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Abstract

The development of the microbiome from infancy to childhood is dependent on a range of factors, 

with microbial–immune crosstalk during this time thought to be involved in the pathobiology of 

later life diseases1–9 such as persistent islet autoimmunity and type 1 diabetes10–12. However, to 

our knowledge, no studies have performed extensive characterization of the microbiome in early 

life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 

children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and 

metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes 

in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three 

distinct phases of microbiome progression: a developmental phase (months 3–14), a transitional 

phase (months 15–30), and a stable phase (months 31–46). Receipt of breast milk, either exclusive 

or partial, was the most significant factor associated with the microbiome structure. Breastfeeding 

was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the 

cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the 

phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the 

developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in 

infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster 

maturation, regardless of the birth mode. Environmental factors including geographical location 

and household exposures (such as siblings and furry pets) also represented important covariates. A 

nested case–control analysis revealed subtle associations between microbial taxonomy and the 

development of islet autoimmunity or type 1 diabetes. These data determine the structural and 

functional assembly of the microbiome in early life and provide a foundation for targeted 

mechanistic investigation into the consequences of microbial–immune crosstalk for long-term 

health.

In this study, a total of 12,500 stool samples from 903 children from three European 

countries (Germany, Sweden and Finland) and three US states (Colorado, Georgia and 

Washington) were analysed. The children represent those who seroconverted to islet cell 

autoantibody positivity or developed type 1 diabetes (T1D) and matched controls. Stool 

samples were collected, on average, monthly from around 3 months of age as part of the The 

Environmental Determinants of Type 1 Diabetes in the Young (TEDDY) study13. After 

rarefaction and limiting samples to 3–46 months of age, we analysed the microbiome (16S 

rRNA gene sequencing, n = 12,005 samples from 903 children; metagenomic sequencing, n 
= 10,867 samples from 783 children) and functional metagenome (metagenomic sequencing 
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only) from longitudinal stool samples (Extended Data Table 1). A companion paper by 

Vatanen et al.14 focused exclusively on metagenomic sequencing data.

In this cohort of children that are at-risk for developing islet autoimmunity (IA) or T1D, we 

aimed to (1) characterize definitively the longitudinal gut microbiome development from 3 

to 46 months of age; (2) determine selected maternal and postnatal influences on the 

developing bacterial community during this same time period of early development; and (3) 

use a nested case–control analysis to investigate the potential of the microbiome as a 

predictor for the development of IA or T1D.

A general overview of bacterial taxonomic and functional pathway development is provided 

in Supplementary Note 1 and Extended Data Fig. 1. Dirichlet multinomial mixtures (DMM) 

modelling was applied to 16S rRNA gene sequencing (Fig. 1) and metagenomic sequencing 

data (Extended Data Fig. 2). All samples from 3 to 46 months of age were included, and 16S 

rRNA gene sequencing profiles formed ten clusters (based on lowest Laplace 

approximation) (Fig. 1a). Bacterial richness and diversity increased in each cluster (Fig. 1a, 

b). Using linear mixed-effects modelling of the top five phyla and Shannon’s diversity index, 

we determined three distinct phases of microbiome progression: a developmental phase 

(months 3–14), a transitional phase (months 15–30), and a stable phase (≥31 months), in 

which all five phyla and the Shannon diversity index changed significantly during the 

developmental phase, two phyla (Proteobacteria and Bacteroidetes) and the Shannon 

diversity index changed significantly during the transitional phase, and all phyla and the 

Shannon diversity index were unchanged during the stable phase (Fig. 1c). Bifidobacterium 
dominated during the initial developmental phase, in which 20% of individuals transitioned 

from cluster 1 to cluster 3 (Bifidobacterium was dominant in both clusters). As infants aged, 

the microbiomes of their stools diversified into clusters 4–8 during months 15–30 (that is, 

the transitional phase). Microbiome stabilization, in which infants’ samples remained in the 

same cluster at consecutive time points, was observed from month 31 of life. Clusters 8–10 

were the most dominant during the stable phase, with these clusters characterized by high 

alpha diversity and dominance of genera within the Firmicutes phyla. The three microbiome 

phases and changes in taxa are consistent with other cohorts15–18 and were supported by the 

metagenomic sequencing data (Supplementary Note 2 and Extended Data Fig. 2).

We next sought to determine the significant factors associated with the microbiome profiles 

from 16S rRNA gene sequencing (genus level), metagenomic sequencing taxa (species 

level), and functional metabolic capacity (Kyoto encyclopedia of genes and genomes 

(KEGG) modules) (Supplementary Table 1). For statistical analysis, covariates were 

analysed by stratifying the samples into discrete time points (months 3–6, 7–10, 11–14, 15–

18, 19–22, 23–26, 27–30 and 31–40), and only the first sample from each infant was 

included. Information about the underlying grouping of each covariate is shown in Extended 

Data Table 1. Several covariates were significantly associated with the genus and species 

level bacterial community profiles between months 3 and 18 of age, particularly at the first 

time point of 3 to 6 months (Fig. 2). Conversely, bacterial metabolic potential was associated 

exclusively with the consumption of breast milk from months 3 to 14 of life (Fig. 2).
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Breastfeeding explained the greatest amount of variance from months 3 to 14 of life, after 

which only 10% of infants received any breast milk (Fig. 2). Breastfeeding had a 

comparable influence on microbiome development, regardless of whether it was exclusive or 

together with formula milk and/or solids (Fig. 3a). At the genus level, the receipt of breast 

milk was most significantly associated with Bifidobacterium throughout each time window 

(Supplementary Table 2). At the species level, breastfeeding was significantly associated 

with 121 different bacterial species, with higher levels of B. bifidum, B. breve, B. dentium, 

Lactobacillus rhamnosus and Staphylococcus epidermidis, and lower levels of Escherichia 
coli, Tyzzerella nexilis, Eggerthella lenta, Ruminococcus torques and Roseburia intestinalis 
in infants that were breastfed (a full list of significant taxa and associated P values are shown 

in Supplementary Table 2). Bifidobacterium spp. and Lactobacillus spp. exist viably in 

breast milk and Staphylococcus spp. colonize the areolar skin, thus these species can be 

directly transferred from the mother to infant19–22. B. longum was not significantly 

associated with breastfeeding and remained in higher relative abundance compared to other 

Bifidobacterium spp. (Fig. 3b). In the companion manuscript by Vatanen et al.14, most B. 
longum strains were found to contain genes from the human milk oligosaccharide (HMO) 

gene cluster, whereas after the cessation of breast milk, most B. longum strains no longer 

carried these genes. This potentially reflects the ability of B. longum subsp. infantis and 

subsp. longum to use mammalian- and plant-derived oligosaccharides, respectively23,24. B. 
bifidum also persisted after the cessation of breastfeeding, and this species is able to switch 

HMO to mucin degradation24. Vatanen et al.14 show experimentally that B. breve, B. 
longum and B. bifidum, which make up DMM clusters 1–3 (Extended Data Fig. 2), have 

distinct profiles of sugar utilization, suggesting that the different nutrient availability 

between infants can promote the colonization of specific Bifidobacterium species.

