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Inability to efficiently implement high-throughput field phenotyping is increas-
ingly perceived as a key component that limits genetic gain in breeding pro-
grams. Field phenotyping must be integrated into a wider context than just
choosing the correct selection traits, deployment tools, evaluation platforms, or
basic data-management methods. Phenotyping means more than conducting
such activities in a resource-efficient manner; it also requires appropriate trial
management and spatial variability handling, definition of key constraining
conditions prevalent in the target population of environments, and the devel-
opment of more comprehensive data management, including crop modeling.
This review will provide a wide perspective on how field phenotyping is best
implemented. It will also outline how to bridge the gap between breeders and
‘phenotypers’ in an effective manner.

Field Phenotyping Is a Bottleneck for Crop Genetic Improvement
Although there has been much success from the second half of the last century to now, the
genetic gains (see Glossary) in yields of major crops such as wheat (Triticum aestivum L.) have
stabilized or even stagnated in many regions of the world [1,2], despite recent technical
advances. This stagnation makes it more urgent to increase the efficiency of breeding.
Limitations on phenotyping efficiency are increasingly perceived as a key constraint to genetic
advance in breeding programs [3–5]. Specifically, high-throughput field phenotyping may
represent a bottleneck in conventional breeding, marker-assisted selection, or genomic selec-
tion, where phenotyping is a key informant for establishing the accuracy of statistical models [6].
Further, quality phenotyping is also required to evaluate the results of mutagenesis, genetically
modified organisms [7], or even clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein-9 nuclease (CRISPR/Cas9). This perception of pheno-
typing hindering genetic gain in major crops has aroused the interest of the scientific community
into launching national, regional, and international initiatives [8]. The philosophy behind these
initiatives is diverse and reflects the varied perceptions, priorities, or experiences of their
promoters. In some cases, substantial emphasis is given to the development of top facilities
amenable to phenotyping special traits; for example, root architecture and functionality under
controlled conditions [5], or deploying ‘phenotyping field platforms’ that are permanently
stationed in a given site [9,10]. However, while these facilities may help to advance our
knowledge in the context of a research setting, the breeding community is still rather skeptical.
Different factors have to be considered. The main concern for many breeders is that the
controlled nature of many of the phenotyping platforms may not fully replicate the environmen-
tal variables influencing complex traits [3,11], or adequately represent genotype by environment
(G � E) interaction at the scale of large landscapes experiencing climate variability with large
numbers of progenies being tested by breeding programs [12]. In fact, extensive phenotyping
on a large (i.e., multitrial) scale via these platforms is perceived as something onerous [13] and
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the potential benefits may not justify the cost [3]. The vision of the private sector is also
illustrative. In a recent presentation from Bayer CropScience (Dr Greta De Both) the perceived
challenges that currently limit the adoption of new phenotyping packages for breeding are (i)
validation of high-throughput field phenotyping; (ii) the need to develop flexible (mobile) and
affordable approaches; (iii) the alignment of phenotyping under controlled conditions with
targets for real (i.e., field) phenotyping; and, above all, (iv) data management, including
user-friendly components and modeling and data integration. This review will provide insights
on how these perceived challenges on genetic gain of crop plants may be addressed.

Placing Phenotyping in a Wider Context
A fundamental concept in quantitative genetics and breeding is genetic gain. Genetic gain is the
amount of increase in performance achieved per unit time through artificial selection [14] and
can be defined as

Rt ¼ irsA

y
[1]

where Rt is genetic gain over time, i is selection intensity, r is selection accuracy, sA is genetic
variance, and y is years per cycle [15]. This equation provides the framework for measuring
breeding progress. When placed in this context, to increase genetic gain, phenotyping can
contribute toward improving selection intensity, selection accuracy, and even identifying new
genetic variation. Obtaining precise and accurate estimates of genetic value (selection accu-
racy) is a fundamental goal of breeders and for that precision phenotyping is a fundamental
issue [16]. Selection intensity is determined by the selection rate, that is, the proportion of the
population selected from the total population [14]. Increasing the scale and cost efficiency of
phenotyping can enable increased selection intensity. Larger population sizes allow greater
selection intensity and improve the probability of identifying superior progenies [17]. Therefore,
high-throughput methods are needed when phenotyping is implemented to efficiently screen
larger populations. Plant breeding is a priori a costly process [18]. Furthermore, a critical aspect
to the design of plant breeding programs is the allocation of limited resources between
population size and replication [17]. The application of low-cost, high-throughput phenotyping
tools to reduce costs will allow resources to be allocated to generation and management of
larger populations, enabling an increase in selection intensity within a fixed budget. As selection
pressure increases, genetic variability inevitably decreases. Phenotyping is crucial for ongoing
efficient targeting of novel genetic variation to incorporate it into breeding programs for
sustained long-term genetic gain [19].

