment of angiogenesis and vasculogenesis
in diabetes [87, 88]. But EPC implications on ROS and
angiogenesis under diabetes is still not clear and a subject of
extensive study.

It has been reported that diabetes-induced increases in
ROS-mediated p38MAPK phosphorylation in BM-MNCs
reduce BM-MNC differentiation into EPCs in vitro and
impair their proangiogenic potential in vivo [73]. Similarly,
diabetes has been shown to activate p38MAPK in vascular
cells via PKC-dependent and -independent pathways [89].
Moreover, p38MAPK activation is known to downregulate
EPC proliferation and differentiation that may contribute
to impaired vasculogenesis in diabetes. Antioxidant defense
capacity is reduced in animal models of diabetes, and this
can also contribute to diabetes-induced oxidative stress [90].
Chronic treatment of diabetic animals with N-acetyl cysteine
(NAC) improved or normalized endothelium-dependent
responses which may normalize impaired angiogenesis in
diabetes [91]. Vasodilation, a primary initiation factor for
arteriogenesis, is attenuated through ROS reduction of NO
bioavailability during diabetes. There is strong evidence
that collateral formation is impaired in diabetes [92]. This
further substantiates that all three components of diabetic
angiogenesis are impaired by ROS, whatever the source of
production.

4.2. Decreased NO Production and EC Dysfunction. The
vascular endothelium comprises the internal lining of blood
vessels, which serves as an interface between the blood and
smooth muscle cells. Endothelium is a key determinant
of vascular health in addition to being a barrier between
luminal contents and the vessel. Endothelial dysfunction,
which is often related to impaired endothelium-dependent
NO-mediated relaxation, occurs in both cellular and experi-
mental models of diabetes [93–95]. Similarly, the majority of
clinical studies have shown an abnormality in endothelium
dependent vasodilation in patients with diabetes [96–98].
Thus, decreased levels of NO may underlie the atherogenic
predisposition of diabetes. Many of the metabolic conditions
associated with diabetes, including hyperglycemia, excess
free fatty acid liberation, and insulin resistance mediate
abnormalities in endothelial cell function by affecting the
synthesis or degradation of NO [99].
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Endothelial dysfunction associated with insulin resis-
tance appears to precede the development of overt hyper-
glycemia in patients with type 2 diabetes mellitus [100,
101]. Oxidative stress and insulin resistance have a direct
relationship mediating diabetic cardiovascular complica-
tions. Insulin plays a critical role in the maintenance of
physiological endothelial function through its ability to
stimulate NO release via a cascade that involves activation
of the PI3K-Akt signaling and downstream serine phospho-
rylation of eNOS. A key characteristic of insulin resistance
is decreased PI3K signaling, increased mitogen-activated
protein kinase (MAPK) activity, and increased secretion of
ET-1, a consequence of endothelial dysfunction [102].

The majority of deaths occurring in patients with
diabetes is due to vascular dysfunction. Studies have shown
that endothelial dysfunction, as represented by impaired
endothelium-dependent NO-mediated relaxation, occurs in
diabetes [98, 103]. The first evidence of endothelial dysfunc-
tion in humans was reported in penile corpora cavernosa of
IDDM and NIDDM patients [104]. High concentrations of
glucose have been associated with endothelial dysfunction
in vivo and in vitro [95, 105]. Mechanisms underlying
this endothelial dysfunction could include decreased activ-
ity and/or expression of eNOS or increased degradation
of NO secondary to enhanced superoxide production.
More recent data support the concept of NO degradation,
because treatment of vessels from diabetic animals with
SOD improved endothelial-dependent relaxation and the
use of vitamin C (another known antioxidant) in patients
with non-insulin-dependent diabetes markedly increased
endothelial-dependent relaxation in forearm arterioles [105,
106]. Mechanisms involved in decreased NO bioavailability
and endothelial dysfunction under diabetes is depicted in
Figure 3. Posttranslational modification of eNOS through
the hexosamine pathway, downregulation of eNOS expres-
sions and S-nitrosylation of eNOS have been the major
causes for diabetic endothelial dysfunction [107–109].

4.2.1. Causes of Reduction of NO Production Leading to ECD

(1) Reduction of NO Bioavailability. Nitric oxide is a key
signaling molecule produced by vascular endothelial cells,
which plays a vital role in the maintenance of vascular
tone and other physiological processes of the cell. Cellu-
lar exposure to high glucose as seen in diabetes induces
generation of reactive oxygen species (ROS) [110]. Another
major abnormality that is commonly prevalent with diabetes
is decreased in NO bioavailability [111]. A number of
studies suggest that decreased NO bioactivity associated
under hyperglycemia and diabetes is due to either quenching
of normally released NO or impairment of NOS activity
[100]. Reduced vascular production of NO is associated
with uncoupling of eNOS due to ROS, reduced cofactors
of eNOS such as L-arginine and tetrahydrobiopterin (BH4),
and improper activity of BH4 producing enzyme GTP
cyclohydrolase I [112, 113].

(2) eNOS Phosphorylation. Defects in Akt/eNOS signaling
may play a primary role in endothelial dysfunction in type
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Figure 3: Signaling mechanisms leading to endothelial dysfunc-
tion under diabetes. Diabetes-mediated hyperglycemia leads to
multiple-signal pathway dysfunction within vascular endothelial
cells. Primary insults include mitochondrial dysfunction, defective
PI3 kinase signaling, decreased NO production, increased oxida-
tive stress, and differential PKC isoform activation. Key words:
pARP: poly (ADP-ribose) polymerase; AGE: advance glycation
end products; DAG: diacylglycerol; NF-κB: nuclear factor kappa-
B; PKC: protein kinase C; iNOS: inducible nitric oxide synthase;
NADH: nicotinamide adenine dinucleotide; NO: nitric oxide;
RAGE: receptor for advanced glycation endproducts; O2

•: super-
oxide anion; ONOO−: peroxynitrite; PI3K: phosphatidylinositol
3-kinases; AKT: protein kinase B; eNOS: endothelial nitric oxide
synthase; GTPCH: GTP cyclohydrolase; BH4: tetrahydrobiopterin;
BH2: dihydrobiopterin.

2 diabetes mellitus. Studies have shown that Akt/eNOS
phosphorylation is decreased in aortas of diabetic animals,
as well as type 2 diabetic patients [114]. Activation of
PI3K-Akt pathway eNOS-derived NO results in improved
endothelial function and rescue of impaired myocardial
cells [115]. Recent studies on eNOS gene disruption studies
in mice revealed that deficiency leads to insulin resistance
resulting in hypertension and hyperlipidemia [116]. Further
biochemical studies in insulin-responsive cells have revealed
a phosphorylation-dependent signaling role in insulin stim-
ulated activation of eNOS [117]. Chen and Stinnett have
shown in studies with diabetic mice that high glucose
upregulated Ang-2 and downregulated Tie-2 expression
leading to significant impairment of Ang-1-induced Akt
and eNOS phosphorylation, which resulted in impairment
of endothelial cell migration and sprouting [118]. Ang-1
gene transfer restored Tie-2 expression and rescued these
abnormalities in diabetes.
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O-GlcNAcylation protein modifications result in several
diabetic complications. Studies show that O-GlcNAcylation
of eNOS in endothelial cells is involved in micro- and
macrovascular complications [119]. In a diabetic rat model,
Musicki et al. showed O-GlcNAcylation modifications
caused eNOS dysfunction in the penis thereby affecting
phosphorylation of eNOS at the Ser1177 residue, which con-
tributed to erectile dysfunction and long-term penile health
issues for patients with diabetes [120]. In another study, Cho
et al. showed in a diabetic mouse model that impairment of
erectile function was caused by upregulation of expression
of Rho-kinase 2 (ROCK2) and myosin phosphatase targeting
subunit 1 (MYPT1) and decreased eNOS phosphorylation.
Lima et al. have shown that elevated O-GlcNAc levels
contribute to end-organ damage and vasoconstriction under
diabetes, concurrent with decreased eNOS (Ser1177) and Akt
phosphorylation (Ser473) [121]. These studies indicate that
targeting abnormal O-GlcNAcylation, that is, associated with
diabetes can enhance eNOS phosphorylation and thereby
restore vasoregulation.