As the infant ages, the proportion of solid foods in the diet increases (and the amount of 

breast milk decreases)21. In the current study, the Shannon diversity index between infants 

receiving some breast milk and infants no longer receiving breast milk began to converge 

over time, probably as a result of a reduced proportion of breast milk in the diet and 

therefore less dominance of Bifidobacterium (Fig. 3c). Infants receiving some breast milk 

had significantly lower diversity when compared with infants no longer receiving breast 

milk across all phases (P < 0.001 for all phases), owing to the dominance of Bifidobacterium 
in infants receiving breast milk. To explore microbiome maturation further, we used 

microbiota age and microbiota-by-age Z-scores (MAZ) as previously described25, with a 

model of 20 operational taxonomic units (OTUs) that explained 72% of the variance 

(compared to 74% when including all OTUs in the model) (Extended Data Fig. 3). 

Comparably, the microbiota age and MAZ scores were significantly reduced in infants 

receiving some breast milk in the developmental and transitional phases (both P < 0.001 for 

microbiota age and MAZ scores), but converged in the stable phase (microbiota age P = 

0.331 and MAZ score P = 0.196) (Fig. 3d). After the cessation of breast milk, 110 unique 

bacterial species (89 from the Firmicutes phylum) were significantly increased from months 

3 to 14 of life alone (Supplementary Table 2). The suppression of Firmicutes while in receipt 

of some breast milk was recently noted21. Together, these data support existing reports that 

the maturation of the gut microbiome is driven by the cessation of breast milk (rather than 

the introduction of solid foods), hallmarked by increased levels of Firmicutes17,21,26.
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Breastfeeding was the only covariate that was significantly associated with metabolic 

potential (Fig. 2). Plotting all significant modules (Supplementary Table 1) from the first 

three time points (months 3–14) showed clear clustering based on the receipt of breast milk, 

with comparability in the metabolic capacity regardless of the time point (Fig. 3e). Modules 

most significantly associated with breastfed infants were from the ‘carbohydrate and lipid 

metabolism’ pathway and included ‘fatty acid biosynthesis’ (M00083 and M00082) and 

‘beta-oxidation, acyl-CoA synthesis’ (M00086) (Supplementary Table 2). This is in 

accordance with previous work that found that genes that relate to the biosynthesis of fatty 

acids are increased during infancy in breastfed infants17,27,28. Conversely, infants not 

receiving breast milk showed rapid turnover of the metabolic capacity, and the 

‘dicarboxylate- hydroxybutyrate cycle’ (M00374) and ‘reductive acetyl-CoA (Wood–

Ljungdahl)’ (M00377) pathways were increased. Modules relating to vitamins B7 

(‘nucleotide and amino acid metabolism’ pathway; M00573, M00577 and M00123) were 

also increased in all time points up to 14 months in non-breastfed infants, a function that is 

associated with the adult microbiome28.

By mapping reads with genomic coordinates that overlap with known KEGG orthologues to 

KEGG modules (M), we were able to directly determine from which taxa each gene 

orthology (and thus module) was derived (see Methods). Each pathway from which each 

significant module was derived was plotted against the main species discriminating 

breastfeeding status (Supplementary Table 2). In breastfed infants, B. breve accounted for 

the highest number of significant modules in early life, and was replaced by B. bifidum after 

6 months of life (Fig. 3f). In non-breastfed infants, E. coli primarily accounted for the 

significant modules between 3 and 14 months of life (Fig. 3f). This provides further 

evidence that the gut microbiome rapidly matures after the cessation of breast milk, both at 

the taxonomic and functional levels.

The TEDDY study was powered to detect microbiome associations with the development of 

IA and T1D based on a specific 1:1 nested case–control study design, from two nested case–

control studies (IA or T1D), using risk set sampling29. The analytical cohort consisted of a 

subset with an equal number of samples for each case–control pair. The IA cohort consisted 

of 632 children and 6,194 stool samples and the T1D cohort consisted of 196 children and 

1,540 stool samples, as of 31 May 2012 (Supplementary Table 3). The temporal alpha 

diversity (both richness and Shannon’s diversity), microbiota age and MAZ scores were 

comparable between cases and matched controls for both the IA and T1D groups (all P > 

0.05; Extended Data Fig. 4a–h). The relative abundance of the top 50 most abundant genera 

from 16S rRNA gene sequencing showed only subtle compositional differences, with higher 

relative abundance of an unclassified Erysipelotrichaceae (P = 0.019) in cases of IA 

(Supplementary Table 3). In the T1D and control cohort, five bacterial genera were 

associated with T1D onset, with Parabacteroides the most significant (P < 0.001). Eleven 

bacterial genera were lower in T1D cases, including four unclassified Ruminococcaceae, 

Lactococcus (P = 0.020), Streptococcus (P = 0.032), and Akkermansia (P = 0.045) 

(Supplementary Table 3).

Conditional logistic regression models showed no significant associations between either the 

numbers of unique states exhibited or the number of transitions between different states per 
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subject for IA (Extended Data Fig. 4i and Supplementary Table 3). The lack of associations 

was consistent in T1D, with the exception that cases exhibited fewer unique states 6–12 

months before the onset of T1D (P = 0.032) (Extended Data Fig. 4j and Supplementary 

Table 3). Notably, the 6–12 months before T1D onset group consisted of the lowest number 

of samples for any of the time points (n = 67 subjects per group), and thus the statistically 

significant result should be interpreted with caution. Overall, the conditional logistic 

regression models of community dynamics suggest that microbiome stability was not 

strongly related to the onset of IA or T1D.

Further analysis of covariates that were significant at several time points and/or consistently 

significant by 16S rRNA gene sequencing and metagenomics are presented in 

Supplementary Note 3. In brief, birth mode was significantly associated with microbiome 

development over the first year of life, with higher levels of Bacteroides spp. in infants that 

were delivered vaginally (Extended Data Fig. 5). This was generally consistent across the 

different breast milk exposure groups and geographical locations (Extended Data Fig. 6). 

Differences between geographical locations occurred from 3 to 22 months of life 

(Supplementary Table 1), although the core microbiome was consistent (Supplementary 

Table 4), and diversity, microbiota age and MAZ scores had comparable trajectories across 

each location (Extended Data Fig. 7a–c). Household exposures (for example, living with 

siblings and with furry pets) were also associated with differences in the microbiome 

profiles in early life, in which infants living with siblings and/or with furry pets showed 

accelerated rates of maturation of the microbiome (Extended Data Fig. 7d–i).

The TEDDY population offers a robust analysis of gut microbiome development of 903 

infants from months 3 to 46 of age, with regular sampling (more than 12,000 stool samples), 

extensive metadata, and the use of both amplicon and metagenomic sequencing. We showed 

that the first year of life is a key phase for the development of the microbiome, with the 

receipt of breast milk being the main factor that influences microbiome development over 

this period. Birth mode, geographical location, household siblings and furry pets were also 

associated with the microbiome over this period. We considered the first year of life as 

developmental, the second year of life as transitional, and from year three of life the 

microbiome stabilized. These precise ages may shift when investigators include samples 

before month 3 or beyond month 46 of life.

The current cohort is largely white, non-Hispanic and is drawn from a population of infants 

at high genetic risk for T1D, some of whom developed autoimmunity or diabetes. Temporal 

alpha diversity and community dynamics were comparable between cases and controls, 

which is in contrast to findings reported in other cohorts and may reflect the increased 

number of subjects and samples in the TEDDY cohort11,12. We found subtle changes in the 

relative abundance of bacterial genera between cases (IA and/or T1D) and matched controls. 