In summary, genetic gain within a breeding program can be accelerated in a number of ways
[20], including (i) increasing the size of the breeding program to enable higher selection intensity,
(ii) enhancing the accuracy of selection (higher repeatability), (iii) ensuring adequate genetic
variation, (iv) accelerating the breeding cycles, and (v) improving decision support tools. In all of
these components of the breeding pipeline, reliable high-throughput precision phenotyping is
involved in a direct or indirect manner (Figure 1, Key Figure). Besides providing a global view of
the phenotyping process, this review will focus on such factors and how they can be managed
for the best outcomes when applied in the field. The final objective is to bridge the gap between
breeders and the research community of ‘phenotypers’.

Phenotyping Techniques
Much of what is currently considered high-throughput phenotyping is based on remote sensing
(Figure 2). The most common types of remote-sensing devices used for crop phenotyping
include multispectral, hyperspectral, fluorescence, and thermal sensors (particularly for

Glossary*

Cultivar: commercial variety.
Field phenotyping: phenotypic
evaluation under the real (i.e., field)
conditions experienced by the plant.
Genetic gain: amount of increase in
performance achieved annually per
unit time through artificial selection.

*For terms such as allele, crop
management, crop model, genomic
selection, genotype � environment
(G � E) interaction, genotype �
environment � management (G � E
� M) interactions, heritability,
ideotype, phenotype, quantitative
trait loci, target population
environment, see [5,74].
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ground-based phenotyping platforms), or imagers (which may be deployed from aerial plat-
forms or at ground level, when several plots at a time are measured) using the radiation reflected
or emitted by the canopy. Detailed information about the use of these devices for field
phenotyping is extensive in the literature [3,12,21–24]. Furthermore, digital red–green–blue

Key Figure
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Figure 1. High-throughput phenotyping contributes directly to three of the pillars, increasing selection accuracy by increasing heritability (H) through a priori or a
posteriori control of spatial variation and improved disease phenotyping helping to identify the genetic variation available in a more efficient manner, and making the
decision support systems more robust. By contrast, proper phenotyping contributes indirectly to optimization of these five components. Examples of high-throughput
phenotyping tools are provided at the bottom. TPEs, target populations of environments, where the products of the breeding programs would be grown.

Trends in Plant Science, May 2018, Vol. 23, No. 5 453



Plant density @ emergence
Cover frac on
Plant/canopy height

Ear density
Fruit/inflorescence size

Grain number and size

Leaf/plant glaucousness
Phenology (e.g., heading, anthesis...)

Lodging

Weed infesta on
Diseases

Vegeta on index monitoring

Green area index (GAI)

Senescense

Frac on of intercepted radia on
Leaf orienta on

Leaf rolling

Chlorophyll content

Leaf/canopy temperature

Leaf/canopy chlorophyll fluorescense

1 2 3 4 5 6 7 8 9

TRL
(Technological

readiness level)

Tools

RG
B

M
ul

/h
yp

er
sp

ec
tr

al

Li
DA

R

Th
er

m
al

Fl
uo

re
sc

en
ceTraits

Figure 2. Summary of the Different Remote-Sensing Tools Most Commonly Used to Assess Shoot Characteristics of the Crop under Field
Conditions, Together with a Comparative List of the Potential Applications and Their Level of Technological Development and Adoption. Different
radar options are not included.
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(RGB) cameras are widely used whatever the platform considered is (Box 1). In fact, most of the
current low-cost approaches for crop phenotyping are based on exploitation of the possibilities
opened by RGB images (Figure 2; see Figure I in Box 1).

Remote-sensing tools allow assessment of physiological yield components that are clearly and
conceptually related to crop productivity and stress adaption in terms of resource acquisition
(radiation, water, nutrients, etc.), resource use efficiency, or downstream biomass partitioning
[3,21,25]. Changes in yield components impact yield potential as well as adaptation of the crop
to unfavorable abiotic or biotic conditions.

