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   In this paper after introducing a model of binary data matrix (BDM) for physical parameters of an 
evolving system (of particles), we develop a Hilbert space as an ambient space to derive induced metric 
tensor on embedded parametric manifold identified by associated joint probabilities of particles 
observables (parameters). Parameter manifold assumed as space-like hypersurface evolving along time 
axis, an approach that resembles 3+1 formalism of ADM and numerical relativity. We show the relation 
of endowed metric with related density matrix. Identification of system density matrix by this metric 
tensor, leads to the equivalence of quantum Liouville equation and metric compatibility condition 
 ∇𝑘𝑔𝑖𝑗 = 0 while covariant derivative of metric tensor has been calculated respect to Wick rotated time 

or spatial coordinates. After deriving a formula for expected energy per particles, we prove the equality 
of this expected energy with local scalar curvature of related manifold. We show the compatibility of BDM 
model with Hamilton-Jacobi formalism and canonical forms. On the basis of the model, I derive the Ricci 
flow like dynamics as the governing dynamics and subsequently derive the action of BDM model and 
Einstein field equations. Given examples clarify the compatibility of the results with well-known principles 
such as equipartition energy principle and Landauer’s principle. This model provides a background for 
geometrization of quantum mechanics compatible with curved manifolds and information geometry. 
Finally, we conclude a “bit density principle” which predicts the Planck equation, De Broglie wave particle 
relation, 𝐸 = 𝑚𝑐2, Beckenstein bound and Bremermann limit.  
 
Keywords: Quantum Liouville equation; metric compatibility condition; Joint probability; Binary Data 
Matrix; Ricci flow.                                 

 

1.   Introduction                                                                                                

Liouville theorem in statistical physics was first introduced by Joseph Liouville. Theorem states that the 
density of particles in a system with Hamiltonian regime through time evolution, remains constant in 

phase space, i.e.  
𝑑𝜌

𝑑𝑡
= 0 [1] .The quantum version of this theorem, namely Liouville -Von Neumann 

theorem presented in density matrix formalism [2]. Density matrix evolution in Liouville -Von Neumann 
theorem could be derived directly from Schrödinger equation and acts on the same Hilbert space where 
the wave function and related operators are defined. This equation is in analogy with the evolution of 
classical phase space distribution by replacing the density matrix with phase space distribution and 
commutator with Poisson bracket. One of the major differences between classical and quantum 
measurement is the limitations induced by Heisenberg uncertainty law and its consequences that 
constrains the accuracy of joint (simultaneous) measurements of incompatible observables and divides 
the observables to compatible and incompatible category. Compatible observable refers to those that 
their operators are commutative and hence could be measured simultaneously while incompatibles are 
non-commutative and their precise simultaneous measurements are impossible. In spite of this 
restriction, recent advents reveal some solution for this constraints by imposing some approximations on 
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joint measurements of incompatible observables at the price of introducing some errors with respect to 
the ideal measurement [3-5]. Then one may consider experiments with acceptable simultaneous 
measurements of incompatibles with definite concept of joint probability. However joint probability in 
quantum mechanics remains as an old and challenging area of research. One of the main approaches for 
quantum correction to classical statistical mechanics and consequently joint probability in quantum 
mechanics are brought by Wigner distribution (function) to formulate the quantum physics in a phase 
space through introduction of Quasi probabilities. The Quasi prefix is considered because of emerging 
some negative probabilities in the context of Wigner distribution. It has been proved that these negative 
probabilities often refer to small parts of phase space and could be ignored in most problems [6]. Actually 
whenever the Wigner function takes just the non-negative values it represents a true joint probability 
distribution of position and momentum [6]. At the time being joint measurements of incompatible 
observable with some error becomes feasible [5]. Therefore, implementing joint measurements to record 
the magnitude of observables with a possible range of errors is achievable. This means that one may 
define joint probabilities in quantum approach especially in density matrix formalism[5]. We will present 
in sec (3) a density matrix which fitted for the present model with entries proportional to joint 
probabilities of observables. In sec (2,3,4) we set a model of a binary data matrix 𝑫 which contains 
evolving data of parameters of all particles in a system with 0 and 1 entries. The rows of this matrix are 
base vectors in the Hilbert space ℋ2𝑛 and their inner products constitute a metric tensor for dual space 
of the parametric space. We will show in these sections the equivalence of density matrix with a 
symmetric matrix 𝒅𝒅𝑇which derived from 𝑫.                                                                                                                                                      

Metric compatibility condition exhibited as a pure mathematical inference in differential geometry and 
tensor analysis [7].This theorem states that for any chosen local coordinates the covariant derivative of 

metric tensor 𝑔𝑖𝑗  vanishes i.e. ∇𝑘𝑔𝑖𝑗 = ∇𝑘𝑔𝑖𝑗 = 0 [8]. When we apply the covariant time derivative of 

metric tensor (after wick rotation), the metric compatibility condition and quantum Liouville equation as 
two apparently far concepts appear as two sides of a common reality when the deep connection of metric 
tensor and joint probability has been shown to be based on an abstract background of evolution process 
of a system of large number of particles. The consequences of this equivalence result in a definition for 
energy per particle with ensuing equations of action integral and Einstein field equations. The transition 
from discrete particles continuous derivative and connections are the same method in Maxwell-
Boltzmann kinetic theory of gases. The binary matrix model geometrizes the statistical concepts in physical 
parameter space based on binary data of system. In some approach to general relativity like numerical 
relativity and ADM formalism [9], the concept of foliation of space-time manifolds into space like hyper-
surfaces has been introduced and used to solve some related problems. These hyper-surfaces embedded 
in space-time manifold with time-like unit normal vectors. We generalize this method to 𝑛 + 1 
dimensional parametric manifolds with hyper-surfaces of 𝑛 space-like dimensions of physical parameters. 
Accordingly, in this approaches the hyper-surfaces and their induced metrics could be evolved through 
time under quantum Liouville equation. In sec (3) we would have shown the equivalence of density matrix 
and metric tensor of parametric space and its dual space with joint probabilities of particle parameters 
which appears as a symmetric matrix 𝒅𝒅𝑇derived from binary data matrix 𝑫.  In section (6) we prove the 
Ricci flow dynamic as a direct consequence of the context of binary matrix model and then apply it in 
action integral to derive Einstein field equations. Ricci flow is a well-known geometric flow was first 
introduced by Hamilton and used for solution of the Poincare conjecture. As an evolution equation of 
metric tensor, Hamilton (1982) showed the existence of unique solution of Ricci flow equation on a closed 
manifold over a sufficiently short time. Mainstay of general relativity has been based on the relation of 
space-time manifold structure and stress energy tensor in the presence of gravitational field by 
presumption of equivalence principle [10]. Einstein field equation represents this equivalence by equating 
a pure geometrical term (left side) well known as Einstein tensor with a pure physical term (i.e. stress 
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energy tensor) [10]. This great assumption leads to geometrization of all gravitational and non-
gravitational field theories through introduction of Einstein-Hilbert action integral in such a way that 
metric tensor of space-time appears in all actions of field theories. In recent years some attempts devoted 
to introduce the gravity as an emerging force i.e. entropic force [11]. By these scenarios the distribution 
of mass-energy dictates the gravitational potential [11, 12]. These theories support the relation of 
geometry and probability. Intuitively an immediate result is a probable deep connection between the 
geometry (of space-time) and physical probability concept. As an interesting example we have shown in 
sec (8) the more basic interconnection between joint probability density (as an induced metric tensor) 
and the Einstein tensor under Ricci flow dynamic. Geometrization of probability distribution and 
information has been achieved by some authors. Historically, some attempts toward the geometrization 
of statistical inferences and probability distributions, have been made Amari and Fisher to develop the 
metric tensor concept of manifolds constructed by points correspond to probability distributions in order 
to geometrize the information theory. Fisher information and covariance based metric in phase space and 
information geometry are among the original works in this field and their applications in thermodynamics  
[13, 14]. However, these approaches limited to phase space with definitions of metric tensor as the 
expectation values of probability distribution moments and likelihoods. Moreover, there has not revealed 
a clear connection to physical applications. Therefor local approaches have not been yet developed 
properly in order to be used in Riemannian curved spaces and general relativity. Some authors also 
indicated the relations of thermodynamic rules with Einstein field equations [15, 16]. These theories 
describe the gravitational forces with entropic force assuming entropy as a function of matter distribution 
[12]. Although the pure geometrical part of Einstein field equations could be served in arbitrary 
dimensional space, however its physical side should be realized in four-dimensional space-time 
continuum, accordingly it seems to be a special case of a more general form of basic laws. In this article 
we generalize the physical concept of geometrical part of Einstein field equation in 𝑛 + 1 dimensional 
manifolds defined through exploring a deep connection between the concepts of metric and joint 
probability density. In subsequent sections I describe the wide range consequences of the model which 
incorporate the quantum mechanics and general relativity by deriving the universe inflation, Schrodinger 
equation, equipartition energy principle, Landauer’s principle and classical thermodynamic laws. As an 
important result, I conclude the bit density principle which unites the De Broglie wave- particle equation, 
Planck photon energy, and mass- energy relation 𝐸 = 𝑚𝑐2. Beckenstein bound and Bremermann limit are 
straightforward results of this principle. Equivalence of Euclidean action and entropy of black holes are 
among other consequences of binary matrix model. Binary matrix model initiates with a quantum 
approach (quantum Liouville equation) and after translating the physical parameter to bit information 
results in the basic equations of general relativity (Einstein field equation) Universe inflation to reconcile 
quantum mechanics and general relativity. The approach can be depicted as: 

                       𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑙𝑖𝑜𝑢𝑣𝑖𝑙𝑙𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝐵𝐷𝑀 +  𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡 → 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑡𝑦 

2.   Binary Data Matrices and Hilbert space  

Definition: Parametric space ℳ specified by 𝑥𝜈 coordinates with 𝝂 which varies from 1 to the dimension 
of parametric space  𝜇:  

                                                                                          1 ≤ 𝜈 ≤ 𝝁                                                                          (1) 

Let construct a binary data matrix on the basis of sequential measurements take place in a time interval 
Δ𝕋 on 𝑁 particles in a system with conserved total number. One may label each particle by a number so 
that the first measurement implemented on first particle and second measurement on second particle 
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and so on. Δ𝕋 represents the least time required to achieve measurements of all particles and is assumed 
to be a small time interval. We label these set of measurements by {𝛼| 1 ≤ 𝛼 ≤ 𝑁} with time ordering. If 
our measurements include 𝜇 independent parameters ( 𝝁 = degrees of freedom) are being denoted by 𝑥𝜈 
(𝜈 denotes the 𝜈-th degree of freedom) then we can divide the possible range of these parameters to a 
large number of intervals ∆𝑥𝜈 in order to obtain such small intervals that satisfy the order of predicted 
error of measurement setting and the accuracy of measurements. If the number of these intervals for 
each parameter 𝑥𝜈 denoted by 𝑚𝜈, the total number of intervals reads as: 

                                                                          𝑚 = ∑ 𝑚𝜈𝜈                                                                                          (2) 

Accordingly any measurement outcome of a particle to determine the value of specific parameter 𝑥𝜈 falls 
just in one interval labeled by ‘𝑖’ denoting the i th interval meanwhile stands for a specific value of  𝑥𝜈. 
Let show this interval by∆𝑥𝜈(𝑖) and attribute the binary value 𝟏 for this interval while the other intervals 
take the value 𝟎. Consequently, the result of  𝑥𝜈  measurement for a particle will be represented by some 
column binary matrix with non-zero (𝟏) element only at row specified by 𝑥𝜈(𝑖). Iteration of measurement 
on other parameters turn out other column binary matrices. The outcome of all parameters could be 
represented by 𝜇 column binary matrix with 𝜇  non-zero entries. Conjunction of these column binary 
matrices as a single column binary matrix result in a matrix 𝝃𝒎×𝟏

𝜶 . Each of these 𝝃𝒎×𝟏
𝜶  gives the parameter 

values of the 𝛼 th particle. Union of  𝝃𝒎×𝟏
𝜶 constructs a data matrix 𝑫𝒎×𝑵. Rows of these binary data 

matrices i.e. at each interval ∆𝑥𝜈(𝑖) can be denoted by a vector 𝑒∗𝜈(𝑖): 

                                                              𝑒∗𝜈(𝑖) = (0,1,0,0,1,1,0,0,1,… )                                                                  (3)                                           

Let call these base vectors as data basis vectors. Each vector 𝑒∗𝜈(𝑖) could be regarded as a base vector 
spanned in an abstract 𝑁 dimensional space with binary components. We will define this 𝑁 dimensional 
space as particle-oriented coordinates. Obviously,  𝑫𝒎×𝑵 could be partitioned to  𝐷𝑚𝜈×𝑁  matrices for 

each parameter 𝑥𝜈. Thus, matrix product 𝑫𝑫𝑻 contains block matrices for each parameter as diagonal 
entries and block matrices produced by different parameters as non-diagonal entries. 