T1D cases showed higher levels of Streptococcus sp. and Lactococcus sp., which is 

consistent with the findings of Vatanen et al.14 in the companion paper. In accordance with 

previous work, the abundance of Akkermansia was also higher in controls in the current 

study, which may be indicative of enhanced gut integrity10.
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The overall microbiome development and significant covariates are in concordance with 

previous reports in westernized populations, although caution should be exercised when 

extrapolating the findings from the TEDDY cohort of children with risk factors of 

developing T1D to the wider population. Nevertheless, the significant covariates reported in 

the current study have been independently linked to the risk of later life diseases such as 

obesity, asthma and allergy1–8. The current study provides several testable hypotheses of 

microbiome development in infancy, and it remains important to determine the potential 

mechanism of altered early life microbiome and the subsequent effect on immune 

development and functioning. With a more comprehensive understanding of the crucial early 

life phases and their effect on health and disease, lifestyles and therapeutics can be tailored 

to support optimal microbial–immune homeostasis.

METHODS

Study population.

The TEDDY Study is composed of six clinical research centres: three in the United States 

(Colorado, Georgia/Florida and Washington), and three in Europe (Finland, Germany and 

Sweden). Children enrolled are followed prospectively from three months to 15 years with 

study visits every three months until age 4 years and every three or six months thereafter 

depending on autoantibody positivity. Stool samples and associated metadata were collected 

as of 31 May 2012. Stool samples were collected monthly from 3 to 48 months of life, then 

every three months until the age of 10 years, and then biannually thereafter, into the three 

plastic stool containers provided by the clinical centre. Children who were antibody negative 

after 4 years of age were encouraged to submit four times a year even though after 4 years 

their visits schedule switched to biannual. Parents sent the stool containers at either ambient 

or +4 °C temperature with guaranteed delivery within 24 h in the appropriate shipping box 

to the NIDDK repository if living in the United States or their affiliated clinical centre if 

living in Europe. The European clinical centres stored the stool samples and sent monthly 

bulk shipments of frozen stool to the NIDDK repository. The population (both cases and 

controls) is based on children at high risk for T1D based on their HLA genotype with 10% 

based on family history in addition to HLA. Detailed study design and methods have been 

previously published13,29,30. Matching factors for case and control children were 

geographical location, sex and family history of T1D.

Metadata were collected using validated questionnaires that have been either published or 

extensively scrutinized by experts. Information about mothers, pregnancy and birth was 

collected during the three month clinic visit by questionnaire and included the mode of birth 

(vaginal birth versus Caesarean section), the infant’s 5-min Apgar score, pregnancy 

complications, information about maternal diabetes (T1D, type 2 diabetes (T2D) or 

gestational diabetes), gestational age, and maternal medication use (insulin, metformin, 

glyburide, antihypertensives) during pregnancy. TEDDY provides many tools, such as ‘The 

TEDDY book’, to the parents to assist in real-time collection of all events in their child’s life 

to ensure bias and error are minimized. At each visit the study personnel will go over the 

TEDDY book with the primary caretaker and extract pertinent information using 

standardized study forms. Data are extracted by trained staff members during scheduled 
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visits every three months starting at 3 months of age and entered directly via stand forms 

(web forms or teleforms), which are transmitted electronically. Front-end constraints are 

used in the web application to prevent the entry of invalid data and The TEDDY Error 

Reporting and Verification System (ERVS) consists of a set of programs that conduct 

automated quality control on the data, report and resolve errors, an integrated database for 

storing error data, and a set of programs that generate reports for monitoring data cleaning 

efforts. The details of the system have been published31. Given the prospective nature of the 

TEDDY design, information and recall bias are greatly minimized. Because the children do 

not have event outcome at time of enrolment and are followed, there is no reason for any 

systematic differences between groups of the study participants in the accuracy of the 

information collected.

The TEDDY study was approved by local US Institutional Review Boards and European 

Ethics Committee Boards in Colorado’s Colorado Multiple Institutional Review Board, 

Georgia’s Medical College of Georgia Human Assurance Committee (2004–2010), Georgia 

Health Sciences University Human Assurance Committee (2011–2012), Georgia Regents 

University Institutional Review Board (2013–2015), Augusta University Institutional 

Review Board (2015–present), Florida’s University of Florida Health Center Institutional 

Review Board, Washington state’s Washington State Institutional Review Board (2004–

2012) and Western Institutional Review Board (2013–present), Finland’s Ethics Committee 

of the Hospital District of Southwest Finland, Germany’s Bayerischen Landesärztekammer 

(Bavarian Medical Association) Ethics Committee, Sweden’s Regional Ethics Board in 

Lund, Section 2 (2004–2012) and Lund University Committee for Continuing Ethical 

Review (2013–present). All parents or guardians provided written informed consent before 

participation in genetic screening and enrolment. The study was performed in compliance 

with all relevant ethical regulations.

A priori power calculations using discrete Cox’s proportional hazards regression32 for the 

matched IA case–control study estimated 80% power, α = 0.01, two-sided test to detect an 

odds ratio > 3 for an exposure with 5% prevalence to an odds ratio > 1.8 for an exposure 

with 20% prevalence. The experiments were not randomized, and investigators were not 

blinded to allocation during experiments and outcome assessment.

16S rRNA gene sequencing.

16S rRNA gene sequencing methods were adapted from the methods developed by the NIH-

Human Microbiome Project and the Earth Microbiome Project33–35. Bacterial DNA was 

extracted using the PowerMag Microbiome DNA isolation kit following the manufacturer’s 

instructions. The V4 region of the 16S rRNA gene was amplified by PCR and sequenced on 

the MiSeq platform (Illumina) using the 2 × 250 bp paired-end read protocol. The read pairs 

were demultiplexed and reads were merged using USEARCH v7.0.109036. Merging allowed 

zero mismatches and a minimum overlap of 50 bases, and merged reads were trimmed at the 

first base with a q ≤ 5. A quality filter was applied to the resulting merged reads and those 

containing above 0.5% expected errors were discarded. Sequences were stepwise clustered 

into OTUs at a similarity cutoff value of 97% using the UPARSE algorithm37. Chimeras 

were removed using USEARCH v7.0.1090 and UCHIME v4.2. To determine taxonomies, 
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OTUs were mapped to a version of the SILVA Database38 containing only the 16S V4 region 

using USEARCH v7.0.1090. Abundances were recovered by mapping the merged reads to 

the UPARSE OTUs. A custom script constructed a rarefied OTU table from the output files 

generated in the previous two steps for downstream analyses of taxonomic relative 

abundance, alpha diversity, and beta diversity (including UniFrac)39. A total of 114,313,601 

reads (median 8,442 reads per sample) were obtained from 16S rRNA gene sequencing and 

each sample was rarefied to 3,000 reads. Stringent merging parameters account for the 

relatively low number of OTUs, with the number of species by metagenomics around 

fourfold higher than the number of OTUs by 16S rRNA gene sequencing.

Metagenomic shotgun sequencing.