Taguchi et al. demonstrated in a streptozotocin-induced
murine diabetic model that GRK2 is upregulated under
diabetic conditions impairing Akt/eNOS activity by inhibit-
ing their phosphorylation. However, phosphorylation of
Akt at Thr308 was normalized and the phosphorylation of
eNOS at Ser1177 was increased by GRK2-inhibitor [122].
Decreased phosphorylation of both Thr495 and Ser1177
residues in livers of diabetic mice was observed by Elrod et
al., although there was no difference in total hepatic eNOS
protein [123]. Sasso et al. demonstrated that in the hearts of
diabetic patients with chronic coronary heart disease (CHD),
there was downregulation of VEGF-dependent intracellular
signaling and eNOS phosphorylation [124]. They reported
reduced VEGF receptor Flk-1 phosphorylation concomitant
with decreased Akt phosphorylation and decreased eNOS
protein phosphorylation and expression. Studies also show
that there is an influence of posttranslational modifications
leading to decreased eNOS activity under diabetes [107, 125].

NO-based therapies have been proven by numerous
investigations in various animal models [126–128]. Calvert
et al. have shown that in diabetic mice under hepatic and
cardiac I/R, treatment with metformin-augmented AMPK
activation and significantly increased eNOS phosphorylation
at serine 1177 residue [129]. Another study in diabetic
rats by Penumathsa et al. demonstrated that Niacin-bound
Chromium (NBC) treatments mediate translocation of Glut-
4 leading to dissociation of Cav-1/eNOS interaction followed
by increased phosphorylation of AMPK, Akt, and eNOS
[130]. Ahanchi et al. have demonstrated that NO exerts
protection in a rat carotid artery balloon injury model
of type 2 diabetic obese rats. Their results show that
topical administration of NO not only prevented neointimal
hyperplasia following artery injury, but also reduced ROS
production and cell death and inhibited VSMC proliferation
in these animals [128]. Together, these studies indicate
that diabetes-mediated endothelial dysfunction potentially
alters eNOS phosphorylation and thereby NO production.
Increases in Akt/eNOS phosphorylation or inhibition of
the factors involved in repressing eNOS would rectify the

vascular complications during diabetes. Akt/eNOS phos-
phorylation serves important roles in rectifying vascular
defects during the pathology of diabetes; however, further
studies are needed to explore different sites involved in eNOS
phosphorylation during diabetic complications that affect
NO production and thereby endothelial dysfunction.

(3) eNOS Uncoupling. Endothelial NOS (eNOS) derived
nitric oxide (NO) in endothelial cells regulates vascular
tone and plays a key role in maintaining endothelial health.
Evidence from eNOS knockout mice states that functional
eNOS is critical for the maintenance of vascular health
[131, 132]. Proper functioning of the endothelium is often
linked to the production and bioavailability of NO and
relative regulation of ROS. Endothelial dysfunction occurs
when there is a reduced bioavailability of NO. This reduced
NO bioavailability and endothelial dysfunction is observed
under hyperglycemic conditions both in vitro and in vivo
[95, 97]. Decreased endothelial-dependent arterial relaxation
is observed during diabetes in animal models as well as in
human subjects [133].

Endothelial NOS acts as an active enzyme complex
producing NO in its “homodimer” state during physiological
conditions, while the enzyme is inactive and unable to
produce NO under pathological conditions. Even though
a concomitant increase in eNOS levels is observed under
pathological conditions [134, 135], this state may generate
superoxide anions from the monomerized eNOS instead of
NO, a condition called “eNOS uncoupling” [136]. Stud-
ies indicate that endothelial nitric oxide synthase (eNOS)
function is impaired in diabetes as a result of reduced NO
bioavailability and increased vascular generation of reactive
oxygen species [13, 137, 138]. Endothelial NOS uncoupling
and nitrosative stress have been observed during vascular
abnormalities such as hypertension, atherosclerosis, and
diabetes [136].

(4) Tetrahydrobiopterin (BH4). Endothelial NOS must be
in an active dimer state to produce NO. Regulation of the
dimeric eNOS complex is important for proper functioning
of eNOS. L-arginine and BH4 are two critical factors that
maintain the dimeric state of eNOS allowing electron flow
across the homodimer to generate NO from the ferrous-
dioxygen complex [134, 135, 139]. BH4 is a metabolite
that serves as a critical cofactor and inhibits superoxide
generation from the heme group at the oxygenase domain
of eNOS [112]. BH4 acts as a redox regulator of eNOS by
promoting and stabilizing eNOS protein monomers into the
active homodimeric form [140], which in turn maintains the
healthy state of the endothelium. Under reduced L-arginine
or BH4 levels, eNOS functions in an “uncoupled” state in
which NADPH-derived electrons are added to molecular
oxygen rather than L-arginine, generating more O2

− as
a product. O2

− generated by eNOS has been implicated
in a variety of experimental and clinical vascular disease
states including diabetes, hypertension, and atherosclerosis
[141].
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eNOS uncoupling and endothelial dysfunction are
apparent in experimental models of diabetes and in diabetic
patients [77, 84] despite the fact that eNOS expression is
actually increased. Hyperglycemia results in BH4 deficiency
and eNOS dysfunction characterized by a decrease in NO
with a concomitant increase in superoxide production [111,
142, 143]. In vitro studies have demonstrated that high glu-
cose levels reduce NO activity and increase superoxide levels
coupled with reduced eNOS dimerization in endothelial cells
[144–146]. Hyperglycemia results in significant reductions
in both total biopterins and BH4. BH4 bioavailability is
postulated to be limiting in several vascular disease states
including diabetes. Peroxynitrite, a potent oxidant, rapidly
oxidizes BH4 to BH3, and subsequently to BH2 [143, 147],
which may compete with L-arginine for eNOS, resulting in
impaired eNOS bioactivity [139].

There are several studies that suggested the role of
BH4 in eNOS homodimerization. A study on bovine eNOS
expressed in E. coli suggested that BH4 influences the heme
environment and stabilizes the eNOS protein [148]. In
another study it was shown that exogenously added BH4
increased both eNOS activity and dimerization [149]. It is
interesting to observe that eNOS protein expression levels
increase in endothelial cells in response to high glucose
[113, 146], which indicates the uncoupling of eNOS due to
decreased BH4. Although studies indicate that BH4 facilitates
electron transfer and maintains the dimerized state of the
enzyme, the complete role of BH4 in eNOS regulation is
currently unknown.

BH4 has proven to be an established therapeutic agent for
hyperphenylalaninemia. Its potential has also been evaluated
for therapeutic efficacy in the reversal of endothelial dysfunc-
tion. Studies indicate that BH4 therapeutic interventions to
improve endothelial function have limited success in animal
models of type 2 diabetes and in human studies [150–
152]. Conversely, studies have shown that supplementation
of this cofactor restores eNOS-mediated NO formation and
endothelial function in hypertension, hypercholesterolemia,
and diabetes [135, 139, 141]. Experimental and clinical
evidence suggests that BH4 or L-arginine can act as a
therapeutic agent to restore diabetes-induced endothelial
dysfunction [138, 151, 153]. Pieper has shown that in vitro
treatment of BH4 over the aortic rings of diabetic rats
restores endothelial function [154]. Heitzer et al. have shown
that the attenuated endothelium-dependent vasodilation in
the forearm of diabetic patients was considerably improved
by concomitant treatment with BH4, but not endothelium-
independent vasodilation responses [151]. Lastly, Cai et al.
showed in HAEC cultured in high glucose that BH4 restores
the physiologically normal enzymatic activity of eNOS [155].
Together, these findings suggest that supplementation of BH4
may be useful to alleviate vascular complications through
restoration of endothelial functions/eNOS activity in type 2
diabetes patients.

(5) GTP Cyclohydrolase. While BH4 is known to be an essen-
tial cofactor for activity of all NOS enzymes, its synthesis is
also important for vascular health [156]. BH4-synthesizing

enzyme GTP cyclohydrolase I (GCH) and BH2 reducing
enzyme dihydrofolate reductase (DHFR) counteract the
intracellular depletion of BH4. GCH is the first-rate limiting
enzyme for BH4 de novo biosynthesis through GTP catalyses
[157]. GCH is constitutively produced in endothelial cells
and its activity is crucial for BH4 bioavailability and proper
endothelial function. Studies show that genetic overexpres-
sion of GCH can prevent endothelial dysfunction in diabetes
[142, 158, 159].