However, equivocating remote sensing with high-throughput phenotyping is an oversimplifi-
cation, because there are different categories of traits of an analytical nature, particularly grain/
fruit quality traits, as well as analytical indicators such as stable (carbon) isotope, which have all
proven their value [26–29].

In the following sections, we highlight some remote-sensing techniques, which may be relevant
in terms of special capacities and/or cost. In addition, light detection and ranging (LiDAR) and
radio detection and ranging (radar), which use active sensors, will be also addressed (Box 2),
because they are increasingly deployed to phenotype special features [3,12,21].

Remote-sensing tools are usually integrated into phenotyping platforms (Box 3). Some of these
platforms, particularly stationary ones at ground level, and to some extent phenomobiles, are
experimental facilities for developing new applications, or are special applications requiring
customized solutions rather than being a generalized platform for wide-scale use in breeding. In
addition, the increase in resolution capacity of sensors/imagers together with their miniaturi-
zation has lowered their cost. Improved resolution capacity and miniaturization coupled with
increasing flight autonomy of unmanned aerial vehicles will contribute to further popularization
of these categories of platforms in preference to the ground-based alternatives. Among the

Box 1. The Use of RGB Images for Plant Phenotyping

Vegetation indices derived from RGB images (Figure I) have shown their value as an affordable means of assessing
genotypic differences in grain yield in response to a wide range of stress conditions including water stress [88], low
nitrogen [67,89], heat [90], or biotic stresses like yellow rust [91,92]. Interestingly, in all these examples, RGB indices
outperformed spectral vegetation indices like the NDVI measured either at the ground level using a portable device with
an active sensor or from an aerial platform using a multispectral camera.

In terms of sensors, the near future promises a widening of RGB image utilization. Several diverse factors support this
prediction: (i) this is a really affordable way of phenotyping, given the low cost of high-resolution RGB cameras and the
existence of open source software to formulate different categories of vegetation indices; (ii) the much higher resolution
(at least four times) of RGB cameras compared with multispectral images makes the former more suitable for installation
in aerial platforms; (iii) even from nanosatellites and microsatellites RGB images are amenable for important applications
other than vegetation indices. To date, RGB imaging has proven its value not only in formulating vegetation indices that
report on plant cover senescence, or the impact of foliar diseases, but also in a wide range of other applications (see
Figure I in Box 3) in crop monitoring (phenology, disease detection), 3D reconstructions, and even counting (seedling
emergence, ear density, other yield components). This includes very advanced areas like computer vision (Fernández-
Gallego et al., unpublished results). In the case of Miller et al. [52], the system for measuring maize ear, cob, and kernel
attributes is being used by multiple research groups as an automated Web service running on community high-
throughput computing and distributed data storage infrastructure.

Nanosatellites and microsatellites are emerging as an effective low-cost option for collecting data like sow date and
yields on small farms across the developing world [93]. Further, the high resolution of RGB cameras may contribute to
achieving images with pixels of 30-cm resolution, which is near the needs of many conventional phenotyping purposes.

Trends in Plant Science, May 2018, Vol. 23, No. 5 455



Coun ng

Monitoring

3D

Phenological stage

1

1

2 3

3

4

4

5

5

6

6

7

7

8 9 10 11

2 3

Spike count

Disease / senesence monitoring

3D reconstruc on

Yield componentsStand count

3

1

1 2 3

7

11

Figure I. Examples of Potential Applications of Field Phenotyping with Red–Green–Blue (RGB) Images
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panoply of remote-sensing tools, those most frequently deployed in phenotyping platforms are
RGB cameras, alongside multispectral and thermal sensors or imagers.