                                             𝑫𝑫𝑻 = [

 𝐷𝑚1×𝑚1
 𝐷𝑚1×𝑚2

   …

 𝐷𝑚2×𝑚1
⋱ ⋮

⋮ ⋯  𝐷𝑚𝝁×𝑚𝝁

]            

As we will prove in Lemma 2, the entries of this matrix carry the set of joint probabilities of parameters. 
For space coordinate of particles, the involved block matrices yield the spatial distribution of particles. 

Postulate At the limit ∆𝑥𝜈(𝑖) → 𝑑𝑥𝜈(𝑖), the vectors 𝑒∗𝜈(𝑖) approaches the basis of cotangent bundle 
(space) as 1-form i.e.                       𝑒∗𝜈(𝑖) ≡ 𝑑𝑥𝜈(𝑖) ≡ 𝜔𝜈(𝑖)                                                                              (4)  

Definition: Here any particle specifies an independent coordinate with two possible values 0 and 1. These 
coordinates are orthogonal, because at the initial setting the parameter values of each particle (such as 
position and momentum etc.) considered to be independent of all other particles. We call these set of 
coordinate as particle-oriented coordinate that as a coordinate chart is homeomorphic to a subset of 
Euclidean flat space  ℝ𝑁  which span a manifold  𝑴 . Moreover we define a parametric space  ℳ  of 
considered system including all coordinates 𝑥𝜈  and their dual basis  𝑒∗𝜈  where the latter span a dual 
tangential (cotangent) vector space 𝑇𝑃

∗ℳ at a point 𝒑 in parametric space ℳ i.e.                

                                                         𝑆𝑝𝑎𝑛{ 𝑒∗𝜈} = 𝑇𝑃
∗ℳ ⊂ 𝑴                                                                                   (5) 
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Lemma 1. It is straight forward to deduce the orthogonality of  𝑒∗𝜈(𝑖) in each parametric range of  𝑥𝜈 by 
scalar products:   

                                                                   〈𝑒∗𝜈(𝑖), 𝑒∗𝜈(𝑗)〉 = 0    𝑖 ≠ 𝑗                                                                      (6)                         

Proof: components of  𝑒∗𝜈(𝑖) defined in an orthogonal particle-oriented coordinates. Let n-th component 
be denoted by:                                                      [ 𝑒∗𝜈(𝑖)]𝑛                                                          

Then the scaler product in an orthogonal coordinate for a fixed 𝜈 reads as: 

                                                   〈𝑒∗𝜈(𝑖), 𝑒∗𝜈(𝑗)〉 = ∑ [ 𝑒∗𝜈(𝑖)]𝑛[ 𝑒∗𝜈(𝑗)]𝑇
𝑛𝑛                                                           (7) 

If a specific component [ 𝑒∗𝜈(𝑖)]𝑝 takes the value 1, this means that the value of parameter 𝑥𝜈 for p-th 

particle falls in 𝑖-th interval and other intervals as [ 𝑒∗𝜈(𝑗)]𝑝 could not take the same value, and vice versa, 

therefore we have:                                      [ 𝑒∗𝜈(𝑗)]𝑝 = 0                                 𝑖 ≠ 𝑗                                              (8) 

Consequently in equation (7) [ 𝑒∗𝜈(𝑖)]𝑝 and [ 𝑒∗𝜈(𝑗)]𝑝 could not take the value 1 simultaneously and this 

sum as the inner (scaler) product vanishes. 

In order to derive a matrix containing the relative and simultaneous abundance of positive interval 
population (i.e. total number of particles of different parameters) we need to extract all scalar products 

 𝑒∗𝜇(𝑖). [ 𝑒∗𝜈(𝑗)]𝑻 = 〈 𝑒∗𝜇(𝑖),  𝑒∗𝜈(𝑗)〉 obtained by means of the matrix product 𝑫𝑫𝑻. 

Lemma 2. Diagonal entries of the matrix 𝑫𝑫𝑻 are equivalent to the separate probability of each interval 
and non-diagonal entries return the joint probabilities of different parameter intervals after necessary 
normalization. 

Proof: Elements of 𝑫𝑫𝑻 could be represented as (the index 𝜇 should not be confused with degree of 
freedom 𝝁)  

                                                      〈𝑒∗𝜈(𝑖), 𝑒∗𝜇(𝑗)〉 = ∑ [ 𝑒∗𝜈(𝑖)]𝑛[ 𝑒∗𝜇(𝑗)]𝑇
𝑛𝑛                                                         (9) 

Obviously, this sum enumerates the total number of particles that have common parameter value of 𝑖-th 
interval of  𝑥𝜈 and j th interval of 𝑥𝜇. Hence the joint probability of  𝑒∗𝜈(𝑖) and  𝑒∗𝜇(𝑗) events reads as: 

                                                               𝑓𝜇𝜈 =
1

𝑁
〈𝑒∗𝜈(𝑖), 𝑒∗𝜇(𝑗)〉                                                                           (10) 

Moreover, for each point on ℳ the we can retrieve 𝑓𝜇𝜈 via matrix multiplication 𝒅𝒅𝑇  where 𝒅 is the 
matrix obtained by collection of row vectors 𝑒∗𝜈 of various parameters all defined on a point on ℳ. Thus 
‖𝑓𝜇𝜈‖ = 𝒅𝒅𝑇 is a symmetric square matrix of order 𝝁 (the number of parameters), defined on a point 
on ℳ:   

                                                                 𝒅 =

[
 
 
 
 
[𝑒∗1]

 [𝑒∗2] 
. . .

[𝑒∗𝝁] ]
 
 
 
 

         ,     ‖𝑓𝜇𝜈‖ = 𝒅𝒅𝑇               

 
Lemma 3.  Paired joint probabilities 𝑓𝜇𝜈 indicate the local metric tensor of ℳ. For each point on ℳ the 
 𝑓𝜇𝜈 represents a matrix of order 𝝁 × 𝝁 and is equivalent to metric tensor of parametric space ℳ.  
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The general definition of metric tensor for a manifold with local base vectors 𝑒∗𝜈(𝑖) is compatible with 
equation (10):                                                𝑔𝜇𝜈 = 〈𝑒∗𝜈(𝑖), 𝑒∗𝜇(𝑗)〉     

Therefore                                                       
1

𝑁
𝑔𝜇𝜈 = 𝑓𝜇𝜈                                                                                      (11) 

                                                                         ‖𝑔𝜇𝜈‖𝝁×𝝁 = 𝒅𝒅𝑇      

The total information bits collected during measurement on such a system with 𝜇 as the degree of 
freedom will be read as:                                                   ℕ = 𝝁𝑁                                                                                           (12)                           

In this model we define a Hilbert space ℋ  with all basis of the form ⟨𝑗1, 𝑗2, … 𝑗𝑛| with 𝑗𝑚 ∈ {𝟎, 𝟏}. In 
quantum computation however, these basis well known as (quantum) computational basis vectors 
(states) of the Hilbert space ℋ2𝑛   [17, 18]. 2𝑛  refers to the total number of elements of this Hilbert 
space.  ℋ2𝑛 contains all  𝑒∗𝜈(𝑖) and related  𝒩𝜈 spaces. The  𝒩𝜈 spaces are sub-spaces of  ℋ2𝑛 and could 
be described as Hilbert spaces ℋ𝜈 for each parameter 𝑥𝜈.This approach, is in close relation to qubit basis 
definition in quantum computation theory[17]. Indeed, for construction of tangent spaces compatible 
with our model we need to choose a sub-space of base vectors of  ℋ𝜈  in such a way that inner product of 
any pair of them vanishes: 

                                                                   〈𝑒∗𝜈(𝑖), 𝑒∗𝜈(𝑗)〉 = 0              𝑖 ≠ 𝑗                                                         (13) 

Obviously, these sub-spaces may be regarded as ℋ𝜈 . Sub-spaces ℋ𝜈  are spanned by 𝑚𝜈  base vectors 
 𝑒∗𝜈(𝑖) . Then the whole space could be represented as the sum (not direct sum) of sub-spaces ℋ𝜈:  

                                                    𝑇𝑃
∗ℳ = ℋ1 + ℋ2 …+ ℋ𝜇 ⊂ ℋ                                                                           (14)     

The collected information of system of particles over time interval  Δ𝕋 , leads to a binary data 
matrix 𝑫𝒎×𝑵. 

Each sub-space ℋ𝜈 considered as a tangent sub-manifold 𝒩𝜈  at a point 𝑝. The union of these tangent 
spaces results in the total space of a tangent bundle 𝑇𝑃

∗ℳ. The state of the system could be represented 
by such matrix and the evolution of this quantum system obeys the equation of quantum Liouville 
theorem as well as Hamiltonian operator. The inner product property of this Hilbert space leads to 
definition of metric tensor and related curvatures induced on manifold ℳ.    

Definition:  We have shown Hilbert space ℋ spanned by 𝑒∗𝜈(𝑖) as base vectors of related vector space. 
The “bra” notation determines these bases in the sense of quantum mechanics. If one shows the “bra” 

with ⟨𝑒∗𝜈(𝑖)| then the related dual base vector will be denoted by “ket” i.e.|𝑒�̂�
∗(𝑗)⟩ and lives in dual vector 

space ℋ∗. In matrix form, ⟨𝑒∗𝜈(𝑖)| presented by a row matrix as depicted in equation (3) and |𝑒∗𝜈(𝑖)⟩ by 
a column matrix that is transpose of  ⟨𝑒∗𝜈(𝑖)| . For compatibility with tensor representation we use 

reasonably the lower index for “ket” vector and therefore we have |𝑒�̂�
∗(𝑗)⟩ instead of.|𝑒∗�̂�(𝑗)⟩ and the 

scaler of the “bra” and “ket” in this notation reads as:   

                                                                                〈𝑒∗𝜈(𝑖), 𝑒�̂�
∗(𝑗)〉                                                                            (15) 

We sued �̂� instead of 𝜇 to emphasize that this index refers to the double dual of parametric space while 
we know the isomorphism of double dual with original vector space [29]. The joint probability as proved 
in lemma 3 is a tensor because is proportional to metric tensor. In the notation of (15) this joint probability 
should be shown by a mixed tensor defined in dual and double dual vector space: 
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                                                                           𝑓�̂�
𝜈 =

1

𝑁
〈𝑒∗𝜈(𝑖), 𝑒�̂�

∗(𝑗)〉                                                                   (16) 

The value of scaler product 〈𝑒∗𝜈(𝑖), 𝑒�̂�
∗(𝑗)〉 equals 〈𝑒∗𝜈(𝑖), 𝑒∗𝜇(𝑗)〉. The upper index of 𝑓�̂�

𝜈 related to dual 

space while the lower index to double dual space. Because of isomorphism between original and double 
dual space [29] this tensor could be considered as a mixed rank 2 tensor in parametric (original) vector 
space. Thus, for compatibility with bra and ket notation we apply this tensor as metric tensor evolving by 
time. 