Previously, it was reported that insulin can augment
GCH activities in ECs through a PI3K-dependent pathway
and that insulin-induced vasodilation depends on BH4
biosynthesis [160–162]. However, these mechanisms may
be impaired in the insulin-resistant state. Hyperphenylala-
ninemic (Hph-1) mice are mutants with partially reduced
GCH activity. Studies in the Hph-1 mouse suggest that BH4
deficiency leads to hypertension, increased vascular oxidative
stress, and reduced eNOS activity, which demonstrates that
reduced BH4 levels lead to eNOS uncoupling in the absence
of vascular disease [163]. From these studies it is clear
that increased endothelial BH4 biosynthesis by transgenic
GCH overexpression can alter eNOS uncoupling and can
improve vascular health. Mitchell et al. have reported in a
glucocorticoid-induced rat model of hypertension that GCH
mRNA levels were reduced, and impaired endothelium-
dependent relaxations could be restored by incubating vessels
in sepiapterin (BH4 precursor). This suggests that reduced
BH4 bioavailability is a cause of eNOS uncoupling and
vascular dysfunction [164]. Other studies in the DOCA-
salt hypertensive mouse also showed that decreased BH4
levels were related to reduced GCH activity [165]. Increased
GCH activity through exogenous gene delivery or BH4
supplementation reversed BH4 deficiency and endothelial
dysfunction by reducing superoxide levels.

Study of isolated aortic rings from diabetic rats showed
that overexpression of GCH by gene transfer reverses
diabetes-induced BH4 deficiency and restores NO bioavail-
ability [159]. In another study Meininger et al. showed that
GCH-I activity is markedly decreased in animal models of
types 1 and 2 diabetes, which contributes to endothelial
dysfunction [159, 166–168]. Alp et al. showed that an
increase in endothelial BH4 levels, NO bioavailability, and
reduced endothelial superoxide production were observed
in a transgenic human GCH overexpressor mouse model
of diabetes compared to diabetic wild-type mice [158].
These studies strongly indicate that the depletion of BH4,
NO bioavailability, and increased endothelial superoxide
production are interrelated in the diabetic condition. While
prevention of decreased BH4 levels through overexpression
of GCH restores vascular function, other mechanisms such
as endothelial GCH phosphorylation have yet to be explored
during diabetes and other vascular complications.

(6) Arginase. Vascular dysfunction is a major cause of
morbidity and mortality in diabetic patients [169]. Reduced
L-arginine availability has been implicated as a cause of
vascular dysfunction in diabetes and other diseases. Arginase,
which catalyzes L-arginine to urea and ornithine, competes
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directly with NOS for L-arginine. Increase in arginase
activity leads to decreased cellular arginine levels and its
availability for eNOS thereby decreasing NO production and
generation of superoxide by eNOS [170, 171]. Enhanced
arginase activity has been implicated in a number of vascular
dysfunctional states including diabetic erectile dysfunction
[172–175].

There are two mammalian variants of arginase, arginase
I and II, which are differentially expressed in various tissues
[173, 176, 177]. Arginase I is localized to the cytoplasm
and prominently expressed in the liver, whereas arginase
II is located in the mitochondria and expressed in the
kidney. Arginase activity increases in the liver of diabetic
rats [178, 179]. Reports from diabetic animals and patients
demonstrate that arginase activity is increased under diabetic
conditions [180, 181], while decreased insulin signaling is
associated with diabetic insulin resistance. It is important
to note that insulin represses gene expression of urea cycle
enzymes, thus increased arginase activity may be linked
with decreased insulin signaling which requires further
study.

Increased arginase expression reduces NO synthesis in
diabetes resulting in impairment of normal endothelial
functions such as vascular remodeling responses [182].
This suggests important roles played by arginase leading to
many of the vascular complications observed during diabetes
[183]. Arginase I has been reported to be upregulated in
porcine coronary microvessels, which consequently lead to
diminished vasodilation [175]. In another study Zhang et
al. showed in pigs with experimental hypertension that
NO-mediated dilation of coronary arterioles is reduced
due to increased arginase I activity, which leads to limited
availability of L-arginine [173]. Romero et al. showed
that in coronary arteries of diabetic rats that arginase I
activity results in a diminished NO-mediated response
contributing to vascular endothelial dysfunction, due to
decreased availability of L-arginine for eNOS [184]. Recently
Grönros et al. demonstrated that type 2 diabetic Goto-
Kakizaki (GK) rats have increased arginase II expression,
along with coronary artery microvascular dysfunction [185].
Importantly, microvascular function was normalized after
arginase inhibition highlighting that arginase activity diverts
arginine from NOS and that arginase inhibition increases
NO bioavailability and coronary microvascular function in
the GK type 2 diabetic rat.

Studies with patients indicate that diabetes is associated
with an impaired vasodilator function of coronary arteries
and vasospasm that indicates coronary endothelial dysfunc-
tion [186–188]. Recently Beleznai et al. demonstrated that in
patients with diabetes, arginase I is upregulated in coronary
arterioles, which interferes with NO-mediated vasomotor
responses [189]. In this study, the authors found that the
presence of NG-hydroxy-l-arginine, a selective inhibitor of
arginase, or application of L-arginine restored ACh-induced
coronary dilation in patients with DM. Interestingly, in
nondiabetic patients with other vascular abnormalities either
arginase inhibition or L-arginine supplementation failed
to show any change in vascular responses, indicating that

arginase targets the ACh-mediated response. Further study is
needed to ascertain the role of insulin and other pathological
factors that are affected by increased arginase 1 expression in
diabetes. These findings suggest that targeting arginase could
be a useful treatment of diabetic endothelial dysfunction.

(7) Peroxynitrite’s Role in NO Bioavailability and Endothe-
lial Dysfunction. Diabetes has been shown to increase the
vascular formation of the NO/superoxide reaction product
peroxynitrite. There are several experimental and clinical
studies available that demonstrate the formation of perox-
ynitrite in various tissues during diabetes, especially within
the endothelium [190–194]. Moreover, there are various
mechanisms that underlie the peroxynitrite-induced diabetic
complications [195].

Increased levels of peroxynitrite under high glucose
conditions reduce BH4 production and also reduce BH4
producing enzyme GCH expression, contributing to eNOS
uncoupling [168, 196]. Specifically, peroxynitrite rapidly
oxidizes the active BH4 to inactive dihydrobiopterin (BH2),
leading to eNOS uncoupling [197]. In addition, peroxyni-
trite causes eNOS uncoupling through 26S proteasome-
dependent degradation of GCH leading to the release of
zinc from the zinc-thiolate cluster of eNOS, which pre-
sumably leads to the formation of disulfide bonds between
monomers [146]. Oxidative loss of BH4 may mediate some
of the observed effects of increased reactive oxygen species
production on endothelial function in vascular disease states
[143, 197].

Peroxynitrite targets various biomolecules, leading to
cardiovascular dysfunction through multiple mechanisms
[25]. One of these includes activation of the nuclear enzyme
poly(ADP-ribose), polymerase (PARP-1), which is involved
in the development of diabetic cardiovascular dysfunctions
[192]. PARP-1 leads to the production of inflammatory
mediators such as inducible nitric oxide synthase (iNOS),
intercellular adhesion molecule-1 (ICAM-1), and major
histocompatibility complex class II [198, 199]. NF-κB is
a key molecule in regulating expression changes of these
proteins. Overproduction of peroxynitrite can increase iNOS
through NF-κB activation in endothelial cells [200]. Nagai
et al. have also shown that peroxynitrite increases Nε-
(carboxymethyl)lysine (CML), a major antigenic advanced
glycation end-product (AGE), which activates cell-signaling
pathways such as NF-κB to enhance the expression of
vascular cell adhesion molecule-1 (VCAM) [201], which
is involved in vascular inflammation. Thus evidence from
various studies mentioned above suggests that peroxynitrite
is a major mediator of vascular injury under diabetic
conditions and indicates that effective neutralization of
peroxynitrite formation can be beneficial in restoring NO
bioavailability and vascular health.