Early Stress Detection
While the early detection of plant stress (detection prior to appearance of visual symptoms)
remains a challenge for phenotyping [12], various techniques such as chlorophyll fluorescence,
visible and infrared spectroscopy, and hyperspectral imaging have been tested [30,31].
Implementation of these methods under field conditions, particularly at the canopy level,
remains a technological challenge. Recent advancements in the retrieval of sun-induced

Box 2. The Use of LiDAR and Radar for Plant Phenotyping

Radar via synthetic aperture radar (SAR) systems is able to provide a wide range of plant physiological measurements
relevant to high-throughput phenotyping in crop breeding: soil humidity, root characteristics, plant architecture, and
counting fruits beneath the canopy [12]. Radar remote sensing uses the microwave portion of the electromagnetic
spectrum, from a frequency of 0.3 to 300 GHz. Shorter wavelengths – for example, X-band imagery at 3 cm – are
reflected from the top of the canopy, while longer wavelengths – for example, L-band imagery at 24 cm – normally go
down to the ground and are reflected from there. The different frequencies of radar bands with their varying sensitivities
allow detection of plant biomass and architectural details above ground (X and C bands) as well as other bands with
varying depth range sensitivities in ground penetration radar with sensitivities to soil moisture and root systems
underground (L and P bands) [94]. In addition, the polarization applied to each band also directly affects its sensitivity
to various vegetation components. Different selections of frequencies and polarizations that alter SAR signals according
to different plant physiological components may even make radar sensors, as still fairly portable active sensors,
adaptable to fruit detection for automated fruit counting and even harvesting applications [95,96].

LiDAR is another active sensor technique benefitting from technological advancements that have delivered more
meaningful data at higher resolutions with less size and weight to the extent that it has become amenable to field plant
phenotyping applications [18,21,97]. In comparison to digital imaging and radar, LiDAR is an active, visible to near-
infrared light sensing technique (mostly 800–1000 nm). It gives you enough signal at nonblinding power levels and a
good mix of canopy penetration and return signal that is highly sensitive to plant canopy height and architecture;
however, due to its use of shorter wavelengths, LiDAR is not capable of ground penetration. LiDAR processing
techniques, such as high-density and full waveform, may provide different levels of detail on plant architecture, each
offering in a sense, a trade-off between spatial resolution in horizontal (pixel size postprocessing) and vertical aspects
(vertical differentiation in canopy architecture and biomass). In terms of applications in plant phenotyping, this may also
apply to simple measurement of plant height at very high precision, including areas affected by lodging of crops.

Box 3. Field Phenotyping Platforms

The concept of the phenotypic platform is wide and ranges from platforms working under fully controlled conditions to field platforms or even platforms designed with
a clear objective of ‘deep phenotyping’ of specific traits (e.g., grain quality traits), or elusive plant parts (e.g., roots). The choice of platform will depend on the scale of
the intended work, including the sensors deployed, their resolution, and associated costs.

Within the category of field phenotyping platforms, the alternatives are still very diverse [18,86] and encompass many levels (Figure I). These include at the ground
level, ‘stationary’ or ‘fixed’ field solutions such as the cable-suspended multisensor system of the ETH Field Phenotyping Platform (Switzerland) [9], the Field
Scanalyzer at Rothamsted Research, Harpenden (UK) [10], or the world’s currently largest robotic field scanner mounted at the Maricopa Agricultural Center (USA).
At a smaller level, these include the different configurations of tractor-based systems, or the different categories (from phenomobiles, phenocarts) of specifically
adapted carts, cranes, and linearly moving irrigation systems [18,21,98] to the use of ‘phenopoles’ and remote-controlled cameras. Within this category,
smartphones [99] operated with a ‘phenopole’ may become even more of an alternative if they are linked to apps allowing data management and georeferencing.
Moreover, smartphones have started to carry thermal cameras, either integrated or as add-ons, in addition to conventional RGB cameras. These smartphones are
able to produce pictures of merged thermal plus RGB imaging, thermal temperature point measurements over RGB, and plain thermal camera modes.

Aerial platforms are a flexible alternative. Within this category and compared with the use of manned planes and even balloons, unmanned aerial platforms, also
termed drones (including policopters, helicopters, and fixed-wing configurations), are attracting increasing attention due to their growing reliability and decreasing
cost [3,100,101], along with their need of a smaller payload (with help to skip the increasing legal regulations about unmanned aerial vehicles).

In addition, over the coming years nanosatellites and microsatellites mounted with high-resolution RGB cameras may become an alternative to aerial phenotyping
platforms [102,103]. Many nanosatellites and minisatellites are launched in sequence from the International Space Station, which is at 400-km altitude, and among
which a good example may be the satellites by Planet Labs, with a submeter ground sample distance of 0.8 m (see https://www.planet.com/products/
hi-res-monitoring/ and https://directory.eoportal.org/web/eoportal/satellite-missions/s/skysat).
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chlorophyll fluorescence due to improvements in sensors (hyperspectral imaging at a minimum
of 1-nm wavelength range with incident light sensors [32,33]) as well as improved algorithms
[34] allow advanced high-throughput phenotyping systems to measure these subtle early
stress parameters at the canopy level in an agile manner [35]. As an alternative, the deployment
of phenotyping sites with managed stress conditions (e.g., in the case of plant diseases,
artificial inoculation or facilitated infestation) may allow use of the usual remote-sensing
techniques.