                                                                        
1

𝑁
𝑔�̂�

𝜈 = 𝑓�̂�
𝜈 =

1

𝑁
〈𝑒∗𝜈(𝑖), 𝑒�̂�

∗(𝑗)〉                                                        (17) 

  

3.   Equivalence of metric compatibility condition and quantum Liouville equation  

Density matrix formalism is the quantum version of phase space probability measure of classical statistical 
mechanics. Accordingly, it deals with ensembles of mixed and pure states. The general definition of 
density matrix could be read as:       

                                                                            𝜌 = ∑ |𝑖⟩𝜌𝑖𝑗𝑖𝑗 ⟨𝑗|                                                                          (18) 

|𝑖⟩ denotes the basis vector labelled by “𝑖” and |𝑖⟩⟨𝑗| denotes the projection matrix with non-zero element 
at row “i” and column “j”. The corresponding element presented by 𝜌𝑖𝑗  . Diagonal entries 𝜌𝑖𝑖  of density 

matrix represents the population (probability) of a specific basis (state) therefore the trace of density 
matrix is unit. Off diagonal entries would provide information about the degree of coherence (or 
polarization) between two states, in other words it represents the correlation of basis states. Although 
off-diagonal elements have no simple physical interpretation it always gives information on quantum 
correlation between particles and fields [19, 20]. we consider these off-diagonal elements as the usual 
correlations between parameters (random variables) 𝑥𝑖  and 𝑥𝑗 which could be encoded by their joint 

probabilities [20], whereby we assume in our definition the equivalent notion of off-diagonal entries of 
density matrix ( 𝜌𝜇𝜈) and joint probability density function:              

                                                                              𝜌𝜇𝜈 = 𝑓�̂�
𝜈 =

1

𝑁
𝑔�̂�

𝜈                                                                      

Because the factor 
1

𝑁
 is a scaler constant of system, it could be absorbed by 𝑔�̂�

𝜈 and from now on we use 

the term  𝑔�̂�
𝜈 instead of 

1

𝑁
𝑔�̂�

𝜈 without any change in dynamics and topology of ℳ. 

                                                                             𝜌𝜇𝜈 = 𝑓�̂�
𝜈 =  𝑔�̂�

𝜈                                                                             (19) 

In the sense of quantum computation ⟨𝑗| vectors are computational basis vector in the form ⟨ 𝑗1, 𝑗2, … 𝑗𝑛| 
with  𝑗𝑚 ∈ {𝟎, 𝟏} . In present model these vectors substituted by data basis vector 𝑒∗𝜈(𝑖)  which 
corresponds the i th row of 𝑫𝑚𝜈×𝑁 matrix. With the identification of bra ⟨𝜈| by 𝑒∗𝜈(𝑖)  and ket |𝜇⟩ by 

𝑒�̂�
∗(𝑗)  the density matrix entries 𝜌𝜇𝜈  respect to (19) could be represented by: 

                                                           𝜌𝜇𝜈(𝑖, 𝑗) =
1

Ν
〈𝑒∗𝜈(𝑖), 𝑒�̂�

∗(𝑗)〉 =𝑓�̂�
𝜈(𝑖, 𝑗)                                                        (20)                                                                                            

𝑖, 𝑗 determine the corresponding intervals (values) of  𝑥𝜈 and  𝑥𝜇 respectively. The off-diagonal entries 
give the classical joint probabilities 𝑓�̂�

𝜈.  
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Recalling the equation (16) also reveals the equivalence of 𝜌𝜇𝜈 and  𝑔𝜇𝜈  and their symmetric and positive 

definite properties. One may compare these correspondence with similarities of covariance matrix and 
metric of thermodynamic state manifold [19]. One may use 𝑓�̂�

𝜈 as a mixed tensor defined by inner product 

of a base  𝑒∗𝜈(𝑖)  with a dual base  𝑒�̂�
∗(𝑗) , by the same components of 𝑔�̂�

𝜈   as a metric tensor and 

consequently with vanishing covariant derivative due to metric compatibility. Respect to binary data 
matrix mentioned in previous section we can imply a new relation between metric compatibility in 
differential geometry and Liouville equation in quantum density matrix notion. It should be reminded that 
the trace of defined 𝜌𝑖𝑗  equals the constant 𝜇  (the degree of freedom). Evidently, this fact does not 

interfere the validity of what will be followed.  

Definition: Let (ℳ,𝑔) stands for a 𝝁 dimensional space-like Riemannian manifold described in sections 
(1),(2) with  𝑔𝜇𝜈  as metric and 𝑓𝜇𝜈  as joint probabilities described in section (2). Evolution of particles 

system evolves this manifold through time axis. The overall manifold 𝑀 comprises space-like manifolds 
ℳ and time coordinate generally constructs a Lorentzian manifold where a Wick rotation (i.e.𝑡 = 𝑖𝑐𝜏 =
𝑖𝜏) convert it to a Riemannian manifold of dimension 𝜈 + 1. Therefore 𝑀 foliated by hypersurfaces ℳ 
through time axis. This approach is close to ADM formalism and numerical relativity [9]. From now on we 
use alphabetic indices instead of Greek letters. Metric compatibility known as vanishing of covariant 
derivative of metric tensor i.e. ∇𝑘𝑔𝑖𝑗 = 𝑔𝑖𝑗;𝑘 = 0 . Here we use the covariant derivative respect to Wick 

rotated time axis: 𝑔𝑖𝑗;0 = 0 because the evolution of these systems occur along the time axis and this 

reveals the rational for exclusive role of time covariant derivative of metric tensor in comparison with the 
spatial derivatives. This condition is also valid for metric 𝑔�̂�

𝜈. 

Theorem:  For a system of particles and associated manifold ℳ endowed by the metrics 𝑔𝑖𝑗 defined in 

section (2) vanishing covariant derivative of metric tensor (respect to Wick rotated time) is equivalent to 
quantum Liouville equation. 

Proof: Density matrix evolution in quantum setting and its Liouville-von Neumann equation for time 
evolution with 𝐻𝑚𝑗 as matrix form of Hamiltonian operator could be read as [2, 21]:  

                                                           
𝜕𝜌𝑚𝑛

𝜕𝑡
= −

𝑖

ℏ
∑ (𝐻𝑚𝑗𝜌𝑗𝑛𝑗 − 𝐻𝑗𝑛𝜌𝑚𝑗)                                                              (21)                              

In the Planck units ℏ = 𝑐 = 1 by taking into account the Euclidean coordinate after a Wick rotation i.e. 
𝑡 = 𝑖𝑐𝜏 = 𝑖𝜏  and substituting it in above equation we have: 

                                                            
𝜕𝜌𝑚𝑛

𝜕𝜏
= ∑ (𝐻𝑚𝑗𝜌𝑗𝑛𝑗 − 𝐻𝑗𝑛𝜌𝑚𝑗)                                                                   (22) 

Regarding metric compatibility in differential geometry [4] i.e.∇𝑘𝑔𝑖𝑗 = ∇𝑘𝑔
𝑖𝑗 = 0 and equation (19) i.e. 

1

𝑁
 

𝑓𝑛
𝑚 = 𝑔�̂�

𝑚 = 𝜌𝑚𝑛. The joint probability 𝑓𝑛
𝑚 is equivalent to metric tensor𝑔�̂�

𝑚. Taking into consideration 
the temporal component (covariant derivative of metric tensor respect to Wick rotated time 𝜏) of tensor 
compatibility, by definition of covariant derivative we obtain: 

                                                   ∇0𝑔�̂�
𝑛 = ∇0𝑓𝑚

𝑛 = 0    ⇒  
𝜕𝑓𝑚

𝑛

𝜕 𝜏
= Γ0𝑚

𝑗
𝑓𝑗

𝑛 − Γ0𝑗
𝑛 𝑓𝑚

𝑗
                                              (23)                      

Then we get (by Einstein summation convention on j index and symmetry of matrix 𝑓𝑛
𝑚 = 𝑓𝑚

𝑛 ):                                 
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𝜕𝑓𝑚

𝑛

𝜕 𝜏
= Γ0𝑚

𝑗
𝑓𝑗

𝑛 − Γ0𝑗
𝑛 𝑓𝑚

𝑗
                                                (24)                               

Where Γ0𝑚
𝑗

 terms denote the Christoffel symbols. Comparing equations (22) and (24) reveals a new 
relation between Christoffel symbol and Hamiltonian matrix of the considered state: 

                                                        ∑ 𝐻𝑚𝑙𝜌𝑙𝑛𝑙 = ∑ 𝐻𝑚𝑙𝑓𝑙
𝑛

𝑙 ~Γ0𝑚
𝑙 𝑓𝑙

𝑛                                                                    (25) 

Accordingly we achieve a correspondence:         𝐻𝑚𝑗~ Γ0𝑚
𝑗

                                                                           (26)  

For general strict equation instead (26), one needs an additional constant term to Γ0𝑚
𝑗

  which does not 

depend on metric tensor, namely:       

                                                                           𝐻𝑚𝑗 = Γ0𝑚
𝑗

+ 𝐶𝑚
𝑗
                                            (27)                                       

Then the equation (22) and (24) remain compatible. In next sections taking 𝐶𝑚
𝑗

= 0, leads Hamiltonian 

operator to be reduced to 𝐻𝑚𝑗 = Γ0𝑚
𝑗

 . The term 𝐶𝑚
𝑗

stands for a constant trace mixed tensor which 

independent of indices remains with constant trace i.e.   

                                                                                𝑇𝑟(𝐶𝑚
𝑗
) = 𝐾                                                                     (28)           

4. Derivation of Mean energy  

 Considering the relation of energy expectation value 〈𝐸〉 of a system with Hamiltonian �̂� and density 
matrix 𝜌𝑚𝑗 : 

                                                                   〈𝐸〉 = 𝑇𝑟(𝜌�̂�) =  ∑ 𝐻𝑚𝑗𝑚𝑗 𝜌𝑚𝑗                                                        (29) 

With substitution of 𝐻𝑚𝑗  and 𝜌𝑚𝑗  from (19) and (27) and identity Γ0𝑚
𝑗

= 𝑔𝑗𝑘𝑔𝑘𝑚,0  and using Einstein 

summation convention we have: 

                        𝑇𝑟(𝜌�̂�) = 𝑔�̂�
𝑚(Γ0𝑚

𝑗
+ 𝐶𝑚

𝑗
) = (𝑔�̂�

𝑚𝑔𝑗𝑘𝑔𝑘𝑚,0 + 𝑔�̂�
𝑚𝐶𝑚

𝑗
) = (𝑔𝑚𝑘𝑔𝑘𝑚,0 + 𝐶𝑚

𝑚)                   (30)                                                                                                                                                                           

Using the formula for trace of Christoffel symbol ( Γ0𝑚
𝑚 = 𝑔𝑚𝑘𝑔𝑘𝑚,0 =

1

2

𝜕

𝜕𝜏
log 𝑔) [10] we get a relation 

between energy expectation value as trace of 𝜌�̂� and the trace of Γ0𝑚
𝑗

 as follows:  

                                                      〈𝐸〉 = 𝑇𝑟(𝜌�̂�) = (Γ0𝑚
𝑚 + 𝐶𝑚

𝑚) =
1

2

𝜕

𝜕𝜏
log 𝑔 + 𝐾                                              (31)  

Where 〈𝐸〉 denotes the energy per particle (constituent)[2] at a specific point 𝑃 where both 𝜌𝜇𝜈 and 𝑔�̂�
𝜈 

in equation (19) are defined, 𝑔 stands for determinant of metric tensor 𝑔𝑖𝑗. The trace of  𝐶𝑚
𝑗

 substituted 

by 𝐾 and appears as a constant. Without loss of generality, we could assume 𝐾 = 0 then: 

