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AbstrAct:
Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for 
the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, 
tumor cells having undergone EMT are histologically represented by the presence 
of tumor buds defined as single cells or small clusters of de-differentiated tumor 
cells at the invasive front. Tumor budding is not a static, histological feature rather 
it represents a snap-shot of a dynamic process undertaken by an aggressive tumor 
with the potential to disseminate and metastasize. Strong, consistent evidence 
shows that tumor budding is a predictor of lymph node metastasis, distant 
metastatic disease, local recurrence, worse overall and disease-free survival time 
and an independent prognostic factor. Moreover, the International Union against 
Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic 
parameter. The aim of this review is to summarize the evidence supporting the 
implementation of tumor budding into diagnostic pathology and patient management 
and additionally to illustrate its worthiness as a potential therapeutic target.

INtrODUctION

Epithelial mesenchymal transition (EMT) is 
proposed as a critical mechanism for the acquisition 
of malignant phenotypes by epithelial cells [1]. In 
colorectal cancer, tumor cells having undergone EMT 
are histologically represented by the presence of tumor 
buds defined as single cells or small clusters of de-
differentiated tumor cells at the invasive front [2]. 
Tumor budding is predictive of lymph node metastasis, 
vascular and lymphatic invasion, distant metastasis, local 
recurrence and poor disease-specific survival time [3-
15] and classified as an “additional” prognostic factor 
by the International Union against Cancer (UICC) [16]. 
Despite these highly negative attributes, surprisingly little 
is known about the events promoting a tumor budding 
phenotype although in vitro and xenograft animal models 
of EMT may provide the first clues [17-20]. The aim of 
this review is to summarize the evidence supporting not 
only the integration of tumor budding into daily diagnostic 
pathology and clinical management of colorectal cancer 
patients but also the targeting of tumor budding as a novel 
therapeutic approach for patients with this disease.

EPItHELIAL MEsENcHYMAL 
trANsItION

EMT is a biological process allowing a polarized 
cell, normally interacting with a basement membrane, 
to assume a mesenchymal phenotype characterized by 
increased migratory capacity, invasiveness, increased 
resistance to apoptosis and increased production of 
extracellular matrix (ECM) components [18]. The 
completion of EMT is signaled by the degradation of the 
basement membrane and formation of a mesenchymal cell. 
Highly relevant for embryogenesis and wound healing, 
EMT has also been proposed as a critical mechanism for 
the acquisition of malignant phenotypes by epithelial cells 
[21]. EMT-derived tumor cells occurring at the invasive 
tumor front are thought to be those cells entering into 
subsequent steps of invasion and metastasis. Moreover, 
these cells have been shown to establish secondary 
colonies at distant sites that histopathologically resemble 
the primary tumor of origin through a process known as 
mesenchymal epithelial transition (MET) [21]. 
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HIstOPAtHOLOGIcAL AsPEcts OF 
tUMOr bUDDING

In colorectal cancer, EMT-derived tumor cells are 
represented histopathologically by the presence of tumor 
buds and are reported to occur in 20-40% of tumours 
[22, 23]. Occurring predominantly at the invasive front, 
the identification of tumor buds, defined as single cells 
or clusters of up to 5 cells can be made using standard 
H&E-stained slides or facilitated by using pan-cytokeratin 
stains (Figure 1) [2]. In addition, these budding cells 
can often be seen in the company of “pseudo-like” 
cytoplasmic protrusions in direct contact with adjacent 
structures which are thought to be a marker of an activated 
budding phenotype associated with cell motility and 
increased invasiveness [24]. Histologically, high-grade 
tumor budding seems to correlate with certain parameters 
[25], most notably with the infiltrating tumor border 
configuration defined as widespread dissection of normal 
tissue structures with loss of a clear boundary between 
tumor and host tissues [23]. On the other hand, tumor 
budding occurs significantly less often in tumors with 
a more “encapsulating” or pushing/expanding growth 
pattern [26], itself frequently, but not always, accompanied 
by the presence of dense peritumoral lymphocytic (PTL) 
inflammation [27]. 