Multispectral Information: Beyond Formulating Indices
To date, most remote-sensing applications of multispectral/hyperspectral sensors and imagers
have focused on using vegetative indices to infer overall plant status, with the normalized
difference vegetation index (NDVI) being the most well-known option [18]. Although these
indices generally can be informative, they use less than 1% of available spectra [12] and lack the
ability to give detailed information on physiological processes [3].

Different studies have demonstrated that hyperspectral data (400–2500 nm) can be utilized to
infer leaf chemical properties in various species [36–38]. The hyperspectral reflectance
approach to phenotyping is dramatically faster than traditional measurements, and offers a
nondestructive method able to accurately assess physiological and biochemical trait responses
to environmental conditions [39,40]. For example, naturally occurring Rubiscos with superior
properties among the Triticeae tribe can be exploited to improve wheat photosynthesis and
crop productivity [41]. In this context, hyperspectral sensors might allow in situ (i.e., field) fast
evaluation of these traits (particularly using leaf adaptors). In addition, hyperspectral imaging
has been tested for its ability to detect biotic stresses [31,42]. Moreover, the use of hyper-
spectral reflectance in the field as a high-throughput phenotyping tool to estimate complex
traits like grain yield is promising [3,43–45]. Despite these promising applications, canopy
spectral signatures are influenced by many external factors. For this reason, evaluation of single
leaves using special adapters (with light source) may be required in certain applications to
improve the overall trait assessment (e.g., [43]).

The category of hyperspectral assessments may also include near-infrared reflectance spec-
troscopy (NIRS), which is a basic tool in quality laboratories, for example, and NIRS imagers
have been successfully mounted on harvesters to save time and sample handling costs. NIRS
may be also deployed in the analysis of other traits with potential for phenotyping such as stable
isotopes, and nitrogen and mineral content (see references in [3]).

Phenotyping for Genetic Gain
As summarized in the previous section, the field of high-throughput phenotyping is rapidly
evolving. There is a need to ensure that these advances find practical application in breeding
programs and contribute toward increased genetic gain. While it is difficult to partition improve-
ment within breeding programs to the adoption of specific technologies, placing technologies
(including phenotyping) within the concept of genetic gain will assist in monitoring success.
High-throughput phenotyping can contribute both directly and indirectly to genetic gain
(Figure 1).

Increasing Phenotyping Accuracy and Throughput
Obtaining accurate and inexpensive estimates of genetic value of individuals is central to
breeding. Many routine traits such as stand establishment, phenology, abiotic stress severity,
disease severity and progression, plant height, heading or flowering date, lodging, and yield
components remain largely manual within breeding programs, particularly within the public
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sector [20,46]. Manual measurements are subjective, prone to human error, and lack robust-
ness or repeatability. As a result, breeding teams may collect data on more replications or
environments for some traits to improve trait heritability. Removing error and subjectivity from
these measures at reduced cost would have direct savings for breeding programs. Moreover,
visual scores, based on the naked eye, may not adequately capture the physiological status of
plants. This was highlighted by a recent survey of genetic gain within the International Maize and
Wheat Improvement Center’s (CIMMYT) Eastern and Southern Africa Maize Breeding program
[20]. Substantially higher genetic gain for yield in artificially inoculated maize streak virus (MSV)
trials compared with noninoculated trials was observed even though no change in visual scores
for MSV were observed among hybrids tested from the 10-year interval, suggesting that many
yield-impacting effects of MSV are not captured by the visual rating scale. Similarly, visual
scores cannot distinguish between cosmetic (the persistence of greenness, which is not
associated with extended photosynthesis) and functional stay-green [47]. While the accuracy
of manual measurements of these traits is generally not documented, they are sometimes not
reported due to low heritability or omitted due to problems measuring accurately across
locations [20,46]. The development of high-throughput phenotyping tools to quantitatively
measure key traits, particularly across locations, will increase selection accuracy at lower cost.