                                                                                  〈𝐸〉 =
1

2

𝜕

𝜕𝜏
log 𝑔                                                                                           (32)                                                                                          

𝐾 as the constant part of particle energy, could be considered the rest mass energy of particle i.e. 𝐾 =
𝑚0𝑐

2, however it can be omitted in non-relativistic approximations. As described above, 〈𝐸〉 stands for 
mean energy per constituent (particle) at an exact interval of parameters (i.e. volume element 𝑑𝑛𝝎 of 
the related manifold). Since at equilibrium state, each particle contains 𝜇 bit of information, therefore in 
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our model 〈𝐸〉 is equivalent to energy of 𝜇 bit. We will show the consequences of this result in sec (7). 
Accordingly, the whole expected energy of 𝑁  particle system at thermal equilibrium, 𝔼 can be read as: 

                                                                         𝔼 = 𝑁〈𝐸〉 =
𝑁

2

𝜕

𝜕𝜏
log 𝑔                                                                       (33)  

The main result of this equation, regarding the energy conservation of system, is a continuous evolution 
and matric change. Metric of considered system and its determinant 𝑔  should change by a rate 
determined by the total energy content of system. If we denote 𝓰𝑖𝑗   as the corresponding matrices of 

spatial coordinates in 𝒅𝒅𝑻 this metric is also involving in time evolution. In a system with equilibrium state 
respect to parameters other than space parameters, we expect the change rate of determinant 𝑔  is 
determined by the time evolution of 𝓰𝑖𝑗  : 

                                                                             𝔼 ~
𝜕

𝜕𝜏
log(𝑑𝑒𝑡𝓰𝑖𝑗)                                                                      (34) 

The default positive sign of 𝔼 yields:             
𝜕

𝜕𝜏
log(𝑑𝑒𝑡𝓰𝑖𝑗) > 0                                                                     (35) 

This reveals that in any unbounded system there is a tendency toward the expansion of spatial coordinate. 
We realize this result in section 7.5. Of course, 𝑁〈𝐸〉 stands for the mean energy of total system consisting 
of particles or a hierarchy of information bits or the energy density. We will present ℳ in next sections 
as a non-compact manifold specified for a class of ensembles with certain energy and particle number.  

5.  Canonical formalism Of BDM model        

 
Taking into account that metric compatibility condition includes all coordinate variables we generalize the 
previous section discussion by extending the Liouville equation for other physical coordinates. First, we 
rewrite the general metric compatibility condition: 

                                                                             ∇𝑘𝑔𝑖𝑗 = ∇𝑘𝑔
𝑖𝑗 = 0 

 In this section we show that the term introduced as 𝜑 = −
1

2
log 𝑔 appeared in energy equation of BDM 

model:  

                                                                            𝐸 =
1

2 

𝜕

𝜕𝑡
log 𝑔   

Is equivalent to Hamilton principal function in classical mechanics. The equation for energy has been 
derived from quantum Liouville equation: 

                                                                         
𝜕𝜌

𝜕𝑡
= −

𝑖

ℏ
[𝐻, 𝜌]                                                                      (36) 

Replacing time and Hamiltonian by spatial coordinates and linear momentum respectively gives: 

                                                                         
𝜕𝜌

𝜕𝑥
=

𝑖

ℏ
[𝑝𝑥 , 𝜌]                                                                        (37)                               

Evidently this relation also holds for any other degree of freedoms. Like equation (36) using Wick rotation 

𝑡 → 𝑖𝜏 and assuming the new parameter (e.g. 𝑥 ) instead of “time”, and 𝑝𝑥  instead of 𝐸 , it is straight 
forward to conclude the relations for momentums: 

                                                                              𝑝𝑥 =
1

2

𝜕

𝜕𝑥
log 𝑔                                                                              (38)     

Comparing these equations with Hamilton-Jacobi formalism reveals the role of  −
1

2
log 𝑔 as the Hamilton 

principal function 𝐹 . This function acts as Euclidean action 𝐴𝐸  with similar equations for Hamiltonian 
𝐻 and momentum 𝑝𝑖  : 

                                                    
𝜕𝐹

𝜕𝜏
=

𝜕𝐴𝐸

𝜕𝜏
= −𝐻               ,          

𝜕𝐹

𝜕𝑞𝑖
=

𝜕𝐴𝐸

𝜕𝑞𝑖
= 𝑝𝑖                                                    (39) 
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This shows that                                       𝐴𝐸 = 𝐹 = −𝜑 = −
1

2
log𝑔                                                                     (40) 

This satisfies the basic relation in BDM model i.e.:  

                                                                   〈𝐸〉 =
𝜕

𝜕𝜏
(
1

2
log 𝑔) = −

𝜕𝐹

𝜕𝜏
                                                                             (41) 

And consequently:                                   𝑝𝑥 = −
1

2

𝜕

𝜕𝑥
log 𝑔 =

𝜕𝐹

𝜕𝑥
                                                                            (42) 

Regarding (38), (39),(41) and (42) a simple solution to 𝑔 will be read as:  

                                                                           √𝑔 = 𝑒(𝐸𝜏−𝒑.𝒓)                                                                                  (43) 

Where 𝒑  and  𝒓  denoted as the momentum and position vectors. Therefor with the definition  𝐴𝐸 =

−(𝐸𝜏 − 𝒑. 𝒓) , √𝑔 takes the form:  

                                                                               √𝑔 = 𝑒− 𝐴𝐸
                                                                                        (44) 

Therefor the Euclidean action in BDM theory could be derived from its metric determinant.  
 

 6.    Ricci flow as a consequence of BDM model 
 
If 𝐷𝜈 denotes the binary data matrix for physical parameter 𝑥 𝜈, then a DFT (Discrete Fourier transform) 
transformation of basis vectors  𝑒𝑖

∗𝜈  maps them to a set of new complex bases  �̃�𝑖
∗𝜈 with complex 

components. Discrete Fourier Transform of a binary sequence;  𝑒𝑖
∗𝜈 = ⟨𝑗1

𝜈, 𝑗2
𝜈 , … 𝑗𝑚𝜈

𝜈 |  with 𝑗𝑛
𝜈 ∈ {𝟎, 𝟏} is 

defined as:  

                                                                          𝑍𝑘
𝜈(𝑖) = ∑ 𝑗𝑛

𝜈(𝑖)𝑒−2𝜋𝑗𝑛𝑘
𝑛  

So, the binary basis transform to the complex basis:  
                                                                                       𝑗𝑛

𝜈 → 𝑍𝑘
𝜈 

According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with 
Riemannian metrics and consequently a Kahler complex manifold. This reveals that the manifold (ℳ,𝑔) 
is the real version of a general complex manifold and obeys the general properties of a Kahler manifold. 
As we saw in previous sections, the Hamilton’s principal function takes the form:  

                                                                                        𝐹 = −
1

2
log 𝑔                                                                     (45) 

Consequently, we could derive the exact equations for momentum: 

                                                                                𝑝𝑖 = −
1

2

𝜕

𝜕𝑥𝑖 log 𝑔 =
𝜕𝐹

𝜕𝑥𝑖                                                            (46) 

In the non-relativistic approach, we can choose 𝑝𝑖 = 𝑚𝑣𝑖, then (54) reads becomes: 

                                                                             𝑚𝑣𝑖 = −
1

2

𝜕

𝜕𝑥𝑖 log 𝑔 =
𝜕𝐹

𝜕𝑥𝑖                                                           (47) 

Ricci tensor on a Kahler manifold reads as [ ]: 

                                                                                       𝑅𝑖�̅� =
𝜕2 log𝑔

𝜕𝑧𝑖𝜕�̅�𝑗
    

This equation describes Ricci tensor on a Kahler manifold where we define the main manifold of BDM 

theory. Substitution of 
𝜕

𝜕𝑧𝑖
 and its conjugate by ( 

𝜕

𝜕𝑥𝑖
− 𝑖

𝜕

𝜕𝑦𝑖
) and ( 

𝜕

𝜕𝑥𝑖
+ 𝑖

𝜕

𝜕𝑦𝑖
)  and taking into account the 

independency of 𝑔𝜇𝜈 and 𝑔 of imaginary coordinate 𝑦𝑖  summarizes equation of 𝑅𝑖�̅� to:   

                                                                                          𝑅𝑖𝑗 =
𝜕2 log𝑔

𝜕𝑥𝑖𝜕𝑥𝑗
                                                                     (48)                                           

By equation (46) we obtain an interpretation for 𝑅𝑖𝑗  in BDM model: 

                                                                                          𝑅𝑖𝑗 ≅
𝜕𝑝𝑖

𝜕𝑥𝑗 =
𝜕𝑝𝑗

𝜕𝑥𝑖    

Recalling the symmetry property of 𝑅𝑖𝑗as a symmetric bilinear from and 𝑝𝑖 = 𝑚𝑣𝑖  results in: 

                                                                                          
𝜕𝑣𝑖

𝜕𝑥𝑗 =
𝜕𝑣𝑗

𝜕𝑥𝑖 
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This equation means that the flow is irrotational and curl vanishes. Moreover the rate of change of particle 

density is proportional to 
𝜕𝑣𝑖

𝜕𝑥𝑗 (or 
𝜕𝑣𝑗

𝜕𝑥𝑖 ): 

                                                                                          
𝜕𝑛𝑖𝑗

𝜕𝑡
~

𝜕𝑣𝑖

𝜕𝑥𝑗 =
𝜕𝑣𝑗

𝜕𝑥𝑖 

This rate in BDM can be represented by �̇�𝑖𝑗, therefor we have: 

                                                                                    
𝜕𝑔𝑖𝑗

𝜕𝑡
=

𝜕𝑛𝑖𝑗

𝜕𝑡
~

𝜕𝑣𝑖

𝜕𝑥𝑗 =
𝜕𝑣𝑗

𝜕𝑥𝑖       

Finally, we get the equality:                                                
𝜕𝑔𝑖𝑗

𝜕𝑡
≅ 𝑅𝑖𝑗       

This means that Ricci flow family is compatible and a resultant flow of BDM theory. 
                                   