ActIVAtION OF tHE tUMOr bUDDING 
PHENOtYPE

The study of EMT and its related signaling pathways 
could provide the first clues regarding the molecular and 
genetics events promoting tumor budding in colorectal 
cancers. EMT-inducing signals from the tumor-associated 
stroma such as hepatocyte growth factor (HGF), epidermal 
growth factor (EGF), placental-derived growth factor 

(PDGF) and transforming growth factor-beta (TGF-beta) 
appear to be responsible for the induction or functional 
activation in cancer cells of a series of EMT-inducing 
transcription factors such as Snail, Slug, ZEB1, Twist, 
Goosecoid and FoxC2 [21, 28-31]. Their implementation 
into the EMT program may depend on a series of 
intracellular signaling networks involving ERK, MAPK, 
PI3K, AKT, the SMADs, and integrins [32-34]. The WNT/
Wingless signaling pathway, and its major effectors beta-
catenin and E-cadherin are however considered integral 
components of EMT [21, 28]. Briefly, binding of wnt 
proteins to a seven-span-transmembrane receptor frizzled 
(frz) leads to activation of WNT signaling and stabilization 
of cytoplasmic beta-catenin which can translocate to the 
cell membrane or nucleus, by mechanisms including 
regulation of cytokines, matrix metalloproteases (MMPs), 
TGF-beta, tumor necrosis factor (TNF)-alpha and 
HGF [35]. Membranous beta-catenin complexes with 
E-cadherin, a critical mediator of cell-cell adhesion and 
responsible for the maintenance of cell polarity [22]. 
In contrast, nuclear beta-catenin can function as an 
oncogene, binding to Tcf/LEF family members and acting 
as a transcriptional activator of downstream target genes 
[36]. Hence, membranous expression of both beta-catenin 
and E-cadherin characterizes the epithelial phenotype, 
whereas loss is indicative of a switch toward a more 
mesenchymal one. Up-regulation of proteins involved 
in ECM degradation, angiogenesis and migration such 
as MMP-7, MMP-26, urokinase plasminogen activator 
receptor (uPAR), vascular endothelial growth factor 
(VEGF), laminin5γ2 -chain, fibronectin and CD44 [22] 
have all been reported. 

IMMUNOHIstOcHEMIcAL stUDEs 

Immunohistochemical studies have been crucial for 
improving our understanding of tumor budding (Figure 

Figure 1: tumor budding. Single tumor buds (arrow) at the invasive front of colorectal cancer (H&E, 40x) (A). The pan-cytokeratin 
staining better visualizes the number of tumor buds in the same area at the invasive front (CK22, 40x) (B).

A) H&E; 40x B) CK22; 40x
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2). High-grade tumor budding is often linked to increased 
expression of protein markers closely related to ECM 
degradation such as uPA and uPAR, matrilysin or MMPs as 
well as those often associated with increased proliferation 
such as TGF-beta, epidermal growth factor receptor 
(EGFR), and p53 [37-43]. Markers of cell adhesion and 
migration such as E-cadherin or syndecan-1 are decreased 
in the center of tumors with high-grade tumor budding in 
addition to decreased phospho-AKT, a protein reported 
to impact cell survival by inhibiting apoptosis [44-46]. 
Decreased EphB2 and Bcl-2 have been documented [47]. 
Interestingly, the number of CD8+ tumor infiltrating 
lymphocytes (TILs) is markedly decreased in high-grade 
budders, probably due to the relationship of the immune 
response with microsatellite instability (MSI) status [46]. 
Most interesting is the heterogeneity of expression of 
several markers, predominantly related to cell adhesion, 
from the tumor centre to the tumor front. Loss of 
membranous E-cadherin, CD44, CD44v6, EpCAM and 
CD166 expression have all been reported and often are 

not expressed within tumor budding cells themselves 
[48-51]. The finding of loss of these markers associated 
with more aggressive tumor behavior and high-grade 
tumor budding may be related to the loss of cell adhesion 
function which is represented by membranous staining of 
these markers by immunohistochemistry. Several studies 
have documented the changes in membranous to more 
cytoplasmic expression and dual-functions of proteins 
such as E-cadherin, EpCAM and CD44 with tumor 
progression, hence caution should therefore be taken to 
note the intra-cellular localization of these, and possibly 
other cell adhesion molecules [52-54]. 

Tumor buds themselves shows a strong and uniform 
nuclear beta-catenin staining and concomitant loss of 
membranous E-cadherin expression, in line with what 
is seen in EMT studies [21, 55, 56]. In addition, over-
expression of ECM degradation proteins MMP-2 and 
MMP-9, uPAR, and laminin5γ2 have all been reported 
[41, 57-59]. Additional studies have related tumor budding 
to increased expression of putative stem cell markers 