Recently, there have been many advances in the development of high-throughput phenotyping
tools for ‘breeder-preferred’ traits (i.e., traits extensively used within breeding programs;
Figure 2). Plant height sensors have been developed using a range of sensors including LiDAR,
ultrasonic sensors, and RGB images [48–50]. The maize private sector has moved toward
quantifying ear traits using digital image analysis [e.g., https://www.google.com/patents/
US9335313; https://www.google.com/patents/WO2017021285A1; https://www.google.
com/patents/US20090046890]. New image analysis protocols are available to measure yield
components using both a line scanner and conveyor belt and flatbed scanner [51,52]. The use
of canopy temperature sensors combined with LiDAR to monitor green leaf area distribution
has allowed the separation of functional from cosmetic stay-green [18]. Because of restrictions
associated with phenotyping costs and time, dynamic traits are often measured just at several
times points based on the best available knowledge of the most critical moments to measure a
specific trait. The ability to take thousands of measurements per hour, combined with advances
in high-density genotyping, has provided the unique ability to maximize genetic signal, improv-
ing the effectiveness of genomic prediction-based strategies [50,53].

Many useful techniques remain either laboratory oriented [51,52], are site specific [50], or
require a pretreatment or calibration step as is the case for image analysis for morphological
features of maize tassels, where tassels must be removed from the plant first prior to obtaining
images in the field [54]. Therefore, there remains substantial scope for further technical
improvement of techniques. Although effective high-throughput disease identification remains
elusive, recent advancements in image processing (see [55] for a detailed review), namely,
‘deep’ and ‘machine’ learning (deep convolutional neural network, artificial neural networks,
support vector machine, etc.) of big data, have demonstrated effectiveness for simultaneous
crop pests and diseases identification [56,57].

Manual measurements of key traits are time consuming and the application of high-throughput
phenotyping tools could significantly reduce labor requirements. For example, the rate of
manual measurements of plant height in rice (Oryza sativa L.) has been estimated at 45 plots per
hour, compared with 3000 plots per hour using a phenomobile equipped with an ultrasonic
canopy height sensor [50]. Similarly, estimating plant height through remote sensing in cotton
required a small fraction of the time taken for manual measurements [58]. Substantial cost
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reductions using high-throughput phenotyping for routine traits with comparable selection
accuracy would allow resources to be reallocated to strategies with potential to reduce cycle
time (e.g., rapid generation advance or genomic prediction) or to increase population size,
thereby increasing selection intensity. Although total cost reduction is a function of labor and
time, the cost of equipment and training [58] may be a barrier to adoption of new phenotyping
technologies. Initial training and phenotyping platform investment must be accounted for when
considering cost–benefit value proposition of new phenotyping methods.

Affordable Approaches
Adoption of recently developed high-throughput tools, carried out by ground and aerial
phenotypic platforms, can involve large initial investment, particularly for use within testing
networks covering large geographic areas. The challenge remains for high-throughput phe-
notyping to develop low-cost tools that can be applied across locations, especially when
deployed in low- or middle-income countries where transportation may be expensive or difficult
and where labor markets may result in relatively lower wages than in higher income countries.

While ‘robust sensors mounted on a field-deployable vehicle’ are considered imperative for a
field-based high-throughput phenotyping platform [12], this is not necessarily dogmatic. In
terms of tools and platforms, effective and expensive are not necessarily synonymous. There
are a wide range of options for using RGB imaging to generate vegetation indices and other
applications in crop monitoring (see Figure I in Box 1), together with flexible (e.g., ground hand-
held and unmanned aerial) platforms (see Figure I in Box 3) that are easily deployable across a
multitrial network. Some of these applications are also amenable for installation as apps on
mobile phones [59,60].

Quality of Field Trials
Selection accuracy is a function of heritability, with increased repeatability increasing the
selection response for the trait of interest. Genetic gains achieved during the last few decades
through conventional breeding have been, in part, associated with an expansion of phenotyp-
ing networks [20,61,62]. Expanding field networks across geographic locations can increase
the problem of managing spatial variability (and G � E interaction) due to the increase in land
area used, challenges with establishing new testing locations with no previous history, and the
difficulty of covering large geographical distance [46]. Spatial variability inflates the estimated
experimental error variance, reducing the ratio of phenotypic variance to total genetic variance.
High residual error requires a greater number of trials for robust phenotypes [20,46] and
reduces accuracy of genomic predictions [63]. Detecting significant yield differences in
genome-edited variants similarly requires a high signal-to-noise ratio [64]. A further challenge
in collecting phenotyping data across field locations and years is varying environmental
conditions [53], particularly for dynamic traits [12].