(8) Glutathionylation. Protein S-glutathionylation forms by
a direct oxidation of a protein and reduced glutathione
(GSH), by a thiol-disulfide exchange between a protein
Cys and oxidized glutathione (GSSG), and also with S-
nitrosoglutathione [202]. This emerging pathway provides
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an additional mechanism to regulate intracellular redox state
and the generation of reactive oxygen and nitrogen species.
Recent studies indicate the importance of oxidants that
directly impact the function of tissues by altering the struc-
ture of protein cysteinyl thiols. Multiple modes of protein-
cysteine oxidation, such as S-thiolation, S-nitrosylation for-
mation, and intra- and intermolecular protein disulfides are
already known to play a prominent role in redox regulation
[203, 204]. Several cellular signaling mechanisms have been
reported to be modified resulting from protein glutathiony-
lation involving defective insulin signaling resulting from
diabetic conditions, which include NFκB, RyR1, K+ and ATP
channels, PKC, aldose reductase, mitochondrial complex
I, and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase
(SERCA) [205–207]. It is interesting to note that alterations
in these signals were reported in defective insulin secretion
from β cells, insulin sensitization in peripheral tissues,
and complication-related cell injury and tissue damage in
diabetes [208]. Moreover, there is increasing evidence of
functional changes resulting from these glutathionylation
modifications in diabetes, with protein posttranslational
modifications playing an important role in the mainte-
nance and progression of disease pathogenesis [208]. S-
glutathionylation of proteins is the primary mechanism of
thiol redox signaling and therefore has significant impact on
the pathogenesis of diabetes.

Increased formation of glutathionylated Hb HbSSG
represents a change in the oxygen carrying capacity of
hemoglobin and tissue-specific glutathionylation, which may
lead to differential cellular responses. Niwa et al. demon-
strated that there are increased levels of HbSSG observed in
diabetic and hyperlipidemic patients [209]. Increased oxida-
tive stress, lipid peroxidation, and glutathione depletion are
commonly observed in diabetic subjects without microan-
giopathy [210]. Vita et al. have demonstrated in patients
with coronary artery disease that the impaired endothe-
lial NO bioactivity is reversed upon L-2-oxo-4thiazolidine
carboxylate (OTC) delivery, an intracellular GSH inducer
[211]. These studies emphasize the role played by GSH
in regulating endothelial functions during disease states.
S-glutathionylation of eNOS is a crucial switch providing
redox regulation of cellular signaling, endothelial function,
and vascular tone. Some eNOS S-glutathionylation can be
increased under conditions like hypertension, with impaired
vasodilation that is restored by thiol-specific reducing agents
reversing this S-glutathionylation. Chen et al. have recently
shown that cysteine residues Cys689 and Cys908 are critical
for normal eNOS function, which can be glutathionylated to
produce superoxide [125].

Glutathione in its oxidized form (GSSG) has been shown
to regulate the activity of several purified enzymes including
carbonic anhydrase III, protein kinase C (PKC), and human
aldose reductase (AR) [212]. For years, inhibition of AR in
diabetes has been a popular therapeutic approach. Cys298,
an active site of AR for thiol modifications, is known to
regulate substrate binding [213, 214]. S-glutathionylation of
AR, specifically at Cys298, inhibits its activity under normal
glucose concentrations [215, 216]. Likewise, inhibitors of
AR have proved to be effective for therapeutic intervention

in diabetes [213]. Glutaredoxin (Grx) has been reported
to be increased in the diabetic heart and retina of rats
[217], since AR is a regulatory target for Grx, Grx-dependent
inhibition additionally may further enhance AR inhibition.
Future therapeutics could be aimed at targeted inhibition of
AR-mediated glucose signaling, without affecting aldehyde
detoxification to prevent diabetes-associated inflammation
and other vascular abnormalities.

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
actively transport cytosolic Ca2+ into the sarcoplasmic reticu-
lum, thus quenching cytoplasmic Ca2+ signals and regulating
calcium oscillations in response to glucose [218]. Nitric
oxide (NO) stimulates SERCA to decrease intracellular Ca2+

thereby allowing relaxation of cardiac, skeletal, and vascular
smooth muscle [205]. High glucose has been reported
to prevent NO-induced inhibition of VSMC migration
due to Cys674 to serine mutation of SERCA, where this
Cys is also subject to sulfonic acid formation in VSMC
resulting in glutathionylation [219]. These results suggest
a scenario involving increased oxidized thiol resulting in
deglutathionylation modification of SERCA-Cys674-SH to
the sulfonic acid which leads to protein glutathionylation
affecting protein function.

Insulin and downstream signaling critically regulate NO
and associated endothelial cell functions [220]. Studies pro-
vide evidence that glutathionylation of Cys118 and activation
of Ras lead to endothelial insulin resistance, which was only
recovered with Grx overexpression, implicating a role for
Grx as a target treatment in diabetes [221]. Decreased Akt
activity due to high glucose has been reported in diabetic
rats and endothelial cells [222]. Changes in Akt activity
are implicated in multiple signaling cascades that can be
regulated by glutathionylation or interaction with Grx [223].
The mechanism of regulation of Akt phosphorylation by
Grx is still not resolved. However, Murata’s group proposed
that the GSH/Grx system can protect Akt oxidation induced
by H2O2 through glutathionylation of Akt cysteine residues
Cys-297 and Cys-311 [224]. Wang et al. considered that
this Akt protection is via deglutathionylation of upstream
activators such as protein kinase A (PKA) [223]. Protein
kinase C (PKC) is a major pathway that has tissue-specific
implications under diabetic and vascular complications
[225]. PKC isozymes can be oxidatively inactivated by S-
glutathiolation involving endogenous thiols such as GSH
[226]. Clinical trials have shown that Ruboxistaurin, a
PKC-β inhibitor, can induce vascular protection of diabetic
retinopathy [227]; however, Grx-mediated deglutathionyla-
tion of PKC may prove to be an additional therapeutic target
for diabetic vascular complications.

NO synthesis is impaired in glutathione- (GSH-)
depleted endothelial cells and GSH is reduced in patients
with type 2 diabetes mellitus (T2DM) [228]. Martina et al.
have shown that administration of GSH in patients with
T2DM is able to improve platelet constitutive NOS (cNOS)
activity together with a reduction of plasminogen activator
inhibitor (PAI-1) [229]. Endothelial cell NO bioactivity is
relatively sensitive to manipulations of intracellular GSH
[230]. Studies have shown that thiol-manipulating agents
altered endothelial NO bioactivity through mechanisms
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independent of changes in intracellular GSH [211]. In
particular, protein thiol oxidation with diamide appears
to have important implications for endothelial cell NO
bioactivity by a direct effect on eNOS catalytic activity
[231]. Further studies have to be performed to understand
different changes in thiol residues that regulate endothelial
NO activity under diabetic condition.

4.2.2. Role of Endothelial Progenitor Cells in Endothelial Dys-
function and Diabetes. Endothelial progenitor cells (EPCs)
are critical for maintenance and repair of endothelial
cells. They play an important role in angiogenesis as they
proliferate, migrate and differentiate, and are a source for
proangiogenic cytokines [232]. EPCs express markers of
both hematopoietic stem cells (CD34 and CD133) and
endothelial cells (CD146, vWF, and VEGFR2) [233–235].
EPC dysfunction could contribute to the pathogenesis of
vascular disease. There are numerous studies that have
demonstrated, in patients with diabetes and cardiovascular
disease, that the number of EPCs from peripheral blood is
reduced and EPC function impaired [73, 88, 236, 237].

Reports suggest that the number of circulating EPCs
is decreased under both types 1 and 2 diabetes, which
is likely to be involved in the pathogenesis of vascular
complications [88, 238, 239]. In diabetes, the bone marrow
derived EPCs are dysfunctional, producing fewer endothelial
cells with reduced proliferative, and migratory potential due
to oxidative stress [88]. EPCs act as a surrogate marker of
vascular health and indicate cardiovascular risk in healthy
persons [87, 240, 241]. In diabetic patients with vascular
complications, there is a marked reduction of circulating
EPCs compared to those patients without vasculopathy, and
EPC counts correlate with the severity of vascular disease
[87].