Individual libraries constructed from each sample were pooled and loaded onto the HiSeq 

2000 platform (Illumina) and sequenced using the 2 × 100 bp paired-end read protocol. The 

process of quality filtering, trimming, and demultiplexing was carried out by in-house 

pipeline developed by assembling publicly available tools such as Casava v1.8.2 (Illumina) 

for the generation of fastqs, Trim Galore v0.2.8 (http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/) and cutadapt v1.9dev2 for adaptor and quality trimming, and 

PRINSEQ v0.20.540 for sample dereplication and low complexity filtering. In addition, 

Bowtie2 v2.2.341 was used to map reads to a database containing complete genomes and 

assemblies for bacteria, viruses, human, and vectors in the NCBI whole-genome sequencing 

(WGS) archive (as of March 2015). Reads in which the highest identity matches were not 

bacterial were removed from subsequent analysis. The edit distance (Levenshtein distance) 

was used to determine the score of the alignments to the reference genomes42. For bacterial 

reads, the highest scoring match (greater than 90%) was chosen per read considering only 

the top 25 highest scoring alignments. In the event of multiple identical top scoring hits, the 

lowest common ancestor was determined.

Reads in which the genomic coordinates overlap with known KEGG orthologues43,44 were 

tabulated, and KEGG modules were calculated step-wise and determined to be complete if 

65% of the reaction steps were present per detected species and for the metagenome. 

Pathways were constructed for each taxa and metagenome by calculating the minimum set 

through MinPath45 resulting from the gene orthologues present. A total of 19,967,936,136 

reads (median 1,606,240 reads per sample) were obtained from metagenomic sequencing 

and for subsequent analysis each sample was rarefied to 100,000 reads.

Statistical analysis.

The analysis was conducted in two parts: (1) characterize the longitudinal maturation of the 

microbiome and (2) determine the significant covariates that influence microbiome 

development. For both parts of analysis, alpha diversity (richness and Shannon diversity) 

was calculated at the OTU-level for 16S rRNA gene sequencing and species-level for 

metagenomics data. Alpha diversity and taxonomic abundance were modelled using LOESS 

regression, and implemented and plotted with 95% confidence intervals in R (http://www.R-

project.org) using the ggplot package46.
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DMM clustering.—The first part of the analysis determined the key phases of microbiome 

progression, which included the use of DMM. DMM bins samples on the basis of microbial 

community structure47. The appropriate number of clusters was determined based on the 

lowest Laplace approximation score. For this specific analysis, samples up to month 46 of 

life were included, whereas all other analyses included samples up to month 40 of life. 

Including the additional samples here allowed for more accurate determination of the 

microbiome phases.

The second part of the analysis sought to determine the significant covariates in shaping the 

microbiome profiles at discrete time points and further ascertain the significantly altered 

taxa based on samples up to month 40 of life. The framework for the statistical analysis 

considered the longitudinal nature of the dataset and accounted for the dynamic nature of the 

covariates. Owing to the potential that some covariates might influence the microbiome 

before the start date (for example, underlying indication for an antibiotic prescription) and 

some covariates will alter the microbiome for an unknown time frame (for example, 

microbiome disrupted by antibiotics may continue to be altered months after treatment), 

covariates were classified as ‘before’, ‘during’, or ‘after’. In the case a covariate was 

negative for an infant, all samples would be classified as ‘never’. In instances in which 

several onsets of a covariate were possible (for example, multiple antibiotic start and end 

time points), after the first onset the covariate was classified as ‘after’ for the remaining 

samples, unless another event occurred, in which case ‘during’ would be applied where 

appropriate according to the start and stop dates. Analysis was performed at specific time 

windows, including samples collected between months 3–6, 7–10, 11–14, 15–18, 19–22, 

23–26, 27–30 and 31–40. Only the first sample collected from a given child was included in 

each time window to account for repeated measures.

EnvFit analysis to determine significant covariates.—The effect size and 

significance of each covariate were determined using the ‘envfit’ function in ‘vegan’ (https://

cran.r-project.org/web/packages/vegan/index.html) comparing the difference in the centroids 

of each group relative to the total variation. Ordination was performed using NMDS based 

on Bray–Curtis dissimilarity. The significance value was determined based on 10,000 

permutations. All P values derived from envfit were adjusted for multiple comparisons using 

FDR adjustment (Benjamini–Hochberg procedure)48. In total, 22 covariates with known 

associations to gut microbiome development in neonates, infants, and children were included 

in the envfit analysis and the grouping used for within each variable is presented in Extended 

Data Table 1. Specifically, we tested maternal factors including diabetes (gestational, T1D, 

T2D or none)49, diabetes medication (insulin, metformin, glyburide, antihypertensives)50, 

BMI51,52, gestational weight gain category (excess or non-excess)53, preeclampsia52, 

maternal probiotic consumption54, as well as offspring factors such as prematurity18,55, birth 

mode15–17,56, gender56, receipt of breast milk and/or formula17,53,57–59, introduction of solid 

foods60,61, geographical location57, probiotics62, vitamin D supplementation63, antibiotics18, 

household siblings56,64, household furry pets64,65, living on a farm with animals66,67, day-

care exposure68, coeliac disease69, acute disease, and chronic disease69.
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MaAsLin analysis to determine significant taxa associated with each 
covariate.—MaAsLin was used for adjustment of covariates when determining the 

significance of taxa (genus level for 16S rRNA gene sequencing and species level for 

metagenomic sequencing) contributing to a specific variable, while accounting for 

potentially confounding covariates70. In brief, this multivariate linear modelling system for 

microbial data selects from among a set of (potentially high-dimensional) covariates to 

associate with microbial taxon or pathway abundances. Mixed-effects linear models using a 

variance-stabilizing arcsin square root transform on relative abundances are then used to 

determine the significance of putative associations from among this reduced set. Nominal P 
values across all associations are then adjusted using the Benjamini–Hochberg FDR method. 

Here, microbial features with corrected q < 0.25 were reported. All 22 covariates tested in 

the envfit were included in the adjustment regardless of significance by envfit. Subject age 

was also included to adjust for potential age driven changes in taxa within each three-month 

time window and IA and T1D outcome were included to adjust for the nested case control 

nature of the cohort. The default MaAsLin parameters were applied (maximum percentage 

of samples NA in metadata 10%, minimum percentage relative abundance 0.01%, P < 0.05, 

q < 0.25). All P values were adjusted for multiple comparisons using FDR48.

Microbiota maturation modelling and linear mixed-effects analysis.—The 

random forest regression model71 was performed as previously described25, using the 

‘randomForest’ R package72. In brief, the model was trained on 150 randomly selected full 

term (>37 weeks gestation), vaginally delivered, breastfed infants who had a minimum of 10 

samples included in the final dataset. The model was built using the default parameters: 

growing 10,000 trees and n/3 OTUs randomly sampled at each split, in which n represents 

the number of OTUs. The model was further refined by applying ‘rfcv’ with tenfold cross-

validation resulting in the inclusion of 20 OTUs to train the final model based on percentage 

increase in mean-squared error. These 20 OTUs explained 72% of the total variance of the 

model (compared to 75% with all OTUs included). The age of the subject predicted by this 

model was termed microbiota age and was further used to determine MAZ scores using the 

formulae described preiously25. Significant differences in alpha diversity, microbiota age, 

and MAZ scores were calculated using linear mixed-effects models in R, with the ‘lmer’ 

command within the ‘lme4’ package73. We included random slopes and intercept for 

individual children, and evaluated delivery mode, age, Bacteroides positive or negative, 

predominant diet, geographical location, presence of siblings, and presence of household 

pets as fixed effects. To perform these piecewise longitudinal models, we divided samples 

into the three developmental phases (<14 months, >15–<30 months, and >31 months). 