Within a field, many factors combine to generate microenvironments that differ from plot to plot,
influencing yield and other traits [65]. When estimating genotypic effects it is important to
correct for these factors. Compared with advances in phenotyping, fewer advances have been
made toward increasing the heritability of measurements through either a priori or a posteriori
control of spatial variability [66]. A priori methods of quantifying spatial variability are based on
identifying existing trends within a field and can subsequently be accounted for using proper
experimental designs. Vegetation indices, such as NDVI, have been successfully used for a
priori mapping field variability [67]. Often correlated traits can be used as covariates during
analysis, and some of these can be measured efficiently through remote-sensing techniques of
phenotyping new tools. A posteriori control of the residual effects of using a model that provides
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a good fit to the data may become an alternative [66]. Spatial analysis, where global and local
trends are fitted to the model, has played an important role in reducing spatial variability in
conventional breeding [68] and improving prediction accuracies for genomic selection [69].
Open source models, using tensor product-penalized splines (P-splines), have improved the
modeling of variability along the rows and columns of the field, thus increasing heritabilities
[65,70]. High-throughput phenotyping has the potential to play an important role in the
characterization of sets of environmental variables in training models that can be used
subsequently to control these sources of data in postdata treatment.

Crop Models and Decision Support Systems
While it is increasingly perceived that the data explosion associated with high-throughput
phenotyping may hinder the full exploitation of such information, the use of simple summary
statistics will also not suffice. Phenotypic data need to be acquired and processed, and
analyzed rapidly in a quantitative and robust way into useful information that can be interpreted
directly by end users. This involves the integration of quantitative genetics, statistics, and gene-
to-phenotype knowledge, with genomic selection being a successful example of an empirical (i.
e., statistically based) application [5,61]. It is notable that the final jump in technological
readiness has come not from improved sensors or platforms, but rather from data-driven
approaches and advancements in processing and data quantity using commercially available
and affordable digital cameras [71,72]. Despite recent advances in data acquisition and
processing, these large data sets have created new bottlenecks in data management [73],
and advanced supervised algorithms require manual labeling of very large data sets for
implementation [55], although they are potentially amenable to crowd sourcing development.

Crop models translate processes related to crop growth and development into mathematical
equations [74]. This allows existing information from a limited number of field experiments to be
leveraged and extrapolated to a wider range of conditions to predict and project how internal (e.
g., trait or alleles) and external (e.g., climate or agronomic management) factors will influence
crop performance [74,75]. In the agronomic context, crop models are being used in the
assessment of climate change impacts and hotspots of climate change vulnerability, and in
the prediction of performance across agro-ecologies and under novel climates [75,76].
Advances in genomics can enhance applications of modeling in breeding pipelines by eluci-
dating the genetic basis of model-input parameters [61]. With genetic inputs, models can be
used to simulate traits for a range of genotypes, locations, and years, demonstrating the
combination of alleles required for specific environments [77]. High-throughput phenotyping
platforms and tools offer a new avenue in the parametrization of models with genetic inputs [77].

However, mechanisms to capture the interaction of combined stress are often not properly
fitted within models [78]. Moreover, modeling of biotic stresses has largely been through soft
coupling of disease and crop models [74]. Therefore, predictions made by models can go
beyond the assumptions and integrity of early models [79]. This is illustrated in the case of
maize, where crop models were initially developed for high input, temperate cropping systems,
with a significant gap in the predictive capability of models and decision support tools to
accurately represent tropical soil dynamics, tropical germplasm, and low input production
systems prevalent in the tropics [80–82].

Besides the aforementioned limitations, renewed interest in crop modeling has been associ-
ated with several international, multidisciplinary collaborations to update the ‘engines’ of
existing models, including the Agricultural Model Intercomparison and Improvement Program
(www.agmip.org), Global Future and Harvest Choice (www.harvestchoice.org), and the
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Climate Change, Agricultural and Food Security program (ccafs.cgiar.org). Significant progress
has been recently made on ORYZA to improve the predictability of rice models under extreme
conditions such as water- and nitrogen-stressed conditions [76]. In wheat, simulating temper-
ature responses of physiological processes in 29 models accounted for more than half of the
uncertainty in simulated grain yield [82]. Developing new temperature response functions in four
wheat models reduced the error in grain yield simulations across seven global sites with
different temperature regimes by over 40% [82].