7.  Evolution of manifold ℳ under Ricci flow Dynamic 

The very first notion of Ricci flow[22, 23] which Introduced by Hamilton (1984) as an evolution equation 
of metric tensor: 

                                                                              𝑔𝑖𝑗,0 = − 2𝑅𝑖𝑗                                                                              (49) 

Hamilton showed the unique solution of Ricci flow equation on a closed manifold for sufficiently short 
time. It is noteworthy that Ricci flow is an evolution equation comparable to Heat diffusion and is not a 
tensor equation because the derivative of metric tensor is not generally a tensor. The equation (49) shows 
similarities with evolution model in ADM and Numerical relativity [9]. In section (6) we have proved the 
Ricci flow as a direct consequence of binary matrix model. We show that this flow and its solution is in 
agreement with our notion of Ricci tensor and mean energy based on binary data matrix. These equations 
reveal straight- forward similarity between Einstein gravity emerging from curvature of space-time and 
curvature in data space, perhaps includes leading reasons for emerging gravity as an entropic force. Taking 

into account expression for Γ0𝑚
𝑗

:   

                                                                  Γ0𝑚
𝑗

=
1

2
𝑔𝑗𝑘(𝑔𝑘0,𝑚 + 𝑔𝑘𝑚,0 − 𝑔0𝑚,𝑘)                             (50)                                    

And orthogonality of time base vector (Killing vector) relative to the other bases, by 𝑔𝑚0 = 𝑔𝑘0 = 0  for  

𝑘,𝑚 ≠ 0 results in:                              𝐻𝑚𝑗 = Γ0𝑚
𝑗

+ 𝐶𝑚
𝑗

=
1

2
𝑔𝑗𝑘𝑔𝑘𝑚,0 + 𝐶𝑚

𝑗
                                                  (51)                                                                                                                   

Assuming a Ricci flow like dynamic proved in section 15: 

                                                                              𝑅𝑘𝑚 = 𝛼𝑔𝑘𝑚,0    

With 𝛼 as an arbitrary constant, for the sake of simplicity, we take it as 𝛼 = 1. By 𝑔𝑘0 = 0  and equation 
(46) we obtain: 

                                                                                Γ0𝑚
𝑗

= 𝑔𝑗𝑘𝑅𝑘𝑚                                                                         (52) 

 Then  equations (31), (32) are converted to:                                                                                                             

                                                                       〈𝐸〉 = Γ0𝑗
𝑗

= 𝑔𝑗𝑘𝑅𝑘𝑗 = 𝑅 =
1

2

𝜕𝜑

𝜕𝜏
                                                      (53)                                                                     

Thus gives rise to:                                                    〈𝐸〉 = 𝑅                                                                            (54)                         

Here we use the expression for trace of  Γ0𝑚
𝑗

 , and definition for Ricci scalar curvature. As before 𝜑 stands 
for the logarithm of determinant of metric tensor; 𝜑 = log𝑔 .  
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Corollary If metric tensor 𝑔𝑖𝑗  for a system is defined by equation (11) then the related partition function 

could be derived by equation:                             𝑍 = 𝑔−1
2                                                                                      (55) 

Proof: The relation for mean energy of a mixed system with density partition function  ℤ  in thermal 
equilibrium at temperature 𝑇, given by [24]: 

                                                                    〈𝐸〉 = 𝑈 = 𝑘𝐵𝑇2 𝜕

𝜕𝑇
lo g ℤ                                                                    (56)                                                  

Where 𝑘𝐵 stands for Boltzmann constant. By replacing 𝑇 by (𝑘𝐵𝜏)−1 as in thermal field theory [25] this 
equation transforms to: 

                                                                     〈𝐸〉 = 𝑘𝐵𝑇2(
−1

𝑘𝐵𝑇2

𝜕

𝜕𝜏
)logℤ = −

𝜕

𝜕𝜏
log ℤ        

Comparing this equation with (64) results in: 

                                                                          −
𝜕

𝜕𝜏
log ℤ =

1

2

𝜕

𝜕𝜏
log 𝑔 

Then we have:                                                            𝑍 = 𝐶𝑔−1
2                                                                               (57) 

Where 𝐶 is a constant respect to time. 

8.  Least action principle and Einstein Field Equation 

In section (5) we showed the manifold ℳ with a local curvature 𝑅 representing the mean energy per 
particle at any point on this manifold. The particle density 𝜌𝑛 (the number of particles per unit parameter 
volume at each point) evidently is not a strict function of metric 𝑔𝜇𝜈  and consequently its variation respect 

to 𝑔𝜇𝜈 vanishes. Then energy density on manifold will be denoted by 𝜌𝑛〈𝐸〉. By this energy density the 

variation of Euclidean action integral in our model could be read as:                                                               

                                       𝛿𝑆𝐵𝐷𝑀 = δ∫ 𝜌𝑛〈𝐸〉
M √𝑔𝑑𝑛𝝎 𝑑𝜏 = δ∫ 𝜌𝑛

1

2

𝜕𝜑

𝜕𝜏M √𝑔𝑑𝑛𝝎𝑑𝜏 = 0                                   (58)                                                         

It is straight forward to impose the relation 𝛿𝑆 = 0 which guarantees the role of 𝜌𝑛〈𝐸〉 as a Hamiltonian. 
Subsequently the action 𝑆 will remain invariant under coordinate transformation. This means that the 

covariant divergence of 𝐻𝜇𝜐 = (
𝛿𝑆

𝛿𝑔𝜇𝜈) should be vanished: 

                                                                   𝐻𝜇𝜐;𝜐 = ∇𝜐 (
𝛿𝑆

𝛿𝑔𝜇𝜈) = 0                                                                            (59)                                                                             

 This can be easily verified by taking the covariant derivative of 
𝛿𝑆

𝛿𝑔𝜇𝜈 as follows. Replacing  
𝜕𝜑

𝜕𝜏
 by the term 

(
𝜕

𝜕𝜏
log𝑔) and some variation calculus, equation (58) gives rise to:                                                                                                                                                                         

                𝛿𝑆𝐵𝐷𝑀 = δ∫ 𝜌𝑛
1

2

𝜕𝜑

𝜕𝜏M √𝑔𝑑𝑛𝝎𝑑𝜏 =
1

2
𝜌𝑛 ∫ (𝑔𝜇𝜈,0M

−
1

2
𝑔𝑗𝑘𝑔𝑗𝑘,0𝑔𝜇𝜈)𝛿𝑔𝜇𝜈√𝑔𝑑𝑛𝝎𝑑𝜏 = 0     (60)            

Let  𝐻𝜇𝜈 = (𝑔𝜇𝜈,0 −
1

2
𝑔𝑗𝑘𝑔𝑗𝑘,0𝑔𝜇𝜈). Note that the density in the parameter space; 𝜌𝑛  due to Liouville 

theorem is independent of 𝑔𝜇𝜈 and time and acts as a constant under variation. Recall the variation of 
Einstein-Hilbert action in 𝑛 + 1 dimension namely:             

                          𝛿𝑆𝐸−𝐻 = δ∫ 𝑅
M √𝑔𝑑𝑛𝒙 𝑑𝜏 = ∫ (𝑅𝜇𝜈M

−
1

2
𝑅𝑔𝜇𝜈)𝛿𝑔𝜇𝜈√𝑔𝑑𝑛𝒙𝑑𝜏 = 0                              (61)                                    

Where  𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈   is Einstein tensor. We have proved in the Ricci flow like dynamics as a 

straightforward consequence of BDM model section (6):  
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                                                                              𝑔𝜇𝜈,0 = 𝛼𝑅𝜇𝜈                                                                              

Substitution of 𝑔𝜇𝜈,0 by 𝛼𝑅𝜇𝜈 (with 𝛼 as a constant) in BDM action (68), results in the equation: 

                                                     
1

2
𝜌𝑛𝛼 ∫ (

M
𝑅𝜇𝜈 −

1

2
𝑅𝑔𝜇𝜈)𝛿𝑔𝜇𝜈√𝑔𝑑𝑛𝝎𝑑𝜏 = 0                                                         (62) 

Deleting the constants 𝜌𝑛 and 𝛼 gives:                 

                                                              ∫ (
M

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈)𝛿𝑔𝜇𝜈√𝑔𝑑𝑛𝝎𝑑𝜏 = 0                                                 (63)  

Comparing 𝐻𝜇𝜈  and 𝐺𝜇𝜈  reveals that 𝐺𝜇𝜈 =   𝐻𝜇𝜈  with the same solutions of equation 𝛿𝑆𝐸−𝐻 = 0 

for 𝛿𝑆 = 0 Thus, under the condition of Ricci flow like dynamics, two integrand remain proportional i.e. 
𝐻𝜇𝜈 = 𝐺𝜇𝜈  and solution of two action integral will be identical. This reveals that imposing Ricci flow as a 

natural consequence of BDM on evolution of manifold gives the structure of space-time in General 
relativity and Einstein field equations.  

9.  Other Results: 

In this section we bring some examples for compatibility of the results of previous sections with some 
well-known results of astronomy, information theory, thermodynamics etc.  

9.1              Relation to average energy in canonical ensemble statistics 

In this section we prove an interesting relation between energy averages 〈𝐸〉 and partition function in the 
path integral notion of quantum field statistics. First we note the relation of imaginary time periods 𝜏 =

−𝑖𝑡 in thermal field theories which coincides the Wick rotation we used in section.3 and 𝛽 =
1

𝑘𝐵𝑇
  (with 

𝑘𝐵 as Boltzmann constant) in statistical mechanics:  

                                                                                  𝜏 = 𝛽 =
1

𝑘𝐵𝑇
                                                           (64)                             

Now recall the well-known derivation of average energy from canonical partition function [24]. 

                                                                          〈𝐸〉 = 𝑈 = −
𝜕 logℤ

𝜕𝛽
                                                                        (65)         

According to equations (31) and (32) and assuming 𝕌0 = 0:       

                                                                          〈𝐸〉 =  
1

2

𝜕

𝜕𝜏
log 𝑔 =

1

2

𝜕𝜑

𝜕𝜏
                                                   (66)                 

Considering the relation between partition function ℤ and determinant of a non-negative self-adjoint 
(symmetric) operator  𝐴 in the context of field theory [25] gives: 

                                                           ℤ = ∫ 𝑒−<𝜑,𝐴𝜑>𝐷𝜑 = (det 𝐴)−
1

2
M

                                                              (67) 

Or in a brief notation [26]:                             ℤ = ∫ 𝑒−𝛽<𝐸>𝐷𝜑
M

           

Here 〈𝐸〉 should be introduced as Dirichlet energy [26]. We see if one assumes 𝑔𝑖𝑗  as an operator 𝐴 in 

above equations, then equations (66), (67) and corollary (i.e. 𝑍 = 𝑔−1
2 ) yields the identity: 
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                                     〈𝐸〉 =
𝜕

𝜕𝜏
log√𝑔 = −

𝜕

𝜕𝜏
log ℤ = −

𝜕

𝜕𝜏
log ∫ 𝑒−𝜏<𝐸>𝐷𝜑

M
= 〈𝐸〉                                (68) 

This reveals the compatibility of expected energy formula (66) of the model with field theory formalism.  

9.2             Stress-Energy tensor 

Energy momentum tensor of model can be derived by variation of action 𝑆 respect to 𝑔𝜇𝜈 :                                                                                               

                                                            �̅�𝜇𝜐 =
𝛿𝑆

𝛿𝑔𝜇𝜈 = 𝐻𝜇𝜈  ~
1

2
(𝑔𝜇𝜈,0 −

1

2
𝑔𝑗𝑘𝑔𝑗𝑘,0𝑔𝜇𝜈)                                       (69)                          

Recall the Einstein field equation:            𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜐                                                                      (70)      

With assumption of Ricci flow as the governing dynamics and replacing 𝑔𝑘𝑗,0 = −2𝑅𝑘𝑗in (69), we obtain 

the energy momentum tensor of model:     �̅�𝜇𝜐 = 𝐻𝜇𝜈~𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝜅𝑇𝜇𝜐                                            (71)  

This is also consistent with the result of previous section and implies a linear relation between 〈𝐸〉 and 
temperature.  

9.3             Energy equipartition and Landauer’s principle 

As we showed in previous sections, the state of system could be characterized by a data matrix containing 
a set of information bits. Any column of this matrix (i.e. 𝝃𝒎×𝟏

𝜶 ) contains the set of information of one 
particle in which the values of parameters given by 𝜇 bit of information, each bit for a positive interval in 
each degree of freedom (𝜇 denotes the degree of freedom). If 𝜖 ̅stands for the mean energy of a bit of 
information, then the mean energy per particle 〈𝐸〉 is given by: 

                                                                                       〈 𝐸〉 = 𝜇𝜖  ̅                                                                           (72) 

Regarding the Landauer's principle which states that for erasing a bit of information the minimum 
required energy is:                                                 𝜖̅ = 𝑘𝐵𝑇 log 2                                                                          (73) 

 Substitution of 𝜖  ̅in equation (72) gives: 

                                                                          〈 𝐸〉 = 𝜇𝜖̅ = 𝜇 𝑘𝐵𝑇 log 2                                                               (74)                                                      

This is in analogy with the equipartition theorem of energy which states that the mean energy of each 
particle is proportional to the degree of freedom, Boltzmann constant and temperature, and shows the 
compatibility of the model with these two basic principles.  