Owing to the relatively low number of samples in the exclusive and never breastfed groups, 

the analysis of breast milk status was conducted based on ‘some breast milk’ or ‘after breast 

milk’, with these groups found to cluster with exclusive and never breastfed, respectively.

Determination of the datasets for IA and T1D nested case–control stability 
analyses.—The development of persistent confirmed IA was assessed every three months. 

Persistent autoimmunity was defined by the presence of confirmed islet autoantibody on two 

or more consecutive visits. The date of persistent autoimmunity was defined as the draw date 

of the first sample of the two consecutive samples that deemed the child persistent confirmed 
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positive for a specific autoantibody (or any autoantibody). T1D was defined according to 

American Diabetes Association criteria for diagnosis74. A dataset with equal numbers of 

cases and control samples was created to preform conditional logistic regression of summary 

metric variables (that is, counting for each person the number of unique clusters exhibited 

and the number of temporal transitions between different clusters). On average, cases tended 

to have more samples than controls, and therefore had more transitions and observed states, 

which resulted in spurious associations between our metrics and disease outcome. For this 

purpose, we created a dataset in which case and control samples were matched to the paired 

case based on the nearest sample by day of life (unmatched sample or sample outside of 

±20% were omitted from analyses). This resulted in an analytical cohort of 316 IA cases and 

316 paired controls (n = 3,097 stool samples in each group) and 98 T1D cases and 98 paired 

controls (n = 1,270 stool samples in each group). For consistency, we used these datasets for 

all matched case–control analyses. The IA and T1D analysis was based on 16S rRNA gene 

sequencing data only and analysis of the metagenomic sequencing data (that is, species level 

taxonomic profiling and functional capacity) are presented in the companion paper14.

Taxonomic and metabolic profiling relative to IA onset in the matched case–
control dataset.—16S rRNA gene sequencing data was used to determine differences 

between alpha diversity (number of OTUs (richness) and Shannon’s diversity index), 

microbiota age, and MAZ scores. Significant differences in alpha diversity, microbiota age, 

and MAZ scores were calculated using linear mixed-effects models in R, with the ‘lmer’ 

command within the ‘lme4’ package73. To perform these piecewise longitudinal models, we 

divided samples into the three developmental phases (<14 months, >15–<30 months, and 

>31 months). Conditional logistic regression of matched case–control pairs was performed 

on the top 50 most dominant bacterial genera from samples prior to disease diagnosis. Odds 

ratios were calculated with 95% confidence intervals, adjusted for potential confounding 

variables, including age at sample collection, HLA genotype, mode of delivery, and duration 

of breastfeeding. Abundance information for genera was entered into the model as log2-

transformed read counts. A value of 0.01 was added to avoid 0 s. The Benjamini–Hochberg 

procedure was applied to correct for multiple comparisons48 and corrected P < 0.05 was 

considered significant.

Assessment of microbiome instability based on DMM clusters between IA or 
T1D cases and controls.—For each subject, the total number of clusters exhibited 

throughout sampling per infant and the number of transitions between different clusters from 

one sample to the next were calculated to provide summary measures of microbiome 

stability over time. These summary metrics were then used in conditional logistic regression 

to assess the relationship of microbiome stability with IA and T1D. Odds ratios were 

calculated with 95% confidence intervals, adjusted for potential confounding variables, 

including HLA genotype, mode of delivery, duration of breastfeeding, number of antibiotic 

courses, and number of infectious episodes.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.
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Code availability.

Code for the transition model showing the progression of samples through each DMM 

cluster, which are presented in Fig. 1 and Extended Data Fig. 2, has been made publicly 

available at https://github.com/StewartLab/Stewart_TEDDY_Microbiome_Analysis. Other 

analysis software including quality control, taxonomic, and functional profilers is publicly 

available and referenced as appropriate.

Data availability

TEDDY microbiome 16S rRNA gene sequencing and metagenomic sequencing data that 

support the findings of this study have been deposited in the NCBI database of Genotypes 

and Phenotypes (dbGaP) with the primary accession code phs001443. v1.p1, in accordance 

with the dbGaP controlled-access authorization process. Clinical metadata analysed during 

the current study will be made available in the NIDDK Central Repository at https://

www.niddkrepository.org/studies/teddy.
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Extended Data

Extended Data Fig. 1 |. Characterization of the gut microbiome over the first 40 months of life (n 
= 11,717).
a–d, 16S rRNA gene sequencing (a–c) and metagenomic sequencing (d) analysis. Curves 

show LOESS fit for the data per category, and shaded areas show permutation-based 95% 

confidence intervals for the fit. a, Summary of overall dietary status. b, The mean alpha 

diversity (richness and Shannon diversity) per child increased rapidly from 3 to 20 months of 

life. c, The mean relative abundance of the five most abundant bacterial phyla show changes 

from 3 to 20 months of life and generally remain stable after month 30 of life. d, The mean 

relative abundance of the ten most abundant bacterial pathways shows relative stability, with 

ABC transporters and two-component system showing the largest reduction from 3 to 20 

months of life.
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Extended Data Fig. 2 |. DMM clustering of metagenomic sequencing data (n = 10,867).
The entire dataset formed 18 distinct clusters based on lowest Laplace approximation. a, 

Heat map showing the relative abundance of the 25 most dominant bacterial species per each 

DMM cluster. b, Box plots showing the alpha diversity (richness and Shannon’s diversity) 

for each DMM cluster. The centre line shows the median, the boxes cover the 25th and 75th 

percentiles, and the whiskers extend to the most extreme data point, which is no more than 

1.5 times the length of the box away from the box. Points outside the whiskers represent 

outlier samples. c, Transition model showing the progression of samples through each DMM 

cluster per each time point, from months 3 to 46 of life. Dashed boxes show the three phases 

of microbiome progression (developmental, transitional and stable phase). Solid squares 

next to the labels denote the significant changes in phyla and Shannon diversity (H’) per 

phase based on multiple linear regression. All phyla and the H’ were significant in the 

developmental phase, two phyla and the H’ were significant in the transitional phase, and no 

phyla or the H’ were in the stable phase. Nodes and edges are sized based on the total 
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counts. Nodes are coloured according to DMM cluster number and edges are coloured by 

the transition frequency. Transitions with less than 2% frequency were omitted from the plot.

Extended Data Fig. 3 |. Twenty bacterial OTUs classified by random forest regression analysis as 
most age discriminatory over the first 40 months of life.
Rank importance of OTUs determined by applying the random forest regression to the 

chronological age of 150 full-term, vaginally delivered, breastfed infants (n = 2,871 stool 

samples). The importance of OTUs is determined by the percentage increase in meansquared 

error of microbiota age prediction when the relative abundance of each OTU were randomly 

permuted (mean importance ± s.d., n = 100 replicates). These selected OTUs explained 72% 

of the variance (compared to 75% variance explained with all OTUs in model) and were 

used to define maturation of the gut microbiome by microbiota age and MAZ score. OTUs 

are named to the genus level and coloured based on association with life stage; blue were 

associated with samples collected in the first 15 months, green with samples collected 

between months 15 and 30, and red were with samples collected after month 30. a, Twenty 