Studies performed in vitro show EPCs from diabetic
populations result in endothelial cells with a reduced capacity
to form tubes, thereby inhibiting their ability to revascularize
damage tissues [239, 242]. Kielczewski et al. demonstrated
in renal occlusion model of C57BL/6J.gfp chimeric mice
that insulin-like growth factor binding protein- (IGFBP-) 3
modulates vascular development by regulating EPC migra-
tion and restores the function of injured vasculature and
NO generation [243]. In another study, Feng et al. showed
in umbilical cord-derived EPCs that oxidized low-density
lipoprotein (OxLDL) inhibits EPC survival and impairs
their function, which may lead to inhibition of eNOS
[244]. Recently Reinhard and colleagues have reported
that in patients with type 2 diabetes on multifactorial
treatments designed to improve glycemic control, lower
lipids, reduce hypertension, and thrombosis, there was a
significant increase in the number of EPCs [245]. Vasa et
al. showed that in patients with coronary artery disease
the number and migratory activity of EPCs are reduced,
which may contribute to impaired vascularization [236].
Sorrentino et al. have demonstrated that the reendothe-
lialization capacity of EPCs derived from patients with
diabetes is severely impaired due to oxidative stress and
reduced NO bioavailability [246]. In another publication,
Thum and coworkers have attributed this deficiency to eNOS

uncoupling as a result of diminished tetrahydrobiopterin
(BH4) levels caused by EPC dysfunction in diabetic patients
[247]. However, further studies are required to verify that
increasing EPC numbers will improve diabetic anomalies.
EPCs have also been suggested to function as activators of
mature ECs through secretion of angiogenic factors [248].
These studies provide evidence that EPCs play a crucial role
in regulating eNOS and endothelial functions under vascular
dysfunctions.

It is known that under diabetic conditions there are
increased oxidative stress levels [15]. Increased ROS prompts
the EPCs to produce pathologic cytokines such as mono-
cyte chemoattractant protein-1 (MCP-1), tumor necrosis
factor-α (TNF-α), NF-κB, interleukin-8 (IL-8), elevated
levels of iNOS, and decreased eNOS. The reduced func-
tional activity of EPCs during hyperglycemia involves the
Akt/eNOS pathway, where signaling is downregulated under
diabetic conditions [249]. Ii et al. have attributed the
phenotypic differences of EPCs during diabetes to decreased
thrombospondin-1 expression [250]. There is an indica-
tion that upregulation of cyclin-dependent Kinase (CDK)
inhibitors p16 and p21 leads to a reduction in proliferating
EPCs under hyperglycemic conditions [251]. Information
on molecular mechanisms influencing EPC numbers under
diabetic or vascular dysfunctions is still sparse and deserves
further research to better understand molecular mechanisms
responsible for EPC formation and function.

Therapeutic strategies could take advantage of EPCs
ability to deliver cytokines and growth factors to diseased
tissue to induce revascularization. Identifying the key modu-
lators of physiologically normal functioning EPCs is essential
in determining potential targets for restoring proper EPC
function in diabetic populations. Clinical trials by Hamano
et al. have shown that therapeutic angiogenesis induced
by local implantation of autologous bone marrow cells led
to recovery in patients with ischemic heart disease [252].
Studies performed by Strauer et al. showed similar effects,
thus providing further evidence of the therapeutic potential
of EPCs [253]. Recently, Wang et al. demonstrated that EPC
dysfunction in diabetes may be caused by decreased man-
ganese superoxide dismutase (MnSOD) expression [254]. In
their study they also stated that in diabetic EPCs, expression
of protein phosphatase 2A (which inactivates AMPK) was
upregulated. Systemic hyperoxia is an adjunctive therapy to
stimulate wound healing in diabetic patients, approved by
the United States Food and Drug Administration (FDA).
Previous studies showed that hyperoxia increases NO levels
in vascular tissues via NOS stimulation [255], and bone-
marrow-derived NO increased the number of circulating
EPCs in nondiabetic models [256]. In a study focused on
improving the number of circulating EPCs in a model of
diabetes, Gallagher et al. showed that hyperoxia reversed the
diabetic defect in EPC mobilization, which is a NO-mediated
effect [257]. Stromal cell-derived factor-1α (SDF-1α), a
chemokine that increases EC migration and angiogenesis
mediated through NO [258, 259]. SDF-1α mediates EPC
recruitment in ischemia, reversed the diabetic defect in
EPC homing [257]. Desouza et al. have published recently
that reduced activity and survival of EPCs in diabetic
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rats are caused by elevated NF-κB levels, which results in
decreased phosphorylation of Akt. This can be ameliorated
by knockdown of NF-κB, which restores insulin signaling,
improves EPC survival, and decreases neointimal hyperplasia
[260].

Numerous studies demonstrated the positive effects of
EPCs in repair processes of wound healing, ischemic repair,
limb ischemia, endogenous endothelial repair, and neovas-
cularization [261–263]. On the contrary, EPCs contribute
to pathological neovascularization, and recent studies show
that circulating EPCs are reduced in patients with non-
proliferative diabetic retinopathy (NPDR) but increased in
patients with proliferative diabetic retinopathy (PDR) [264–
266]. These findings suggest the flipside of the EPCs that they
may be associated with proinflammatory and proangiogenic
EPCs, which lead to pathological neovascularization as
observed in PDR. Studies on diabetic retinopathy lead to
explore the possible role of EPCs in tumor angiogenesis
[267]. Lyden et al. have demonstrated in angiogenic defective
tumor resistant Id-mutant mice model that tumor angiogen-
esis is associated with circulating EPCs [268]. Their results
state that impaired VEGF-driven EPC proliferation causes
defective angiogenesis in this mice model. EPCs induce the
endothelial cells leading to neovascular formation followed
by cytokine-mediated recruitment of pro-angiogenic mural
cells at the site of tumor growth [269, 270]. However, the
brighter side of EPCs as a therapeutic modality is more,
compared to its caveats. The promising results coming from
research with EPCs warrant future studies into therapeutic
uses of EPCs for treatment of vascular disease in diabetic
populations.

4.3. Decreased Growth Factors and Cytokines in DM Results
in Impaired Angiogenesis. Expression of various angiogenic
growth factors is reduced during diabetic ischemia. Rivard
et al. have shown that both VEGF protein and mRNA
levels are decreased in ischemic muscles of type 1 diabetic
mice [70]. The authors also showed that VEGF therapy
restored blood flow in nonobese diabetic (NOD) mice.
Insulin resistance also causes decreased expression of VEGF
in type 2 diabetes [271]. Nitric oxide also plays a role in
the angiogenic action of growth factors such as VEGF, FGF,
and TGF-β. The induction of angiogenesis by these growth
factors is blocked by NOS inhibitors [272, 273]. Collateral
formation is impaired in diabetic patients and animal models
of diabetes [70, 92]. Monocytes/macrophages are the major
players in collateral formation. Waltenberger and colleagues
have shown that VEGF-dependent monocyte function is
severely impaired in diabetic patients [72]. Hyperglycemia
and increased AGEs in diabetes cause defective VEGF sig-
naling including inactivation of the VEGF receptor, FLK-1,
which affects endothelial growth and migration, monocyte,
and EPC recruitment and release from bone marrow. These
defects also contribute to impaired arteriogenesis in diabetic
ischemia [274]. EPC release from bone marrow, recruitment
and homing to the ischemic site, is important for postnatal
vasculogenesis, which is defective in diabetes. VEGF and
SDF-1α, which promote EPC recruitment to the ischemic
site, are impaired during vasculogenesis in diabetes [257].

FGF levels are also decreased in skeletal muscle, which
impairs angiogenesis during diabetes [275]. Angiopoetin and
its receptor, Tie 2, also play roles in impaired angiogenesis
in diabetes [276]. Tanii et al. have suggested that PDGF-
BB is decreased in STZ-induced type 1 diabetic mouse
hind limb ischemia [277]. All of the above findings indicate
that defective growth factor expression and signaling during
diabetes impairs all three processes of neovascularization in
diabetes.

4.4. Immune Cell Dysfunction in Diabetes Causing Defec-
tive Peripheral Angiogenesis. Reduced chemotaxis has been
reported in polymorphonuclear neutrophils (PMNs) of
diabetic patients (type 1 and type 2) than in those of healthy
subjects [278, 279]. Another study corroborated reduced
leukocyte chemotaxis in patients with hyperglycemia [278].
Since most PMN functions are energy-dependent processes,
an adequate energy production is necessary for an optimal
PMN function [280]. Glucose needs insulin to stimulate
uptake into PMNs to generate this energy, which may explain
the improvement of the chemotactic response after the
addition of these two substances [281]. There is conflicting
information regarding adhesion of PMNs in DM patients
as some have shown decreased adhesion and others have
shown no alteration [278]. Impairment of phagocytosis is
found in PMNs isolated from poorly regulated patients.
Cytokine release is decreased after stimulation of PMN in
diabetes [278, 282]. Impaired chemotaxis and phagocytotic
properties of monocytes are observed in diabetic patients.
Plasma from healthy control subjects or addition of insulin
does not cause any significant change in the phagocytotic
capacity of diabetic monocytes, it seems that this impaired
function is caused by an intrinsic defect in the monocytes
themselves [283]. In addition to the decreased production
of proinflammatory cytokines following LPS stimulation,
monocyte/macrophage functions are also impaired in DM
type 1 patients. The cellular response of monocytes to
VEGF-A is attenuated in diabetic patients [72]. Impaired
chemotaxis and monocyte phagocytotic activity leads to
reduced cellular innate immunity, thereby increasing the
prevalence of infections and decreasing growth factors which
impair wound healing and angiogenesis in DM patients.