 
9.4              Universe Inflation and extrinsic curvature 

 
If except for spatial dimensions all other parameters confine in a relatively equilibrium range, the large 
part of 𝑔𝑖𝑗  will be constant with a fairly good approximation while the 3D-space metric 𝓰𝑖𝑗  increases as 

was proved in (35). In this situation which could be realized by our universe, the change rate of the whole 
metric 𝑔𝑖𝑗  equals the change rate of spatial part of the metric. Therefor we can substitute the 3-

dimensional spatial metric 𝓰𝑖𝑗  with 𝑗 = 1,2,3  into FRW equation which  reveals a relation between spatial 

metric tensor and scale factor  𝑎(𝑡)[27]: 
                                                                                 𝓰𝑖𝑗 = 𝑎2(𝑡)𝛿𝑖𝑗                                                                         (75) 

In 𝑛 dimensional manifold the determinant of above metric reads as: 
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                                                                       𝓰 = 𝑎2𝑛(𝑡)          

Accordingly we have:                             𝔼 ~ 
1

2

𝜕

𝜕𝜏
log𝓰 = 𝑛

𝜕

𝜕𝜏
log 𝑎(𝑡) = 𝑛

�̇�

𝑎
                                                  (76) 

With �̇� as time derivative of scale factor 𝑎 and 𝔼 as total energy content of universe. Hubble parameter 
has been defined as: 

                                                                                         𝐻 =
�̇�

𝑎
 

Substitution in (76) gives:                          
                                                                                   𝔼 ~𝑅 = 𝑛𝐻                                                                            (77) 
Usually Hubble parameter 𝐻 considered to be equal to ℛ−1 with ℛ as the observable Universe radius. 
Respect to the equations (87) we achieve the equation: 
                                                                                     𝔼 = 𝑛 ℛ−1                                                                             (78) 
On the other hand, in ADM notion of general relativity, 3+1 dimensional splitting of space-time reveals a 
relation between 𝐾  (the trace of extrinsic curvature 𝐾𝑖𝑗 ) and determinant of metric tensor i.e. 𝑔 [9]:                                                                        

                                                                                
1

 2

𝜕

𝜕𝜏
log𝓰 = −𝛼𝐾 + 𝐷𝑖𝛽

𝑖                                                         (79) 

Where 𝛽𝑖 stands for shift vector and assumed to be vanished. Therefore, by equation (86) we have: 
                                                                                      𝔼 = 𝑅 = −𝛼𝐾 
This relation supports the curvature concept of 〈𝐸〉 as predicted in our model. In 3+1 decomposition of 
general relativity, one of the important concepts related to 3 spatial submanifold is external curvature 𝐾𝑖𝑗  

with a well-known equation as follows[9]: 
                                                                                     𝜕0𝓰𝑖𝑗 = −2𝑁𝐾𝑖𝑗                                                                 (80) 

Where 𝑁  is considered as a constant respect to time. On the other hand, as mentioned in previous 
sections by applying the Ricci flow, dynamic for metric tensor reads as:                                                               
                                                                                       𝓰𝑖𝑗,0 = − 2𝑅𝑖𝑗                                                                    (81) 

This reveals that the Ricci flow can be traced out as the main dynamic in time evolution of spatial 
hypersurfaces in ADM formalism and Numerical relativity and supports the main idea of our model in 
applying this flow as a universal dynamics. 

The interesting result of equation:                            〈𝐸〉 =  
1

2

𝜕

𝜕𝜏
log 𝑔 

Indicates that not only the spatial coordinates, but also all other physical parameters undergo expansion 
of their base vectors. Linear and angular momentum subsequently obey the conventional patterns of 
Universe inflation. We call this fact as the generalized inflation principle and in section 9.19 show that the 
velocity curve problem of far stars in galaxies and dark matter could be resolved by the results of this 
principle. As the Hubble law holds true just for large astronomical distance at 2 − 4 Mpc, the generalized 
inflation principle applies the distances beyond these intervals.     
       

 
9.5              Equivalence of action and entropy of Black holes 

 
Black holes reveal an exact entropy and actions. The entropy of black holes has been widely investigated 
by Hawking and Beckenstein [30,31]. This entropy has been proved to be proportional to the black holes’ 
surfaces without a statistical inference. Recent approach to Euclidean action of black holes [32] while 
smearing the delta function distribution to a Gaussian distribution in the limit  𝜎 → 0  has shown an 
equivalence between Euclidean action and entropy of black holes.  
In this section we try to show in the context of BDM model the relation between Fisher information metric 
and entropy and action of black holes and equivalence of gravitational action and entropy of black holes. 
In this approach we apply the basic results of BDM theory and to prove the equivalence of entropy and 
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action of black holes. Fisher information metric matrix definition results in the equivalence of inverse of 

covariance matrix (𝐶𝑖𝑗) and fisher metric tensor [34]:  

                                                                                ℊ𝑖𝑗 = (𝐶𝑖𝑗)
−1 = 𝐶𝑖𝑗                                                                  (82)   

Where  ℊ𝑖𝑗  stands for Fisher information metric. For jointly normal random variables 𝒙𝟏, 𝒙𝟐, . . 𝒙𝒏  the 

entropy calculated as [34]: 

                                                                                  ℋ =
1

2
log ∆ + 𝑘                                                                      (83) 

With constant  𝑘 = log 2𝜋𝑒  and  ∆= det 𝐶𝑖𝑗 . By (82) we have  ℋ =
1

2
logℊ−1 + 𝑘 . Where ℊ  stands for 

determinant of Fisher information metric. We show in the case of black holes at the limit  𝜎 → 0  we can 
exchange the fisher metric with metric of BDM model (appendix A). Therefor substitution ∆= det 𝐶𝑖𝑗 = 𝑔  

into equation (83) gives the entropy ℋ in terms of BDM matric tensor and its determinant 𝑔. The Fisher 
metric ℊ𝑖𝑗  replaces the metric 𝑔𝑖𝑗  in Equations (82) and (83) to result in: 

                                                                        
𝜕

𝜕𝑡
ℋ = −

1

2

𝜕

𝜕𝑡
logℊ = −〈𝐸〉                                                           (84) 

The relation of statistical entropy ℋ =
1

2
log ℊ−1  and the equation (40) reveals that  ℋ  could be 

interpreted as Euclidean action 𝐴𝐸 or Hamilton principal function 𝐹. This connects two different concepts 
of statistics and Hamiltonian mechanics. 
                                                                                          ℋ = 𝐴𝐸                                                                              (85) 
This coincides the result of recent works that state the entropy of black hole is equal to Euclidean action 
i.e. 𝑆𝑏ℎ = 𝐴𝐸  [31,32]. Thus, we have:                                                 

                                                                              
𝜕𝑆𝑏ℎ

𝜕𝜏
=

𝜕

𝜕𝜏
𝐴𝐸 = −〈𝐸〉                                                                  (86)                                               

 
 

9.6             Maxent and Least Action Principle 
 
The equivalence between action integral and entropy conveys the relation between least action principle 
and maximum entropy (Maxent) principle. If we accept the opposite signs of entropy and action integral: 
                                                                                           𝑆 = −𝐼                                                                            (87) 
 Where 𝑆 stands for entropy and 𝐼 for action integral. Then the maximum of action results in the minimum 
(extremum) of action integral:                                    𝛿𝑆 = −𝛿𝐼 = 0                                                                        (88) 
 
                                                                                        
 

9.7              Lagrangian  
 

Following the results of identity (40); 𝐹 = −
1

2
log 𝑔 we can derive the Lagrangian as: 

                                                                                
𝑑𝐹

𝑑𝜏
= 𝐿 = 𝑇 − 𝑈                                                                       (92) 

For a free particle i.e. 𝑈 = 0 the expansion of (16) reads as: 

                                                                  
𝑑𝐹

𝑑𝜏
=

𝜕𝐹

𝜕𝜏
+

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝜏
= −𝐸 + 𝑝𝑥𝑣𝑥 = 𝑇                                                    (93)              

For free particle 𝐸 = 𝑇, then we have: 

                                                                                𝐸 = 𝑇 =
1

2
𝑚𝑣𝑥

2                                                                          (94) 

Matrix version for Lagrangian could be derived by replacing 𝐹 by −
1

2
log 𝑔: 

                                                                𝐿 =
𝑑𝐹

𝑑𝜏
= −

1

2

𝑑

𝑑𝜏
log 𝑔 = −

1

2𝑔

𝑑𝑔

𝑑𝜏
                                                              (95) 

Using Jacobi formula for derivative of determinant we get: 
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                                                          𝐿 = −
1

2𝑔
𝑇𝑟 (𝐶𝑖𝑗

𝑑𝑔𝑖𝑗

𝑑𝜏
) = −

1

2
𝑇𝑟 (

1

𝑔
𝐶𝑖𝑗

𝑑𝑔𝑖𝑗

𝑑𝜏
) 

Taking into account (𝑔𝑖𝑗)
−1 =

1

𝑔
𝐶𝑖𝑗  we have: 

                                                          𝐿 = −
1

2
𝑇𝑟 [(𝑔𝑖𝑗)

−1 𝑑𝑔𝑖𝑗

𝑑𝜏
] = −

1

2
𝑇𝑟(𝐺−1�̇�)                                               (96) 

Where 𝐺 = 𝐷𝐷𝑇. This is the matrix form for Lagrangian in BDM. 
 

9.8             Derivation of Schrodinger wave function 

 
If 𝐷𝜈 denotes the binary data matrix for physical parameter 𝑥 𝜈, then a DFT (Discrete Fourier transform) 
transformation of basis vectors  𝑒𝑖

∗𝜈  maps them to a set of new complex bases  �̃�𝑖
∗𝜈 with complex 

components. Discrete Fourier Transform of a binary sequence;  𝑒𝑖
∗𝜈 = ⟨𝑗1

𝜈, 𝑗2
𝜈 , … 𝑗𝑚𝜈

𝜈 |  with 𝑗𝑛
𝜈 ∈ {𝟎, 𝟏} is 

defined as:  

                                                                          𝑍𝑘
𝜈(𝑖) = ∑ 𝑗𝑛

𝜈(𝑖)𝑒−2𝜋𝑗𝑛𝑘
𝑛                                                                   (97) 

So, the binary basis transform to the complex basis:  
                                                                                       𝑗𝑛

𝜈 → 𝑍𝑘
𝜈 

According to Parseval theorem DFT is an isometric map from the real manifold to a complex manifold with 
Riemannian metrics and consequently a Kahler complex manifold. It could also be  proved that these 
complex bases  �̃�𝑖

∗𝜈 are orthogonal for a specific parameter  𝑥 𝜈 and their inner products with complex 

bases  �̃�𝑖
∗𝜇

 of another parameter 𝑥 𝜇 returns the metric tensor 𝑔𝜇𝜈. So, with DFT of real bases the metric 

tensor will be preserved. If 𝒄 denotes a matrix with the set of row matrices[ �̃�𝑖
∗𝜈] while index "𝑖 stands for 

the number of interval for a specific value of parameter 𝑥𝜈 assumed to be constant and 𝜈 denotes the 
number of parameter as well as the row number of 𝒄 ,then we have: 

                                                                               𝒄𝒄† = 𝑮 = ‖𝑔𝜇𝜈‖                                                                       (98) 

If the determinant of 𝒄 be defined by Cauchy-Binet formula, then taking the determinant of both sides of 
(98) gives: 
                                                                       (det 𝒄)(det 𝒄)∗ = det𝑮 = 𝑔      
Obviously det 𝒄  is complex valued. We replace it by 𝜓. Therefor 𝜓 takes the form: 

                                                                                       𝜓 = √𝑔𝑒𝑖𝜃                                                                          (99)  

 Imposing the reverse Wick rotation on real time axis, results in the transformation 𝐸𝜏 → 𝑖𝐸𝑡, therefor 
the equations (42) and (43) change to: 

                                                                                    √�̃� = 𝑒𝑖(𝐸𝑡−𝒑.𝒓)     

Complexification of the manifold and reverse Wick rotation transforms real 𝑔 to complex �̃�. In �̃� the new 
time parameter was added with 𝜈 = 0 and this results in additional negative and imaginary entries to 𝑮 

to form complex �̃� with complex determinant �̃�.  