OTUs ranked by importance to the accuracy of the model. The tenfold cross-validation error 

is also displayed in order of variable importance. Blue dotted line represents the 20 OTUs 

used in the model. b, Heat map of mean relative abundance of the 20 selected OTUs per 

month from 3 to 40 months of age.
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Extended Data Fig. 4 |. The microbiota was not associated with the development of persistent IA 
and T1D.
Data are based on 16S rRNA gene sequencing (n = 11,717). Analysis based on a nested 1:1 

case–control cohort of equal samples. Curves show LOESS fit for the data per category, and 

shaded areas show permutation-based 95% confidence intervals for the fit. a, b, The number 

of OTUs (a) and the Shannon’s diversity index (b) in the IA cohort. c, d, The number of 

OTUs (c) and Shannon’s diversity (d) in the T1D cohort. e, f, Microbiota age (e) and MAZ 

score (f) in the IA cohort. g, h, Microbiota age (g) and MAZ score (h) in the T1D cohort. i, 
j, Forest plot showing the odds ratios for the association between the microbiome stability 

metrics and development of IA (i) and T1D (j). A separate conditional logistic regression 

was run for four time intervals: (1) birth to onset; (2) 12 months before onset; (3) 6–12 

months before onset; and (4) 6 months before onset. Models were adjusted for HLA 

genotype, mode of delivery, duration of exclusive breastfeeding, number of antibiotic 

courses, and number of infectious episodes. Community states are the total number of 

unique clusters exhibited by an infant and state transitions are the number of transitions 

between clusters. No odds ratio was significantly different between cases and controls 

(Supplementary Table 3).
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Extended Data Fig. 5 |. Association of the gut microbiome with birth mode.
Birth mode was significantly associated with the microbiome in months 3–6 by 16S rRNA 

gene sequencing and in all time points up to month 14 by metagenomic sequencing (see 

Supplementary Table 1). Curves show LOESS fit for the data per category, and shaded areas 

show permutation-based 95% confidence intervals for the fit. a, Longitudinal development 

of the Bacteroides genus as determined by 16S rRNA gene sequencing (n = 11,717). b, 

Longitudinal development of the six most abundant species within the Bacteroides genera as 

determined by metagenomic sequencing (n = 10,867). Grid overlay added to aid visual 

interpretation. c, NMDS ordination plots showing the mean centroid of each birth mode 

group stratified by Bacteroides positive or negative based on detection 16S rRNA gene 

sequencing. Plots include only the first sample obtained from a patient within a given time 

point for months 3–6, 7–10 and 11–14 (n = 2,257). Centroid size based on number of 

samples and the bars represent the ±95% confidence interval. d, Longitudinal development 

of the alpha diversity (richness and Shannon’s diversity) with birth mode further stratified 

according to Bacteroides positive or negative (n = 11,717). e, Longitudinal development of 
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the microbiome maturation based on the microbiota age and MAZ score against the age of 

the infant at sampling (n = 11,717). Birth mode was further stratified according to 

Bacteroides positive or negative.

Extended Data Fig. 6 |. The relative abundance of Bacteroides stratified by breast milk and 
geographical location.
Curves show LOESS fit for the data per category, and shaded areas show permutation-based 

95% confidence intervals for the fit. a, b, Bacteroides genera based on 16S rRNA gene 

sequencing data (n = 11,717) stratified by breast milk status (a) and geographical location 

(b). c, The top 6 Bacteroides species based on metagenomic sequencing data (n = 10,867) 

stratified by geographical location.
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Extended Data Fig. 7 |. Environmental covariates significantly associated with the microbiome 
profiles.
16S rRNA gene sequencing data plotted from months 3–40 of life (n = 11,717). Curves 

show LOESS fit for the data per category, and shaded areas show permutation-based 95% 

confidence intervals for the fit. Significance determined by linear mixed-effects models in 

accordance with observed phases of maturation: developmental (months 3–14), transitional 

(months 15–30), and stable (months 31–46). Shaded lines represent the ±95% confidence 

interval. Longitudinal development of the Shannon’s diversity index, microbiota age and 

MAZ score by geographical location (a–c), occurrence of household siblings (d–f), and 

occurrence of household furry pets (g–i).
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Extended Data Table 1 |

Overview of the entire analytical cohort

Month Total cohort 3 to 6 7 to 10 11 to 14 15 to 18 19 to 22 23 to 26 27 to 30 31 to 40

Number of Subjects 903 810 800 647 543 440 336 273 220

Number of Samples 12,005 810 800 647 543 440 336 273 220

No. samples per subject (IQR) 11 (6–19) 1 1 1 1 1 1 1 1

Median age of samples in 
months (IQR)

13.8 (8–22.2) 4.1 (3.8–4.5) 7.7 (7.2–8.1) 11.5 (11.2–12) 15.6 (15.2–16.1) 19.7 (19.2–20.2) 23.8 (23.3–24.2) 27.7 (27.2–28.2) 31.6 (31.2–32.3)

Maternal BMI category*

 Underweight 326 (3%) 27 (3%) 25 (3%) 17 (3%) 15 (3%) 11 (3%) 9 (3%) 6 (2%) 5 (2%)

 Normal 7209 (60%) 478 (59%) 479 (60%) 379 (59%) 328 (60%) 265 (60%) 204 (61%) 165 (60%) 140 (64%)

 Overweight 2991 (25%) 197 (24%) 189 (24%) 162 (25%) 132 (24%) 114 (26%) 92 (27%) 75 (27%) 55 (25%)

 Obese 1386 (12%) 100 (12%) 101 (13%) 83 (13%) 64 (12%) 47 (11%) 28 (8%) 25 (9%) 18 (8%)

 NA 93 (1%) 8 (1%) 6 (1%) 6 (1%) 4 (1%) 3 (1%) 3 (1%) 2 (1%) (0%)

Maternal preg. weight gain*

 Non-excess 8497 (71%) 584 (72%) 579 (72%) 473 (73%) 386 (71%) 308 (70%) 236 (70%) 193 (71%) 151 (69%)

 Excess 3415(28%) 218(27%) 215(27%) 168 (26%) 153 (28%) 129 (29%) 97 (29%) 78 (29%) 67 (30%)

 NA 93 (1%) 8(1%) 6 (1%) 6 (1%) 4 (1%) 3 (1%) 3 (1%) 2 (1%) 2 (1%)

Maternal diabetes medication*

 Insulin 977 (8%) 66 (8%) 64 (8%) 56 (9%) 41 (8%) 28 (6%) 23 (7%) 23 (8%) 19 (9%)

Metformin and insulin 38 (0%) 3 (0%) 2 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%)

 Glyburide 126(1%) 5 (1%) 6 (1%) 6 (1%) 5 (1%) 3 (1%) 4 (1%) 4 (1%) 3 (1%)

 None 10864 (90%) 736 (91%) 728 (90%) 584 (90%) 496 (91%) 400 (91%) 304 (90%) 245 (90%) 197 (90%)

Maternal diabetes*

 Gestational 779 (6%) 56 (7%) 53 (7%) 43 (7%) 36(7%) 29 (7%) 21 (6%) 16(6%) 16(7%)

 None 10060 (84%) 673 (83%) 672 (84%) 535 (83%) 458 (84%) 368 (84%) 280 (83%) 229 (84%) 185 (84%)

 T1D 839 (7%) 53 (7%) 54 (7%) 49 (8%) 35 (6%) 29 (7%) 25 (7%) 22 (8%) 16 (7%)

 T2D 30 (0%) 3 (0%) 3 (0%) 2 (0%) 2 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%)

 NA 297 (2%) 25 (3%) 18 (2%) 18 (3%) 12 (2%) 13 (3%) 10 (3%) 6 (2%) 3 (1%)