4.5. Differences in Impaired Angiogenesis in Type 1 and
Type 2 Diabetes after Ischemia. Types 1 and 2 diabetes
differ in disease onset, pathophysiological mechanisms, and
symptom severity. Likewise, restoration of blood flow after
ischemia in both types of diabetes also differs. An interesting
study by Yan et al. has shown that blood flow recovery
was delayed and less effective in type 2 diabetes compared
to that in type 1 diabetes [284]. Results from this study
identified that capillary/myofiber ratio and arteriolar size
were more severely diminished in type 2 diabetes due
to attenuated eNOS expression in ischemic tissue and
EPCs. Oxidative stress, as observed through nitrotyrosine
formation, was preferentially increased in ischemic tissue
in type 2 diabetes [284]. EPC migration and incorporation
of EPCs into tubular structures was less effective in type 2
diabetes. The tubule formation defect in EPCs may explain
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the difference in impaired angiogenesis and arteriogenesis
following chronic ischemia in experimental type 2 diabetes.
Rivard et al. have reported that exogenous VEGF rescues
impaired blood flow in type 1 diabetic NOD mice [70];
however, some authors suggest that growth factor or gene
therapy may be insufficient as a sole strategy to enhance
type 2 diabetic revascularization [274]. This result again
indicates the severity of impaired neovascularization in
type 2 diabetes. One of the important sources of conflict-
ing findings in diabetic angiogenesis may be the use of
diverse animal models to induce diabetes, the models them-
selves, and the effect of ischemia on angiogenesis in these
models.

4.5.1. Diabetic Wound Healing. Wound healing occurs as a
cellular response to injury and involves activation of ker-
atinocytes, fibroblasts, endothelial cells, macrophages, and
platelets. These cell types coordinate and maintain healing
through the release of many growth factors and cytokines.
Defective immune cell responses or impaired recruitment
within the wound site results in defective healing in diabetes.
Prolonged diabetes leads to impaired wound healing, a result
of defective angiogenesis [72, 92]. Foot wounds followed
by ulceration are a leading cause of hospital admissions for
people with diabetes throughout the world and is a major
comorbidity associated with diabetes, leading to extreme
pain and suffering and poor quality of life for patients. Data
have shown that diabetic foot ulcers (DFUs) are estimated to
occur in 15% of all patients with diabetes [285] and precede
84% of all diabetes-related lower-leg amputations [286].
There are several ways that uncontrolled diabetes can lead
to diminished wound healing. Firstly, diabetic individuals
often are unable to combat infection due to defective
immune responses. Thus, even small scrapes can transition
to open, infected sores. Secondly, nerve damage in diabetic
patients’ results in lack of peripheral sensory function. Nerve
damage may be prominent in diabetic patients resulting in a
diminished capacity to notice cuts, blisters, or ulcers. Thirdly,
diabetic individuals typically have diffuse atherosclerotic
vessel disease that diminishes blood perfusion leading to a
disruption in wound oxygenation and healing [287]. Lastly,
the DFU may also become a portal for systemic infection
leading to bacteremia, septicemia, and may result in limb
amputation. Importantly, delayed healing of diabetic wounds
is also characterized by impaired angiogenesis and vascu-
logenesis responses [20]. A series of multiple mechanisms,
including decreased cell and growth factor response, lead to
diminished peripheral blood flow and decreased endothelial
cell proliferation and contribute to the lack of wound
healing in diabetes. Excessive ROS production in diabetic
patients is a primary factor contributing to wound healing
deficiencies, which can be reversed using ROS antagonists
[288]. Decreased or impaired production of NO in DM is
mainly due to impairment of eNOS phosphorylation and
deficiency of arginase. There is evidence that NO produced
during the healing process clearly regulates and augments
wound repair [289]. Frank et al. reported that wound healing
and angiogenesis are impaired due to reduced eNOS- and
iNOS-dependent NO production which could also affect

growth factor expression [290]. A recent study showed
that increased ROS delayed wound healing and treatment
with eNOS and MnSOD rectified poor diabetic wound
healing. Antioxidants such as vitamin E have also been
reported to accelerate diabetic wound healing, angiogenic
responses, macrophage function, collagen accumulation,
epidermal barrier function, granulation tissue formation,
keratinocyte and fibroblast migration and proliferation,
number of epidermal nerves, bone healing, accumulation of
extracellular matrix (ECM) components, and their remod-
eling through matrix metalloproteinase (MMPs) [291–293].
Imputed defense responses like defective phagocytic granulo-
cyte function and decreased granulocyte chemotaxis lead to
impaired wound repair in diabetic patients [294]. Nolan et
al. suggested that diabetic ulcers are more prone to impaired
granulocytic function and chemotaxis [295]. Fang et al.
suggested that GM-CSF is reduced in diabetic wounds and
treatment with exogenous GM-CSF enhances wound healing
in diabetes [296]. Nonetheless, prolonged inflammation,
impaired neovascularization, decreased extracellular matrix
remodeling, increased levels of proteinases, and defective
macrophage activity all contribute to poor wound healing in
diabetes.

Bone-marrow-derived EPCs may also play a significant
role in the healing of diabetic wounds. Gallagher and
colleagues reported that EPCs in the bone marrow respond
to chemokine gradients of VEGF and SDF-1α, which result
in the homing of these cells to sites of hypoxia where
they then participate in the formation of new blood vessels
[257]. Bone-marrow-derived EPCs are mobilized to wound
sites by eNOS activation in the bone marrow which is
impaired in diabetics [257]. EPC recruitment to the wound
site depends on upregulation of SDF-1α. Gallagher et al.
also reported a decrease in SDF-1α expression particularly
by epithelial cells and myofibroblasts derived from wounds
of streptozocin-induced diabetic mice; this decrease was
responsible for decreased EPC homing [257]. There is
evidence that expression of growth factors apart from VEGF,
such as FGF or PDGF-BB, is also implicated in decreased
diabetic wound healing. Fibroblast delivery of PDGF-BB
through an absorbable mesh is a clinically efficacious drug
therapy approved by the FDA [297, 298]. Thus it is possible
that simultaneous combined therapies such as upregulation
of growth factors and potential treatments targeting eNOS
activation and EPC recruitment might secure better healing
in diabetes.

4.6. Diabetic Ocular Dysfunctions. There are several possible
mechanisms of excessive angiogenesis in diabetes such as
hypoxia, upregulation of growth factors, integrins, oxidative
stress, AGEs and fibronectins, and others [299]. Among
the growth factors, VEGF has been shown to have potent
proangiogenic activity both in vitro and in vivo. VEGF is
an EC-specific mitogen, a chemotactic agent for EC and
monocytes [72]. VEGF can also recruit EPC to ischemic sites
[8, 300]. There is also evidence that human recombinant
VEGF induces pathological vascular symptoms similar to
diabetic retinopathy in nonhuman primates. Williams sug-
gested that VEGF can be induced and stabilized by hypoxia,
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hyperglycemia, and various cytokines such as TGF-β and
IL-1 [301]. It has been reported in patients of diabetic
retinopathy that there are abnormal levels of VEGF in
vitreous and aqueous humor. Increased levels of VEGF and
FGF at the site of abnormal angiogenesis were also reported
in patients with diabetic retinopathy and nephropathy,
respectively [302, 303].