Figure 2: Overview of different histological features, molecular factors and protein markers linked to high-grade tumor 
budding. Protein markers have been evaluated in the tumor centre or within tumor budding cells. Additionally, changes in protein expression 
from the tumor centre to the invasive front have also been related to the presence of tumor budding. Expression described predominantly as 
n=nuclear, m=membranous, or c=cytoplasmic. Yellow circles represent lymphocytes, in particular CD8+ T-cells.
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CD133 and ABCG5, as well as of beta-III tubulin, a 
protein involved in migration, CXCL12, a stromal cell-
derived factor involved in chemotaxis and angiogenesis, 
hMena, a marker of cell motility and cathepsinB linked 
to dedifferentiation [57, 60-63]. Interestingly, ABCG5-
expressing and non-expressing buds have differential 
effects on patient survival supporting the notion that the 
level of aggressiveness of tumor buds may depend on 
their protein profiles [64]. Despite the clear association of 
tumor budding with migration and invasion, paradoxically, 
tumor buds seem to undergo low rates of proliferation 
as evidenced by reduced expression of proliferation 
marker Ki67 and concomitant increased expression of 
cell-cycle arrest mediators cyclin D1 and p16 [65, 66].  

tUMOr bUDDING AND 
MIcrOsAtELLItE INstAbILItY

Whether of sporadic or hereditary origin, tumors 
with high-level MSI (MSI-H; 15% of all cases), seem to 
have very low rates or no tumor budding [67]. In addition, 
in vitro studies comparing microsatellite stable (MSS) and 
MSI-H cell lines confirm the reduced EMT in the latter. 
Several contributing factors may help explain this finding.

Attacker/Defender Model: 

The invasive front of colorectal cancers can be 
thought of as a dynamic interface of pro- and anti-tumor 
factors. On the one hand, tumor buds promote progression 
and dissemination by attempting to penetrate vascular and 

Figure 3: the invasive front of colorectal cancer highlighting the interaction between tumor buds and peritumoral 
inflammatory cells. (H&E, 20x) (A). Double staining with CK22 showing presence of inflammatory cells positive for CD8 (B), FoxP3 (C) 
and CD68 (D) in the microenvironment of tumor buds (40x). Arrows showing examples of tumor buds (solid) and CD8+, FoxP3+ and CD68+ 
cells (dotted), respectively.

A) H&E; 20x B) CK22/CD8; 40x

C) CK22/FoxP3; 40x D) CK22/CD68; 40x



Oncotarget 2010; 1:  651 - 661655www.impactjournals.com/oncotarget

lymphatic vessels. On the other, the host attempts to fend 
off this attack by mounting an immune response composed 
primarily of cytotoxic T lymphocytes, to protect vascular 
and lymphatic channels from invasion by tumor buds [68]. 
MSI-H colorectal cancers exemplify this attacker/defender 
model and highlight a pro-immunogenic phenotype which 
may to some extent be responsible for the more favorable 
prognosis of patients with these forms of colorectal 
cancers [69]. In comparison to MSS tumors, MSI-H 
cancers are known to have abundant CD8+ intra-epithelial 
and stromal TILs [70, 71]. They are most often found 
with pushing tumor borders accompanied by dense PTL 
inflammation [71]. It has been previously hypothesized 
that specific immune responses contained within this 
PTL infiltrate may be targeting tumor budding cells for 
destruction, hence their frequent absence at the invasive 
front in tumors with strong lymphocytic inflammation 
[46]. We recently investigated the composition of the PTL 
infiltrate in MSI-H and MSS tumors within the tumor 
budding microenvironment [72]. Several differences were 
found including a greater number of CD8+, granzymeB+, 
CD16+ and CD3+ cells in MSI-H cases. Although the 
presence of CD8+ cells among patients with MSI-H 
tumors does not seem to influence outcome [73], the 
ratio between CD8+, FOXp3+ and CD68+ cells and the 
presence of tumor budding has an independent effect on 
prognosis in both MSS and MSI-H cancers (Figure 3). 

Even in cases with no obvious PTL inflammation, the 
higher the number of CD8+, FOXp3+ and CD68+ cells 
relative to the number of tumor buds (ratio of immune 
cells-defenders /tumor budding cells-attackers), the more 
favorable the impact on patient survival [72]. MSI-H 
cancers are known to metastasize to a much lesser degree 
than their MSS counterparts; the abundant immune 
reaction at the invasive front and particularly within 
the microenvironment of tumor budding cells may help 
further to explain this observation.