If action denoted by 𝑆, the new action will be �̃� = 𝑖𝑆 so we obtain:              

                                                                                    −𝑖𝑆 = log√�̃�                                                                        (100) 

Substitution �̃� in Equation (99) gives:                   √�̃� = 𝜓𝑒−𝑖𝜃                                                                          (101) 

Inserting (101) into (100):                                           −𝑖𝑆 = log(𝜓𝑒−𝑖𝜃)        

And finally:                                                         𝜓 = 𝑒−𝑖(𝑆−𝜃) = 𝛼𝑒−𝑖𝑆                                                                  (102) 

Where 𝛼 stands for a complex constant. The relation 𝜓 ~ 𝛼𝑒−𝑖𝑆 guarantees the Schrodinger equation: 

                                                                                        𝑖
𝜕𝜓

𝜕𝑡
= ∆𝜓                                                                               (103)                                                                                                                     

𝜓 is the determinant of matrix 𝒄 and takes the multilinear form of 𝒄 entries. Using the general definition 
of determinant in the context of Cauchy-Binet formula, the determinant is a multilinear form of 𝒄. It is 
straight forward to impose the time partial derivatives on this summation and deduce that Schrodinger 
equation (103) holds for all entries of 𝒄. Then for each particle we have a similar equation:                             
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                                                                                       𝑖
𝜕𝜓𝑛

𝜕𝑡
= ∆𝜓𝑛                                                                        (104) 

Where 𝜓𝑛 stands for a function of parameters for 𝑛th particle. At any point in the parameter space it 
turns out the corresponding entries of 𝑛th particle for specified parameter. 
 

9.9         Derivation of Slater Determinant 
 
Consider sub-matrix 𝐷𝜈 of 𝐷 which contains the coordinate 𝜈 of related parameter. If all particles set to 
be fermions, Pauli Exclusion Principle limits the number of particles in each row by 1. This means that the 
related matrix 𝐷𝜈 is of order 𝑁 × 𝑁 and its determinant takes the values 1 or -1. DFT transformation of 
𝐷𝜈 changes the real basis to complex basis and produces a complex manifold with Riemannian metrics. 

Consequently, this manifold is compatible with a Kahler manifold. Let denote the transformed 𝐷𝜈 by �̃�𝜈. 

If we restrict the notation for �̃�𝜈  to a spatial parameter 𝑥 with other parameters independent of time, 

then �̃�𝑥 contains the entries defined by𝜓𝑛(𝑥) as proved in (30). Therefor if we would define Φ as the 

determinant of �̃�𝑥 = 𝜓𝑛(𝑥)  , the determinant of corresponding block matrix 𝐺𝑥 in 𝐺 appears as:  
   𝑔𝑥 =  [det𝜓𝑛(𝑥)] [det𝜓𝑛(𝑥)]∗  

 Thus we have:                                            Φ = [det𝜓𝑛(𝑥)] ~√𝑔𝑥 ~ 𝑒−𝑖𝑆                                                             (105) 

This means that Φ is the wave function of 𝑁 fermions as known as the Slater determinant. 
   

9.10           Ideal gas 
  
Ideal gas as a non-interacting system of particles brings a good example for our model. Let us consider a 
confined ideal gas with volume 𝑉1 while imposing a compression contracted to volume 𝑉2 with change of 

energy ∆𝐸 = 𝑊, where 𝑊 denotes the performed work. If the contraction coefficient defined as 𝛼 =
𝑉1

 𝑉2
 

, and contraction occur along  𝑥 axis, then the related BDM metric transforms by scale factor 𝛼 on the 
basis 𝑒𝑖

∗𝜈  which corresponds to 𝑥 axis. Evidently the reason is the increase of particle number density 
along 𝑥  axis proportional to 𝛼. Since the entries of 𝑔𝑖𝑗are the inner product of basis vectors 𝑒𝑖

∗𝜈 , the 

resultant change in determinant of 𝑔𝑖𝑗  will be the product by scale factor  𝛼2 . Consequently the √𝑔 

changes to √𝑔′ = 𝛼√𝑔. Therefor taking the action 𝑆 = −log√𝑔 = 𝐸𝑡 , the energy change reads as: 

                                                                      ∆𝐸. 𝑡 = log
√𝑔′

√𝑔
= log𝛼 = log

𝑉1

 𝑉2
                                                      (106) 

Taking into account the periodic time and replacing time with 1 𝑘𝑇 ⁄ , we have: 

                                                                                    ∆𝐸 = 𝑘𝑇 log
𝑉1

 𝑉2
                                                                       (107)    

Which is compatible with the formulas of ideal gases. 
  

9.11           Symmetries of BDM theory  
 
BDM model is compatible with a few symmetries. Here we list the most important symmetries a 

1) Unitary symmetries: we have shown that DFT transform of data matrix 𝐷  leaves the 

determinant  𝑔  invariant. Similarly, all unitary transformations are symmetric groups of BDM 

model. Let 𝑈 denotes an arbitrary unitary matrix which transforms the data matrix 𝐷:  

                                                                             𝐷′ = 𝑈𝐷                                                                           (108) 
Taking the determinant: 

                     det 𝐺′ = det𝐷′ 𝐷′† = det𝑈𝐷 det(𝑈𝐷)† = det𝑈 det𝑈† det𝐷𝐷† = det𝐺            (109) 
This reveals the unitary symmetries of Lagrangian in BDM model. 
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2) Conformal symmetries: a conformal symmetry refers to those transformation of metric tensors 

that rescales the metric either global or local while the theory remains invariant: 

                                                                          𝑔𝜇𝜈 → Ω2𝑔𝜇𝜈                                                                     (110) 

Where Ω2 stands for a function of space time coordinates.  
Determinants of metric transform as: 
                                                                           𝑔′ = Ω2𝑛𝑔                                                                          (111) 
If Ω2 is time independent then we obtain: 

                                               𝐿′ = −
𝑑

𝑑𝜏
log√𝑔′ = −

𝑑

𝑑𝜏
(log√𝑔 + 𝑛 logΩ) = 𝐿                                  (112) 

For time dependent Ω2 we get: 

                                                                   𝐿′ = 𝐿 − 𝑛
𝑑

𝑑𝜏
logΩ                                                                  (113) 

Equation (113) guarantees the invariance of Lagrangian under conformal transformation, because 
additional term is a total time derivative. Therefor the conformal symmetry is an inherent 
symmetry of BDM theory.   
 

9.12            Bremermann limit and maximum Curvature 
 
In this section we reveal an interesting relation between Bremermann limit and maximum space-time 
curvature and Plank time and length. Bremermann limit is the upper bound of bit information transfer 

rate per unit mass and is defines as 
𝑐2

ℏ
 . Due to the dynamic of Ricci flow we have: 

                                                                                          𝑅𝜇𝜈 =
1

2
�̇�𝜇𝜈                                                                     (114) 

For a space with spherical symmetry (like the black holes) Ricci tensor equals extrinsic curvature i.e. 
                                                                                          𝑅𝜇𝜈 ≅ 𝐾𝜇𝜈                                                                          (115)                                                                                                                                         

The scaler curvature for 3-hyper surface with spherical symmetry reads as: 

                                                                                          𝑅 ≅
1

𝑟3                                                                         

To be compatible with physical scaler curvature it requires a Planck constant ℏ to admit the correct 
dimension of 𝑅: 

                                                                                           𝑅 =
ℏ

𝑟3                                                                               (116) 

Now respect to the limit of maximum bit information rate (i.e. maximum average of transmitted bit per 
second) known as Bremermann limit (we denote it by 𝐿𝐵), we should consider the maximum limit of 
�̇�𝜇𝜈  as Bremermann limit. The main reason is the structure of 𝑔𝜇𝜈 in BDM theory. In BDM the entries of 

𝑔𝜇𝜈 is the time average of number of bits restricted to some intervals of physical variables. Therefor the 

maximum changing rate of the bits involved in 𝑔𝜇𝜈 i.e. �̇�𝜇𝜈 will be proportional to Bremermann limit: 

                                                                                     (�̇�𝜇𝜈)𝑚𝑎𝑥~ 𝐿𝐵                                                                       (117) 

To satisfy homogeneity of dimensional equation, respect to Einstein field equation dimensional 

homogeneity:                                                    𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈                                                                (118) 

The term 𝑔𝜇𝜈/𝐺 is Dimensionless quantity required for dimensional homogeneity of equation (118). Then 

we should replace (117) with: 

                                                                   𝐶𝑚𝑎𝑥 =
1

𝐺
(�̇�𝜇𝜈)𝑚𝑎𝑥~

1

𝐺
𝐿𝐵                                                                  (119) 

Where  𝐶𝑚𝑎𝑥  denoted as the possible maximum rate of bit (particles) transfer in BDM theory. For 
calculating the scaler curvature, we contract the Ricci flow (49) with 𝑔𝜇𝜈:                                                         

                              𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 =
1

2
𝑔𝜇𝜈�̇�𝜇𝜈 =

1

2
𝑇𝑟(𝐺−1�̇�) =

1

2

𝜕

𝜕𝑡
log (det 𝐺) =

1

2

𝜕

𝜕𝑡
log 𝑔 = 〈𝐸〉            (120)         

Thus, the total scaler curvature equals the energy per particle multiplied by particle density. In each row 
of data matrix 𝐷  the number of positive bits ‘1’ is the same as the number of particles with the same 
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value of specific physical variable. Therefor the maximum energy of all bits (particles) in this interval could 
be calculated by multiplying the maximum energy of each particle 휀𝑚𝑎𝑥 by the maximum change of the 
number of bits (particles) in this interval i.e. (�̇�𝜇𝜈)𝑚𝑎𝑥 = 𝐿𝐵. Then we have: 

                                                                            𝐸𝑚𝑎𝑥 = 휀𝑚𝑎𝑥𝐶𝑚𝑎𝑥                                                                       (121) 
Respect to (120) the maximum total curvature of involved particles is 𝑅𝑚𝑎𝑥 = 𝐸𝑚𝑎𝑥. On the other hand 
the maximum energy per particle, due to uncertainty principle, could be derived by: 

                                                                                  휀𝑚𝑎𝑥 =
ℏ

𝜏𝑝
                                                                                (122)                                                                                                          

Where 𝜏𝑝 stands for the Planck time. The relation between maximum curvature, 𝐸𝑚𝑎𝑥and equation (116) 

shows that  𝑅𝑚𝑎𝑥  for a 3-hypersurfac with spherical symmetry is proportional to 
ℏ

𝑟3 when 𝑟3 takes the 

minimum length 𝑙𝑝(Planck length):        

                                                                          𝑅𝑚𝑎𝑥 =
ℏ

𝑙𝑝
3 = 𝐸𝑚𝑎𝑥                                                                          (123) 

Equations (121), (122), and (123) results in:                                                                                                               

                                                                           
ℏ

𝑙𝑝
3 =

ℏ 

𝜏𝑝
𝐶𝑚𝑎𝑥 =

ℏ

𝜏𝑝

𝐿𝐵

𝐺
                                                                    (124) 

We can verify this equation by substituting the values of Planck time and length and Bremermann limit: 

                                                                                   
𝑐

9
2

𝐺
3
2
 
ℏ

3
2

=
𝑐

9
2

𝐺
3
2
 
ℏ

3
2

                                                                                (125) 

This interesting result confirms the “information bit” nature of space metrics and brings an example to 
the authentication of Ricci flow and compatibility of BDM theory with Planck length and time and 
Bremermann limit.  
  