VEGF expression is elevated in diabetic retinopathy by
increased ROS levels mediated through AGEs [304]. H2O2

stimulates cell migration and proliferation in endothelial
cells, and ROS directly modulates VEGF-A expression and
vascular smooth muscle cell proliferation [304]. It has also
been suggested that both the gp91phox-containing NADPH
oxidase and Rac1 play a major role in VEGF-A-induced
endothelial cell proliferation [69]. These studies indicate
that AGEs induce angiogenesis through differential signaling
under diabetic retinopathy, through ROS generation.

Recently, possible involvement of inflammation in dia-
betic retinopathy has been recognized. Proinflammatory
cytokine like TNF-α is identified as an initiator of inflamma-
tory reactions in retinas of patients with diabetic retinopa-
thy and rodent model of diabetes mellitus [305, 306].
Increased expression of inflammatory mediators such as
IL-1β, CCL5, and CXCL12, and adhesion molecules such
as ICAM-1 and VCAM-1 in diabetic retinopathy patients
also increase inflammation in the vessels [307–309]. In
addition, leukocytes recruitment at the vascular endothelium
is a factor of inflammation in diabetic retinopathy [310].
Mcleaod et al. reported that numbers of neutrophils are
significantly elevated in both retinal and choroidal vessels
from diabetic patients that correlate with upregulation of
ICAM-1 and P-selectin in the vessels [311]. These studies
comprehensively suggest that diabetic retinopathy may also
be an inflammatory disease.

Integrin adhesion molecules are necessary for cellular
migration and organization of growth factor signaling within
extracellular compartment to induce angiogenesis [312].
Studies reveal that many endothelial cell integrins such
as α1β1, α2β1, α4β1, α5β1, α6β1, α6β4, α9β1, αvβ3, and
αvβ5 are involved in the regulation of endothelial functions
leading to angiogenesis [313]. Casaroli Marano and his col-
leagues reported that integrin α5β1 is upregulated in diabetic
retinopathy [314]. Moreover, blockage of integrins leads to
blunt the motility and growth of cells necessary for angio-
genesis in hypoxia-induced retinal neovascularization [315].
Hyperglycemia causes overexpression of fibronectin that in
turn degrades into a proangiogenic form of fragmented
fibronectin that results in aberrant angiogenesis, as observed
in diabetic retinopathy [316]. These studies indicate that
in patients with diabetes integrins induce proangiogenic
signaling resulting in aberrant signaling under diabetes that
is characteristic of diabetic retinopathy, nephropathy, and
macrosomia.

4.7. Endothelial Cell Dysfunction—Diabetic Therapy. Dia-
betes is a metabolic disorder characterized by impaired
endogenous insulin secretion and activity, reduced NO
production and increased production of free radicals, or
impaired antioxidant defenses. The predominant factor in

diabetes-mediated complications is endothelial dysfunction.
The mechanisms that lead to endothelial dysfunction in
diabetes are complex. Single therapy may not adequately
improve endothelial function, so it is necessary to target
multiple factors for therapeutic intervention of endothelial
dysfunction. There are numerous risk factors that can cause
endothelial cell damage under diabetes such as hypergly-
caemia, insulin resistance, dyslipidaemia, increased oxidative
stress, inflammation, and hypertension [317, 318]. Most
interventions targeting more than one risk factor of endothe-
lial damage only can improve endothelial functions [319].
Treatments that improve endothelial function systemically,
like ACE inhibitors, statins, metformin, antioxidants, folate,
PKC-inhibitors, and supplements like L-arginine, BH4, folic
acid, and polyphenols also appear to provide protection
from diabetes mediated vascular events [320–324]. There are
several clinical trials investigating the therapeutic regulation
of endothelial function in patients with type 2 diabetes
mellitus [320–322, 325–328]. However, there is no single
therapy to date that can provide complete protection from
diabetes-induced vascular events.

4.7.1. Antioxidant Therapy. Increased free radical generation
represents vascular endothelial dysfunction in type 1 and
type 2 diabetes [9]. Antioxidant therapy has been an easy
and well-known choice to reduce diabetes-mediated vascular
abnormalities. Previous studies showed that there is an
improved endothelium-dependent relaxant response with
various antioxidant agents, including superoxide dismutase
(SOD) [329, 330]. This paradigm has gradually shifted as
further studies demonstrated that antioxidant therapy alone
is not sufficient; results with various antioxidants, namely,
vitamins E and C, have had disappointing results [331, 332].
Now it is almost certain that antioxidant therapy is an option
that must be used in combination with other therapies to
alleviate vascular abnormalities.

In a study Ting et al. demonstrated that intra-arterial
administration of vitamin C (24 mg/min) in diabetic
subjects, augmented methacholine mediated endothelium-
dependent vasodilation, whereas this is not reflected in
nondiabetic subjects [105]. In another study by Timimi et
al. in insulin-dependent diabetes mellitus patients, vitamin
C selectively restored the impaired endothelium-dependent
vasodilation in the forearm resistance vessels of these
patients. These findings indicate that adequate scavenging
of oxidant radicals by parenteral administration of ascorbate
(vitamin C) restores endothelium-dependent vasodilation in
both type 1 and type 2 diabetes [105, 333].

Koo et al. have shown in diabetic rats that antioxidant
therapy was ineffective when administered alone and was
effective only when combined with insulin treatment [334].
Results of their work show that insulin therapy results in
significant, but incomplete reduction in blood pressure and
other ROS-mediated parameters, while antioxidant therapy
alone had no effect on these parameters. However, combined
insulin and antioxidant therapies show the desired effects in
diabetic animals. Beckman et al. in their study on diabetic
patients receiving oral vitamin C (1,000 mg) and vitamin E
(800 IU) daily or matching placebo for 6 months showed that
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oral antioxidant therapy improves endothelium mediated
vasodilation in type 1 but not type 2 diabetes [335]. There
are certain clinical trials that state that vitamin E supple-
mentation reduces cardiovascular events in individuals with
diabetes mellitus and the Hp 2-2 (haptoglobin, a major
antioxidant protein) genotype [336].

Although many pathways are invoved in ROS-induced
endothelial dysfunction in both types of diabetes, few effec-
tive antioxidant approaches have achieved clinical success.
Various factors make traditional antioxidant therapy ineffi-
cient at mediating oxidative stress during diabetes. Antioxi-
dants such as vitamin E or C are required in extremely high
concentrations to reduce levels of peroxynitrite. Moreover,
there is insufficient evidence to demonstrate that vitamin
E reaches target cells. Over the last decade several studies
have suggested that antioxidant therapy only delays diabetes-
induced endothelial dysfunctions, rather than providing
complete recovery.

4.7.2. Metformin. Metformin is a first-line oral antidiabetic
drug of choice in the biguanide class of drugs. Metformin
reduces LDL cholesterol and triglyceride levels and is the
only antidiabetic drug that has been shown to prevent
cardiovascular complications caused by diabetes [337, 338].
Metformin targets to ameliorate the insulin resistance mainly
in the liver and muscle, thereby lowering blood glucose.
Metformin primarily reduces the hepatic glucose output by
regulating gluconeogenesis [337, 339, 340].

Previous studies by Mather et al. also showed that
metformin improved vascular endothelial functions and
insulin sensitivity in patients with type 2 diabetes [320]. De
Jager et al. have shown that in patients with type 2 diabetes
treated with insulin, metformin treatment was associated
with improvement of endothelial function by decreasing
expression of VCAM-1, E-selectin and PAI-1, which were not
related to changes in glycemic control [341]. In another study
Vitale et al. showed that metformin improves both insulin
resistance and thereby endothelial function, measured by the
homeostasis model, in patients with metabolic syndrome
[342]. In a clinical study De Aguiar et al. demonstrated
the endothelial protective effects of metformin in patients
with diabetes and metabolic syndrome. In their study
metformin leads to decreased weight, BMI, systolic blood
pressure, and fasting plasma glucose, and improved lipid
profile. Endothelium-dependent forearm blood flow (FBF)
responses were also improved [343].

In contrast to these reports there are studies that report
metformin has no significant effects on endothelium in
patients with type 2 diabetes [344]. The UK Prospective
Diabetes Study showed that although monotherapy with
metformin and also sulfonylureas or insulin can achieve
good glycemic control initially, sustained control with these
agents fails in 50% of patients after three years [345]. There
should be multiple therapies which target different aspects
of diabetic abnormalities to protect vascular function and
obtain adequate long-term glycemic control. Metformin
causes this beneficial effect through several mechanisms: (1)
direct reduction of insulin resistance in type 2 diabetes, (2)

antioxidant effects in both types of diabetes, which ultimately
increases NO bioavailability, and (3) direct effect on vascular
endothelial and smooth muscle cells causing vasorelaxation
[320]. All of these will finally improve endothelial dysfunc-
tion in diabetes.