Maternal preeclampsia*

 Yes 445 (4%) 35 (4%) 32 (4%) 23 (4%) 21 (4%) 17 (4%) 11 (3%) 9 (3%) 9 (4%)

 No 11439 (95%) 765 (94%) 757 (95%) 618 (96%) 516 (95%) 418 (95%) 322 (96%) 262 (96%) 210 (95%)

 NA 121 (1%) 10 (1%) 11 (1%) 6 (1%) 6 (1%) 5 (1%) 3 (1%) 2 (1%) 1 (0%)

Maternal probiotic*

 Yes 584 (5%) 43 (5%) 42 (5%) 30 (5%) 24 (4%) 21 (5%) 17 (5%) 14 (5%) 9 (4%)

 No 11421 (95%) 767 (95%) 758 (95%) 617 (95%) 519 (96%) 419 (95%) 319 (95%) 259 (95%) 211 (96%)

Birth mode

 Caesarian 3319(28%) 196 (24%) 200 (25%) 170 (26%) 146 (27%) 121 (28%) 88 (26%) 84 (31%) 67 (30%)

 Vaginal 8686 (72%) 614 (76%) 600 (75%) 477 (74%) 397 (73%) 319 (73%) 248 (74%) 189 (69%) 153 (70%)

Preterm (<37 weeks)

 Yes 723 (6%) 39 (5%) 43 (5%) 35 (5%) 30 (6%) 29 (7%) 20 (6%) 16 (6%) 16 (7%)

 No 11282 (94%) 771 (95%) 757 (95%) 612 (95%) 513 (94%) 411 (93%) 316 (94%) 257 (94%) 204 (93%)

Geographical location

 Colorado 2079 (17%) 122 (15%) 120 (15%) 99 (15%) 84 (15%) 57 (13%) 45 (13%) 39 (14%) 30 (14%)

 Finland 2833 (24%) 223 (28%) 215 (27%) 163 (25%) 131 (24%) 107 (24%) 85 (25%) 57 (21%) 40 (18%)

 Georgia 872 (7%) 46 (6%) 53 (7%) 50 (8%) 48 (9%) 33 (8%) 23 (7%) 22 (8%) 18 (8%)

 Germany 1219 (10%) 86 (11%) 78 (10%) 60 (9%) 46 (8%) 46 (10%) 34 (10%) 28 (10%) 16 (7%)

 Sweden 4024 (34%) 260 (32%) 262 (33%) 216 (33%) 190 (35%) 150 (34%) 119 (35%) 102 (37%) 99 (45%)

 Washington 978 (8%) 73 (9%) 72 (9%) 59 (9%) 44 (8%) 47 (11%) 30 (9%) 25 (9%) 17 (8%)

Sex
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Month Total cohort 3 to 6 7 to 10 11 to 14 15 to 18 19 to 22 23 to 26 27 to 30 31 to 40

 Male 6455 (54%) 497 (61%) 438 (55%) 357 (55%) 297 (55%) 230 (52%) 175 (52%) 146 (53%) 119 (54%)

 Female 5550 (46%) 372 (46%) 362 (45%) 290 (45%) 246 (45%) 210 (48%) 161 (48%) 127 (47%) 101 (46%)

Race/Ethnicity**

 African Americans 24 (0%) 2 (0%) 2 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 2 (1%) 0 (0%)

 Hispanic 445 (4%) 32 (4%) 32 (4%) 29 (4%) 22 (4%) 12 (3%) 10 (3%) 4 (1%) 3 (1%)

 White Non-Hispanic 7391 (62%) 512 (63%) 497 (62%) 395 (61%) 322 (59%) 272 (62%) 201 (60%) 161 (59%) 199 (90%)

 All Other Races 128 (1%) 6 (1%) 8 (1%) 6 (1%) 8 (1%) 4 (1%) 5 (1%) 5 (2%) 2 (1%)

 NA 4017 (33%) 258 (32%) 261 (33%) 216 (33%) 190 (35%) 151 (34%) 119 (35%) 101 (37%) 16 (37%)

Breast milk status

 No breast milk ever 220 (2%) 13 (2%) 15 (2%) 12 (2%) 11 (2%) 7 (2%) 7 (2%) 8 (3%) 3 (1%)

 Exclusive 240 (2%) 136 (17%) 4 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

 Some breast milk 3048 (25%) 445 (55%) 417 (52%) 170 (26%) 52 (10%) 27 (6%) 10 (3%) 7 (3%) 5 (2%)

 After breast milk 8497 (71%) 216 (27%) 364 (46%) 465 (72%) 480 (88%) 406 (92%) 319 (95%) 258 (95%) 212 (96%)

Solid food status

 Before 602 (5%) 373 (46%) 4 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

 After 11403 (95%) 437 (54%) 796 (100%) 647 (100%) 543 (100%) 440 (100%) 336 (100%) 273 (100%) 220 (100%)

Probiotic

 Never 8017 (67%) 516 (64%) 508 (64%) 432 (67%) 363 (67%) 288 (65%) 222 (66%) 184 (67%) 149 (68%)

 Before 1183 (10%) 155 (19%) 117 (15%) 63 (10%) 45 (8%) 27 (6%) 18 (5%) 9 (3%) 10 (5%)

 During 2296 (19%) 122 (15%) 153 (19%) 136 (21%) 115 (21%) 107 (24%) 78 (23%) 57 (21%) 42 (19%)

 After 509 (4%) 17 (2%) 22 (3%) 16 (2%) 20 (4%) 18 (4%) 18 (5%) 23 (8%) 19(9%)

Vitamin D

 Never 692 (6%) 48 (6%) 46 (6%) 39 (6%) 30 (6%) 21 (5%) 17 (5%) 13 (5%) 9 (4%)

 During 11197 (93%) 756 (93%) 747 (93%) 602 (93%) 508 (94%) 413 (94%) 313 (93%) 257 (94%) 208 (95%)

 After 116 (1%) 6 (1%) 7 (1%) 6 (1%) 5 (1%) 6 (1%) 6 (2%) 3 (1%) 3 (1%)

Antibiotics

 Never 3796 (32%) 241 (30%) 240 (30%) 198 (31%) 166 (31%) 138 (31%) 106 (32%) 83 (30%) 78 (35%)

 Before 2358 (20%) 415 (51%) 287 (36%) 152(23%) 63 (12%) 11 (3%) 0 (0%) 0 (0%) 0 (0%)

 During 288 (2%) 19 (2%) 26 (3%) 24 (4%) 18 (3%) 12 (3%) 0 (0%) 0 (0%) 0 (0%)

 After 5563 (46%) 135 (17%) 247 (31%) 273 (42%) 296 (55%) 279 (63%) 230 (68%) 190 (70%) 142 (65%)

Household siblings

 Never 2187 (18%) 168 (21%) 164 (21%) 131 (20%) 108 (20%) 79 (18%) 53 (16%) 33 (12%) 25 (11%)

 Before 2890 (24%) 167 (21%) 171 (21%) 147 (23%) 131 (24%) 115 (26%) 87 (26%) 76 (28%) 58 (26%)

 During 6877 (57%) 468 (58%) 460 (58%) 367 (57%) 303 (56%) 245 (56%) 194 (58%) 163 (60%) 136 (62%)

 After 7 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (1%) 1 (0%) 1 (0%)