Concluding Remarks and Future Perspectives
Adoption of high-throughput phenotyping at a global scale will only be achieved by the end
users (i.e., the breeders) if it is demonstrated as something valuable in terms of genetic gains
achieved with resources invested. Moreover, in least developed countries, the public sector,
rather than the private sector, continues to have a predominant role in crop breeding. To ensure
that advances in phenotyping can be translated into yield gains in these countries, it is essential
that low-cost phenotyping tools are developed. In that context, affordable, easy-to-handle, and
reliable tools and platforms for large-scale (multitrial) field phenotyping may pave the way.
Among such tools the wide range of applications for RGB images makes them good
candidates.

To capitalize on advances in phenotyping and molecular technologies, greater progress is
needed in areas of environmental characterization and data collection and management.
Aligning breeding programs to future demands requires increasingly strategic choices: identifi-
cation of rigorously prioritized, market-informed product profiles; understanding current and
future target population of environments; balancing farmer and consumer needs; and account-
ing for value chain participant concerns. The engagement of breeding teams with climate
scientists and crop modelers is perceived as necessary to address the challenges of climate
change [83]. Fruitful areas of investigation include identifying key target breeding traits, the
potential occurrence of multiple-stress factor interactions, the selection of trial sites, and the
overall definition of appropriate methods for incorporating climate information into crop breed-
ing programs.

Trait phenotyping and crop growth models are evolving to the point where breeders can access
mechanistic information on the physiological determinants of plant adaptation for precise
selection of cultivars suitable for the target environment [13]. At different levels, the use of
big data will help to refine the geospatial targeting and requirements of new varieties [84],
therefore addressing the genotyping � environment � management (G � E � M) interaction.
Growth models fed with region-specific parameters including climate conditions, soils, and
crop management will help to refine geospatial targeting, define regions, and therefore,
accelerate breeding advancement [85]. This is especially the case when addressing future
climate change scenarios and the expected increases in temperature [86]. Such an approach
facilitates analysis of the genetic variation in plant performance for each environmental sce-
nario. Indeed, a recent study in European maize has shown how feeding crop models with
current and expected (climate change-driven) environmental variables from target environ-
ments and yield data from multilocation trials and their associated genetics has enabled
detection of quantitative trait loci with specific roles for yield related to specific growing
conditions [87]. It is anticipated that integrated utilization of this information can improve rates
of genetic gain for important target environments [61], including environments expected to
become more common under anticipated climate change scenarios (see also Outstanding
Questions).

Outstanding Questions
Will genetic gain match the challenges
imposed by the global (social and cli-
mate) change for the coming deca-
des? Genetic gain is stagnated in
many regions and the promises of a
new ‘Green Revolution’ as the natural
result of biotechnological advances
have not yet been realized.

Even though high-throughput pheno-
typing is perceived as a bottleneck in
breeding, it has yet to deliver. Is the
dilemma of controlled versus field phe-
notyping in terms of yield or adaptation
to abiotic stresses already solved con-
sidering that research and breeding
application are not the same?

Will low-cost, high-throughput pheno-
typing tools be adopted regularly by
breeders in the next decades? If so,
are RGB cameras, mobile apps, and
drones the natural candidates?

To what extent will the size of breeding
programs need to be increased, con-
sidering improvements in accuracy of
selection, ensuring adequate genetic
variation, and acceleration of breeding
cycles?

How will decision support systems and
simulation models contribute to the
breeding pipeline to predict future tar-
get environments in breeding, a com-
ponent in molecular breeding, or
design ideotypes?
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As the public sector breeding moves toward informal networks such as the proposed ‘Euro-
pean Consortium for Open Field Experimentation’ [8] and the Eastern and Southern African
Maize Breeding Network [20,46], the need to improve and standardize environmental collection
is further reinforced. In that context, further contributions to improvements in the breeding effort
will come from agreements among public research institutions and large phenotyping networks
on common methodological standards for phenotyping protocols, data analysis, and informa-
tion sharing.
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