WNT pathway signaling

The Wnt signaling pathway, as seen in EMT 
studies in vitro, is believed to be highly relevant to tumor 
budding in human colorectal cancer patients. Classically, 
chromosomally instable (CIN) or MSS but not MSI-H 
tumors may arise from inactivation of Wnt signaling [67]. 
Nuclear accumulation of beta-catenin is typically found in 
MSS colorectal cancers, occurs particularly at the invasive 
front and within tumor budding cells, and is simultaneously 
observed in cases with loss of membranous E-cadherin. 
MSI-H colorectal cancers typically do not show mutations 
in neither APC, nor present with tumor buds [67, 74]. 
The frequency of concomitant APC mutation and tumor 
budding stratified by MSI status is illustrated in Figure 

Figure 4: Association between APC mutation and tumor budding stratified by microsatellite instability status (adapted 
from Jass et al. J Clin Pathol, 2003). Sporadic MSI-H colorectal cancers show the lowest rates of both APC mutation and tumor budding 
followed by hereditary MSI-H (Lynch syndrome; Hereditary Non-Polyposis Colorectal Cancer) cases, and low-level MSI tumors. Microsatellite 
stable (MSS) cancers show the greatest rates of tumor budding, accompanied by frequent APC mutation, thus substantiating the relationship 
between Wnt signaling and this histopathological feature.
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4 [67]. The close relationship between the two features 
suggests a strong interaction between inactivation of Wnt 
signaling and the presence of tumor budding.

CpG Island Methylator Phenotype

MSI-H colorectal cancers have now been linked to 
high-level CpG Island Methylator Phenotype (CIMP-H), a 
feature itself strongly related to methylation of CDKN2A 
(p16) [75]. P16INK4A is known to be a target gene of beta-
catenin and often the two proteins are co-expressed within 
tumor budding cells [76]. Methylation of CDKN2A may 
lead to gene silencing and consequently decreased levels 
of nuclear p16INK4a protein expression [77]. It is therefore 
expected that tumor budding should be significantly 
reduced in patients with CIMP-H tumors. Only a handful 
of studies to date have evaluated CDKN2A methylation in 
the context of tumor budding. Prall and colleagues found 
6 cases of high-grade tumor budding with a complete 
absence of nuclear p16INK4a protein expression (10.5%) 
and all had concomitant p16INK4a methylation [78]. Eleven 
methylated cases retained expression of the protein and 
interestingly, cases with high-grade tumor budding often 
did not stain for nuclear p16INK4a. This lack of concordance 
between methylation and protein expression has been also 
described previously [79] and may possibly be explained 
by the intra-cellular localization of p16. Accumulation 
of cytoplasmic, rather than nuclear p16 staining has 
been observed within tumor budding cells [67]. Jass and 
colleagues hypothesized that the cytoplasmic p16 may 
bind cdk4 and block its translocation to the nucleus. In 
the absence of cdk4, cyclinD1 may complex with cdk2 
thus limiting the availability of cyclins A and E and 
inhibiting the cell cycle which could explain the low 
levels of proliferation exhibited by budding cells [67, 
80]. Although it has been speculated that this change in 
intra-cellular localization within tumor buds may be due 
to promoter methylation of CDKN2A, the role of p16 
in tumor budding in both MSS and MSI-H colorectal 
cancers needs further clarification. In addition, it remains 
interesting that CIMP-H colorectal cancers, namely those 
with the lowest predicted amounts of tumor budding seem 
to be most responsive to chemotherapy [81]. 

cLINIcAL UsE OF tUMOr bUDDNIG

Prognostic and predictive impact of tumor 
budding

Tumor budding at the invasive front has been 
recognized as an adverse parameter and an “additional” 
prognostic factor by the International Union against 
Cancer (UICC) [16, 82]. High-grade tumor budding, 
irrespective of the definition, has been consistently 

linked to lymph node metastasis [3-8], distant metastasis 
[9], local recurrence [10-15] and correlates with the 
distance of tumor invasion beyond the outer border of the 
muscularis propria [83]. Tumor budding is proposed as 
a useful indicator of isolated tumor cells in lymph nodes 
in patients with node-negative colorectal cancers [84] 
and could indicate additional laparotomy in patients with 
locally excised T1 tumors [85, 86]. 

The prognostic and independent effect of tumor 
budding on outcome has been investigated by several 
study groups. High-grade tumor budding has an 
independent adverse effect on both overall and disease-
free survival time [23, 84, 87-92] particularly in the 
presence of cytoplasmic podia [59] and may serve as an 
additional histopathological parameter to identify stage I 
or II patients at risk of disease recurrence after curative 
surgery [93-96]. Even among patients with node-positive 
or stage III disease, tumor budding has been shown to 
improve the risk stratification of patients [4, 97]. However, 
contradictory findings have been recently reported by Sy 
and colleagues who found an association of tumor budding 
with worse outcome in univariate but not multivariate 
analysis in this subset of patients [98]. Tumor budding 
may also be a predictive factor in metastatic colorectal 
cancer patients treated with anti-EGFR therapies [99]. 
In a retrospective cohort of treated metastatic colorectal 
cancer patients, high-grade tumor budding could predict 
non-response to therapy and in combination with KRAS 
mutational status, predicted response in 80% of cases. 
The predictive value of tumor budding to targeted therapy 
requires further investigation.  