 NA 44 (0%) 7 (1%) 5 (1%) 2 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%)

Household flurry pets

 Never 6001 (50%) 418 (52%) 414 (52%) 329 (51%) 275 (51%) 227 (52%) 166 (49%) 133 (49%) 107 (49%)

 Before 779 (6%) 50 (6%) 45 (6%) 39 (6%) 36 (7%) 30 (7%) 25 (7%) 20 (7%) 15 (7%)

 During 5160 (43%) 336 (41%) 337 (42%) 278 (43%) 232 (43%) 183 (42%) 141 (42%) 116 (42%) 96 (44%)

 After 40 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (1%) 4 (1%) 2 (1%)

 NA 25 (0%) 6 (1%) 4 (1%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Lives on farm with animals

 Never 10385 (87%) 692 (85%) 688 (86%) 559 (86%) 474 (87%) 379 (86%) 289 (86%) 238 (87%) 193 (88%)

 Before 478 (4%) 35 (4%) 31 (4%) 26 (4%) 25 (5%) 19 (4%) 14 (4%) 10 (4%) 6 (3%)

 During 1085 (9%) 77 (10%) 77 (10%) 60 (9%) 43 (8%) 42 (10%) 31 (9%) 22 (8%) 19 (9%)

 After 32 (0%) 0 (0%) 0 (0%) 1 (0%) 1 (0%) 0 (0%) 2 (1%) 3 (1%) 2 (1%)

 NA 25 (0%) 6 (1%) 4 (1%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Daycare exposure

 Yes 4600 (38%) 49 (6%) 115 (14%) 139 (21%) 237 (44%) 263 (60%) 227 (68%) 194 (71%) 165 (75%)

 No 7405 (62%) 761 (94%) 685 (86%) 508 (79%) 306 (56%) 177 (40%) 109 (32%) 79 (29%) 55 (25%)
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Month Total cohort 3 to 6 7 to 10 11 to 14 15 to 18 19 to 22 23 to 26 27 to 30 31 to 40

Celiac disease

 Yes 506 (4%) 27 (3%) 28 (4%) 25 (4%) 22 (4%) 19 (4%) 12 (4%) 13 (5%) 10 (5%)

 No 11499 (96%) 783 (97%) 772 (97%) 622 (96%) 521 (96%) 421 (96%) 324 (96%) 260 (95%) 210 (95%)

Any chronic disease/disorder

 Never 8937 (74%) 622 (77%) 604 (76%) 486 (75%) 411 (76%) 333 (76%) 247 (74%) 195 (71%) 161 (73%)

 Before 1815 (15%) 154 (19%) 136 (17%) 102 (16%) 72 (13%) 54 (12%) 37 (11%) 32 (12%) 20 (9%)

 During 1212 (10%) 33 (4%) 58 (7%) 57 (9%) 59 (11%) 52 (12%) 51 (15%) 43 (16%) 37 (17%)

 After 41 (0%) 1 (0%) 2 (0%) 2 (0%) 1 (0%) 1 (0%) 1 (0%) 3 (1%) 2 (1%)

Any acute disease/disorder

 Never 17 (0%) 4 (0%) 3 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

 Before 1469 (12%) 599 (74%) 121 (15%) 18 (3%) 3 (1%) 1 (0%) 0 (0%) 0 (0%) 0 (0%)

 During 5107 (43%) 165 (20%) 321 (40%) 308 (48%) 265 (49%) 191 (43%) 151 (45%) 135 (49%) 96 (44%)

 After 5412 (45%) 42 (5%) 355 (44%) 321 (50%) 275 (51%) 248 (56%) 185 (55%) 138 (51%) 124 (56%)

IQR, interquartile range; NA, not available.
*
Maternal variables relate to measurements obtained during pregnancy.

**
Race/ethnicity was only available for the US sites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. DMM clustering of 16S rRNA gene sequencing data (n = 12,005).
The entire dataset formed ten distinct clusters based on lowest Laplace approximation. a, 

Heat map showing the relative abundance of the 25 most dominant bacterial genera per 

DMM cluster. Taxa names in square brackets are in need of formal taxonomic revision. b, 

Box plots showing the alpha diversity (richness and Shannon’s diversity) per each DMM 

cluster. The centre line denotes the median, the boxes cover the 25th and 75th percentiles, 

and the whiskers extend to the most extreme data point, which is no more than 1.5 times the 

length of the box away from the box. Points outside the whiskers represent outlier samples. 

c, Transition model showing the progression of samples through each DMM cluster per each 

time point, from months 3 to 46 of life. Dashed boxes show the three phases of microbiome 

progression (developmental, transitional and stable phase). Solid squares next to the labels 

denote the significant changes in phyla and Shannon’s diversity (H’) per phase based on 

multiple linear regression. All phyla and the H’ were significant in the developmental phase, 

two phyla and the H’ were significant in the transitional phase, and no phyla or the H’ were 

in the stable phase. Nodes and edges are sized based on the total counts. Nodes are coloured 

according to DMM cluster number and edges are coloured by the transition frequency. 

Transitions with less than 4% frequency are not shown. Results are further supported by the 

metagenomic sequencing data in Extended Data Fig. 2.
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Fig. 2 |. Significance and explained variance of 22 microbiome covariates modelled by EnvFit 
across all data types.
Horizontal bars show the amount of variance (r2) explained by each covariate in the model 

as determined by EnvFit. The groups within each covariate are detailed in Extended Data 

Table 1. Covariates are coloured based on overall metadata group. Significant covariates 

(false discovery rate (FDR) P < 0.05) are represented in bold font. Asterisk denotes the 

significant covariates at each time point. BMI, body mass index; wtgain, weight gain. a, 

Microbiome profiles at the genus level based on 16S rRNA gene sequencing data (n = 

4,069). b, Microbiome profiles at the species level based on metagenomic sequencing (n = 
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3,843). c, Functional metagenomic capacity at the module level based on metagenomic 

sequencing (n = 3,843).
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Fig. 3 |. Breastfeeding status was the most significant microbiome covariate associated with all 
datasets throughout the first year of life.
Breastfeeding status was significantly associated with microbiome profiles over the first 

three time points (months 3–14, n = 2,257; Supplementary Table 1). Curves show locally 

weighted scatterplot smoothing (LOESS) for the data per category, and shaded areas show 

permutation-based 95% confidence intervals for the fit. a, Non-metric multidimensional 

scaling (NMDS) ordination plots showing the mean centroid of each breastfeeding status 

group. Plots include only the first sample obtained from a patient within a given time point; 

months 3–6, 7–10 and 11–14. Centroid size based on number of samples and the bars 

represent the ±95% confidence interval. b, Plots showing the receipt of breast milk from 
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months 3 to 40 of age compared to the relative abundance of the six most abundant 

Bifidobacterium species over the same period (n = 11,717). c, Longitudinal Shannon 

diversity index from months 3 to 40 of age (n = 11,717). d, Longitudinal development of the 

microbiome maturation based on the microbiota age and MAZ score against the age of the 

infant at sampling (n = 11,717). e, Heat map showing the mean abundance of all significant 

modules as determined by MaAsLin analysis at each of the first three time points. The 

corresponding pathway for each module is also presented. BM, breast milk. f, Stacked bar 

plots showing the abundance of each significant module binned at the pathway level. 

Abundance plotted per bacterial species, with the five most significant species associated 

with breastfed and non-breastfed infants, respectively.
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