4.7.3. AMPK an Emerging Therapy for Vascular Dysfunction
in Diabetes Mellitus. Studies show that metformin activates
AMP-activated protein kinase (AMPK), an enzyme that
plays a key role in insulin signaling and glucose metabolism
[346]. Metformin requires AMPK to induce its inhibitory
effect on glucose production by liver cells [347]. This
concept is further strengthened by the studies from Kim
et al. who demonstrated that hepatic SHP gene expres-
sion induced by metformin requires AMPK and further
inhibits the expression of hepatic gluconeogenic genes [338].
However, the AMPK-metformin crosstalk has not been
well studied. Even pharmacological agents such as statins,
thiazolidinediones, and rosiglitazone, to mention a few, are
mediated in part by activation of AMPK in endothelial
cells [348]. AMPK regulates eNOS activity and promotes
eNOS association with heat shock protein 90 (HSP90)
[349, 350]. Studies show that AMPK is involved in sup-
pression of inflammatory agents such as NF-κB, regulating
ROS/ONOO−, and also inducing mitochondrial biogenesis
via PGC-1α induction in the endothelium [349]. In another
study, adiponectin exerted cardioprotective affects during
myocardial ischaemia-reperfusion that involves AMPK acti-
vation and production of endothelial NO thereby improving
endothelial functions [351]. These studies show that AMPK
contributes to prevention of ischemic heart disease through
eNOS bioactivity and endothelial function. Further studies
are warranted to explore the role of AMPK as a therapeutic
agent for diabetes.

4.7.4. Dipyridamole. Dipyridamole is a well-known anti-
platelet agent, which is used with aspirin for ischemic
stroke treatment and to restrict the progression of arterial
occlusive disease [352]. Dipyridamole may inhibit adeno-
sine uptake and cGMP-specific phosphodiesterases (PDE),
thereby potentiating cGMP-mediated nitric oxide actions
[352, 353]. De La Cruz et al. showed that aspirin plus
dipyridamole showed prevention of ischemic cerebrovas-
cular events like inflammation, as compared with other
antiplatelet drugs or aspirin alone [354]. Vallon and Oss-
wald have shown in an early diabetes model of rats that
daily treatment with dipyridamole rectified diabetic kidney
function by reducing interstitial adenosine concentrations
in the kidney [355]. Dipyridamole may also augment
coronary collateral development and cardiac function after
ischemia/reperfusion injury [356, 357].

Dipyridamole also induces neuroprotection, antiplatelet
effects, prolonged angiogenic effects, and an antioxidant
effect [356, 358–360]. According to this “radical theory,”
ischemic tissue injury associated with ischemia-reperfusion
determines an increased oxidative stress which can con-
tributes significantly to worsening of tissue injury [361].
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There are studies that show direct powerful antioxidant
properties of dipyridamole which protects NO bioavailability
[362, 363]. Recent studies by our group also showed
that dipyridamole therapy stimulates arteriogenesis dur-
ing chronic hind-limb ischemia involving an endocrine
NO/nitrite system [364].

Iuliano et al. have demonstrated that dipyridamole
exhibits an antioxidant effect in inhibiting lipid peroxi-
dation of methyl linoleate, and in the oxidation of low-
density lipoprotein (LDL) [365]. Kusmic et al. observed
that dipyridamole prevents lipid peroxidation and exhibits
antioxidant properties in an ex vivo model [366]. Garćia-
Fuentes et al. demonstrated in White Leghorn chicks that
coconut oil-induced hypercholesterolemia was blunted with
dipyridamole therapy [367]. Recently our group examined
for the first time the role of dipyridamole in a mouse type
2 diabetic model to reduce oxidative stress as a protective
mechanism of ischemia-induced angiogenesis during dia-
betes [368]. Dipyridamole therapy selectively and rapidly
restores ischemic hind-limb blood flow in the diabetic mouse
suggesting that it not only augments nitrite/NO endocrine
functions but also directly reduces oxidative stress. There are
earlier studies that showed altered blood glucose levels and
maintenance of NO bioavailability following dipyridamole
therapy [369–371]. Previous study by our group has shown
that dipyridamole increases NO bioavailability by PKA
dependent-eNOS pathway [364]. Another possible mode
of dipyridamole action is through its antiplatelet effect.
Therefore, antioxidant effect increased NO bioavailability
and antiplatelets effect of dipyridamole improves endothelial
dysfunction in both type of diabetes. Currently, metabolic
effects and mode of action of dipyridamole therapy in
diabetic vascular dysfunctions, such as diabetic retinopathy,
are not known. Extensive studies in this line are much needed
to understand the mechanistic aspects of dipyridamole
during diabetes.

5. Conclusions

From the above discussion, it is obvious that endothelial
dysfunction leading to defective angiogenesis in diabetes
is multifactorial. Some of these factors are increased ROS
and AGEs, decreased growth factors and cytokines, and
altered immune cell responses. Similarly, defective diabetic
wound healing is due to downregulation of different growth
factors and overproduction of ROS leading to decreased NO
bioavailability. On the other hand, excessive angiogenesis in
diabetic retinopathy is multifactorial, as it involves increased
growth factor and cytokine expression and increased oxida-
tive stress, AGEs, and so forth. Researchers are trying
to identify different agents that could provide vascular
benefits from diabetes. Recent studies on therapies aimed
at multiple factors of disease progression may act as an
adjunct to the available conventional therapies. Improving
clinical methodologies and techniques can further help in
identifying the extent of endothelial damage, which could
prevent the risk of disease progression. Studies aimed at
combination therapies could prove beneficial to enhance
protection against vascular complications during diabetes.
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opment of autoimmune diabetes in NOD mice is associated
with the formation of peroxynitrite in pancreatic islet β-
cells,” Diabetes, vol. 46, no. 5, pp. 907–911, 1997.

[53] S. Lenzen, J. Drinkgern, and M. Tiedge, “Low antioxidant
enzyme gene expression in pancreatic islets compared with
various other mouse tissues,” Free Radical Biology and
Medicine, vol. 20, no. 3, pp. 463–466, 1996.

[54] S. Lenzen, “Oxidative stress: the vulnerable β-cell,” Biochem-
ical Society Transactions, vol. 36, no. 3, pp. 343–347, 2008.

[55] J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky,
“Oxidative stress and stress-activated signaling pathways: a
unifying hypothesis of type 2 diabetes,” Endocrine Reviews,
vol. 23, no. 5, pp. 599–622, 2002.

[56] V. Poitout and R. P. Robertson, “Minireview: secondary β-
cell failure in type 2 diabetes—a convergence of glucotoxicity
and lipotoxicity,” Endocrinology, vol. 143, no. 2, pp. 339–342,
2002.

[57] J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for
JNK in obesity and insulin resistance,” Nature, vol. 420, no.
6913, pp. 333–336, 2002.

[58] G. S. Hotamisligil, “Role of endoplasmic reticulum stress and
c-Jun NH2-terminal kinase pathways in inflammation and
origin of obesity and diabetes,” Diabetes, vol. 54, no. 2, pp.
S73–S78, 2005.

[59] G. M. Pieper and G. J. Gross, “Oxygen free radicals abolish
endothelium-dependent relaxation in diabetic rat aorta,”
American Journal of Physiology, vol. 255, no. 4, pp. H825–
H833, 1988.
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[131] H. Duplain, Ŕ. Burcelin, C. Sartori et al., “Insulin resistance,
hyperlipidemia, and hypertension in mice lacking endothe-
lial nitric oxide synthase,” Circulation, vol. 104, no. 3, pp.
342–345, 2001.

[132] G. J. Waldron, H. Ding, F. Lovren, P. Kubes, and C.
R. Triggle, “Acetylcholine-induced relaxation of peripheral
arteries isolated from mice lacking endothelial nitric oxide
synthase,” British Journal of Pharmacology, vol. 128, no. 3, pp.
653–658, 1999.

[133] C. Cardillo and J. A. Panza, “Impaired endothelial regulation
of vascular tone in patients with systemic arterial hyperten-
sion,” Vascular Medicine, vol. 3, no. 2, pp. 138–144, 1998.
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