In 1989, Morodomi and colleagues published what 
appears to be the only work evaluating the presence of 
tumor budding within the tumor centre from pre-operative 
biopsy specimens [100]. Not only did this type of tumor 
budding correlate highly with budding at the invasive 
front, but a clear association between increased numbers 
of tumor buds in the pre-operative biopsy specimen and 
lymphatic and lymph node positivity was observed. 
Further studies are warranted to investigate the potential 
of this “intra-tumoral” type of budding as a prognostic or 
predictive factor in the pre-treatment clinical management 
of colorectal cancer patients.

Scoring systems

Despite the clear associations of tumor budding 
with worse clinical outcome and more aggressive tumor 
parameters, tumor budding has yet to be implemented into 
daily diagnostic routine. The main reason for this is the 
absence of standardized scoring systems and sufficient 
evidence of inter-observer reproducibility for selected 
evaluation methods. 

Two different types of scoring systems have been 
proposed: subjective and more quantitative/objective. In 
1993, Hase and colleagues presented a system based on 
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the predominant pattern of tumor budding using a 2-tier 
method (none or minimal versus moderate or severe) 
[87]. Nakamura and colleagues, using a similar system, 
described tumor budding along the entire invasive margin 
using a 4-tier method (none, mild <1/3, moderate 1/3-2/3 
and severe >2/3) [9, 95]. More quantitative scoring systems 
have been reported. The group of Ueno and co-workers 
proposed 2 methods by counting the number of buds within 
the field of most dense tumor budding: (1) using a 20x 
objective lens (area 0.785 mm2) and a cut-off of 5 tumor 
buds or (2) using a 25x objective lens (area 0.385 mm2) 
with a cut-off of 10 tumor buds. Inter-observer agreement 
for the latter was reported at kappa=0.84 [23. 101]. Wang 
and colleagues presented a technique whereby 5 randomly 
selected areas were evaluated, each given a score based on 
presence (at least one bud) or absence of tumor budding 
in each field (area 0.949 mm2) and document an inter-
observer agreement of kappa=0.75 [92]. The evaluation of 
tumor budding cells can be significantly hindered in cases 
of stromal inflammation or fibrosis at the invasive front. 
Pan-cytokeratin immunostains facilitate significantly the 
visualization of tumor buds and are highly recommended 
for their evaluation [2]. Prall and colleagues scored pan-
cytokeratin-stained tumor buds in a 0.785 mm2 field of 
vision (250x). Rather than using an arbitrary cut-off 
score to classify a case as “budding-positive”, they used 
an established statistical cut-point determination method 
(receiver operating characteristic (ROC) curve analysis) 
to identify the “optimal” number of tumor buds to be 
used as a threshold value [96]. Classifying tumors of ≥25 
buds/field as positive, they report a strong inter-observer 
agreement with kappa= 0.874. Also using ROC curve 
analysis, our group has shown that with 15 buds/high-
power field, the percent concordance between observers 
was 88% (kappa=0.6) [99]. 

These results show the potential for high-level 
inter-observer agreement. However, consensus has not 
been reached yet and international collaborative efforts 
to standardize scoring of tumor budding are crucial 
before this feature can be implemented as part of routine 
diagnostic pathology. 

cONcLUsION

Tumor budding is not a static, histological feature; it 
represents a snap-shot of a dynamic process undertaken by 
an aggressive tumor with the potential to disseminate and 
metastasize. Tumor budding is worth to be therapeutically 
targeted; the overwhelming and consistent evidence 
demonstrating that tumor budding is linked to unfavorable 
tumor-related features, aggressive behavior and worse 
overall and disease-free survival time suggests that tumor 
budding should be considered an “essential” prognostic 
factor along-side pT, pN, pM, lymphatic and vascular 
invasion [16]. As seen in breast and prostate cancers 
with the BRE and Gleason scores, respectively, tumor 

budding has the potential to be a basis for a supplementary 
prognostic scoring system in colorectal cancer once its 
evaluation has been standardized. The molecular and 
genetic events triggering a tumor budding phenotype, 
the changes occurring within tumor budding cells, their 
interaction with stromal cells and the identification of 
more or less aggressive tumor budding profiles remain 
open areas of investigation. Understanding the interactions 
between tumor buds and the immune response may be 
key toward the development of future immunotherapy 
targeting the destruction of tumor budding cells.
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