9.13           Energy density of Light wave propagation 

 
As an example for applying the Ricci flow as the dominant dynamics of isolated free system of particles, 
we imagine a spherical wave front of light propagating from an origin point of space-time. Due to (120) 
we have:                                                                             〈𝐸〉 = 𝑅          
Therefor for energy density of propagating wave of which is an example of an isolated free system of 
photons we apply this equation and deduce that it equals the curvature of the system. In this example 
this curvature reduces to 2-dimensional sphere curvature (wave front is spherical) and amounts:              

                                                                                       〈𝐸〉 = 𝑅~
1

𝑟2                                                                        (126) 

                                                                                                                                       
This results explains the inverse square law for energy density of light propagation in vacuum. 

 
 

9.14             Power spectrum 
it is valuable to calculate power spectrum of a system via the BDM model. First we note that strict 
definition of power spectrum reads as [34]: 

                                                              𝑆(𝜔) = ∬ 𝑥𝑖
+∞

−∞
𝑥𝑗𝐺(𝑥𝑖, 𝑥𝑗, 𝜔)𝑑𝑥𝑖𝑑𝑥𝑗  

Where 𝐺 stands for the Fourier transform of joint probability density 𝑓(𝑥𝑖 , 𝑥𝑗, 𝑡): 

                                                               𝐺(𝑥𝑖, 𝑥𝑗, 𝜔) = ∫  𝑓(𝑥𝑖, 𝑥𝑗, 𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡              

In BDM model the joint density of pair variables  𝑥𝑖 , 𝑥𝑗  determined by  𝑔𝑖𝑗 as mentioned in previous 

sections. Therefor the power spectrum in BDM sense reads as: 

                                                    𝑆(𝜔) = ∬ 𝑥𝑖
+∞

−∞
𝑥𝑗(∫𝑔𝑖𝑗 (𝑥𝑖, 𝑥𝑗 , 𝑡)𝑒

−𝑖𝜔𝑡𝑑𝑡)𝑑𝑥𝑖𝑑𝑥𝑗       

9.15             Bit density principle 
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In this section we show the density of bits along spatial or time coordinate, represents hidden momentum 

and energy   of a system of particles. As we have shown in previous sections, the expression 
1

2
logℊ could 

be interpreted as “entropy” in some limiting situations such as black holes. If we agree on the classic value 
of bit information as the entropy of a system, then we have the relation: 

                                                                                     𝐼 = −𝑆 =
1

2
logℊ            

With this identity, the expressions for energy and momentum in BDM theory will be read as: 

                                              〈𝐸〉 =
1

2

𝜕

𝜕𝑡
logℊ =

𝜕𝐼

𝜕𝑡
             ,            𝑝𝑖 = −

1

2

𝜕

𝜕𝑥𝑖 logℊ = −
𝜕𝐼

𝜕𝑥𝑖                              (127) 

These equations imply that there are relations between energy and momentum and bit density over time 
and spatial dimensions. These particle densities in BDM model indicate the bits density principle. As a 
generalization, the bits density over time should correspond to energy and the bits density along the 
angular variables correlates with angular momentum. 

                     𝑒𝑛𝑒𝑟𝑔𝑦~
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
  , 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚~

𝑏𝑖𝑡𝑠

𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
 , 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚~

𝑏𝑖𝑡𝑠

𝑢𝑛𝑖𝑡 𝑎𝑛𝑔𝑙𝑒
                   (128)                  

 The best example for time density of bits is the density of a full wavelength (as a single bit) over the time. 
The bits density over time, normally can be explained by the frequency of the propagating wave. Hence 
the energy should be proportional to frequency: 
                                                                                       휀 ≅ 𝑓                                                                                      
For dimensional compatibility, we use ℎ as an appropriate coefficient and hence we have:  
                                                                                       휀 = ℎ𝑓                                                                                    (129)                                                       
 We know for electromagnetic waves (photons) this is the Planck formula for energy per photon. 

For bits density along spatial coordinates this full wavelength (bit) density could be represented as 
1

𝜆
 and 

therefore the momentum is proportional to 
1

𝜆
  and after multiplying with ℎ as proportional coefficient 

gives the De Broglie equation for matter wave: 

                                                                                       𝑝 =
ℎ

𝜆
                                                                                        (130)   

9.16           Crystallography 

 
BDM theory could be applied in special mode to solid state theory of crystals with its Bravais and reciprocal 
lattice and coordinates. In other words, crystallography theory can be considered as a special case of BDM 
model. We show the dual basis 𝑒∗𝜈in BDM model corresponds the reciprocal basis in crystallography. 
Metric tensor in BDM model derived from dual basis 𝑒∗𝜈. Respect to equation (7) for 𝑖 = 𝑗 we have: 

                                 〈𝑒∗𝜈(𝑖), 𝑒∗𝜈(𝑖)〉 = ∑ [ 𝑒∗𝜈(𝑖)]𝑛[ 𝑒∗𝜈(𝑖)]𝑇𝑛𝑛 = | 𝑒∗𝜈(𝑖)|2 = 𝑔𝜈
𝜈(𝑖) = 𝑓𝜈

𝜈(𝑖)                        

This means that the bit density on a specific value of parameter 𝜈 , equals the square of  𝑒∗𝜈(𝑖) module.                                                                            
In crystallography theory the main basis is the lattice basis namely Bravais lattice. These vectors simply 
connect two adjacent atoms and make a 3-dimensional parallelepiped structure as the spatial base 
vectors. As has been mentioned before the reciprocal basis of a crystal determines the actual density of 
particles along axis perpendicular to the related crystal surface. Dual basis in BDM model looks like the 
reciprocal basis in crystal lattices. Therefore, dual basis in BDM model seems to take the momentum 
values and could be assigned by momentum like variables just similar to pseudo-momentum components 
of the Reciprocal basis of crystal lattices. consequently, there is a connection between dual bases in BDM 
model which reflects the probability density of particles in our system and pseudo-momentum of crystal 
lattices. For spatial components these dual bases stand for the real pseudo-momentum or K-vectors of 
crystal lattices. For bit density along the spatial coordinates in crystal lattices, the total density of a plane 

of atoms along the axis perpendicular to that plane, is proportional to 
1

𝑑
 where 𝑑 is the distance between 

atoms planes. The magnitude of corresponding reciprocal base lattice is also 
1

𝑑
 : 
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                                                                                         |𝐺| =
1

𝑑
                                                                                   (131) 

The vector with this magnitude perpendicular to the atoms plane is called crystal momentum or pseudo-
momentum. This momentum appears just in the interactions of atoms lattice with an incident photon or 
particle waves. Respect to the bit density principle from previous section, this pseudo-momentum is equal 
to density of bits (atoms) over the interval 𝑑 by the equation:              

                                                                                     
𝑏𝑖𝑡𝑠

𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
= 

𝑛

𝑑
                                                                         (132) 

The related momentum is the product of density and ℏ i.e. 

                                                                                         𝑃 = ℏ
𝑛

𝑑
                                                                             

then the pseudo-momentum per atom reads as: 

                                                                                         𝑃 = ℏ
1

𝑑
= ℏ𝐺                                                                       (133) 

this is the main relation for crystal momentum which derived by the bit information principles. 
 For non-spatial coordinates, these bases show similar concept. 
 Curiously, the similar relation should govern the angular momentum. The suggested relation is as follows: 

                                                                                    𝐿𝜃 =
ℏ

𝜃
                                                                                    (134)                                                   

Interpretation of  𝜃  as unit angle (angular period) needs more explanation. For crystals with 𝑁 -fold 
rotational symmetries it has been verified that the difference of pseudo-angular momentum of incident 
and diffracted photons on a crystal with 𝑁-fold rotational symmetries obey the relation [33]:                   
                                                                                   ∆𝑚ℏ = 𝜎ℏ + 𝑁𝑃ℏ                                                                    (135)  
And for Rayleigh scattering with 𝜎𝑖 and 𝜎𝑠 as incident and scattered helicity of photons we have [33]: 
                                                                                   𝜎𝑖 − 𝜎𝑠 = 𝑁𝑃                                                                             
Where 𝑃 denotes an integer and 𝑁 determines the particles or bits density per unit angle 2𝜋 (recall the 
definition of 𝑁-fold rotational symmetries). Thus the equation (134) in BDM context is compatible with 
pseudo-angular momentum relation in (135). 
Another crystallographic evidence backing BDM model pertains to metric attributed to crystal lattice. The 
relation between displacements 휀𝑗 = 𝑢𝑗𝑗 (𝑢𝑗𝑗 denotes the diagonal strain tensor) under propagation of a 

single pulse wave and the metric attributed to a crystal lattice is in the form: 

                                                                                   𝑑𝑙2 = ∑ (1 + 2𝑢𝑗𝑗𝑗 )𝑑𝑥𝑗
2                                                    (136) 

The determinant of this metric tensor will read as: 
                                                                                   𝑑𝑒𝑡 𝐺 = ∏ (1 +𝑗 2𝑢𝑗𝑗)                                                          (137)                                    

Its logarithm for small valued 𝑢𝑗𝑗 takes the form: 

                                                                         𝑙𝑜𝑔 𝑑𝑒𝑡 𝐺 = ∑ 𝑙𝑜𝑔 (1 + 2𝑢𝑗𝑗) = ∑ 2𝑢𝑗𝑗𝑗𝑗                                   (138) 

then 〈𝐸〉 =
1

2

𝜕

𝜕𝜏
𝑙𝑜𝑔 𝑔 approximated by: 

                                                                                          〈𝐸〉 = ∑
𝜕

𝜕𝜏𝑗 𝑢𝑗𝑗                                                                (139) 

If assume the displacements 휀𝑗 = 𝑢𝑗𝑗 a periodic function of time to impose vibrations on crystal atoms, 

we get: 

                                                                                           휀𝑗 ≅ 휀𝑒𝑖𝜔𝑡                                                                       (140) 

Then for energy with 𝜏 = 𝑖𝑡 we have:      〈𝐸〉 ≅ 휀 ∑
𝜕

𝜕𝜏𝑗 𝑒𝑖𝜔𝑗𝑡 ≅ −𝑖 ∑ 𝑖𝑗 𝜔𝑗𝑒
𝑖𝜔𝑗𝑡 = ∑ 𝜔𝑗𝑒

𝑖𝜔𝑗𝑡
𝑗                (141) 

Considering the real part of equation, expected energy for a pulse wave through crystal wave will read as: 

And for each degree of freedom:                 〈𝐸𝑗〉 ≅ 𝜔𝑗 ∫ |𝑐𝑜𝜔𝑗𝑡| = 𝜔𝑗

𝜋

2
0

                                                             (142) 

 
This means the proportionality of energy per particle and frequency. After multiplying with ℏ, this is 
compatible with Planck equation:  
                                                                                    〈𝐸𝑗〉 = ℏ𝜔𝑗                                                                             (143)                                         
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And shows the energy of a phonon in crystal lattice.           
 

9.17            Derivation of mass-energy equivalence 
 
What is the relation of energy for a body with mass 𝑚 in the notion of bit information density formalism? 
For a body with mass 𝑚 the number of bits is obscure, because the constituent particles are different in 
mass and type and could not be assumed as individual bits in the context of BDM theory. Nevertheless, a 
direct approach is to define a fundamental mass unit that scales the body mass in dimensionless numbers 
as the information bit content. The most fundamental mass unit is presented as Planck mass by definition: 

                                                                                        𝑚𝑝 = √
ℏ𝑐

𝐺
                                                                              (144) 

This mass is also the minimum possible mass of a black hole. Hence the number of bits of a body with 
mass 𝑚 reads as: 

                                                                                 𝑛 =
𝑚

𝑚𝑝
= 𝑚√

𝐺

ℏ𝑐
                                                                        (145) 

due to bit density principle the related energy could be derived by calculation of bit density over a definite 
time interval, which is defined by Planck time: 

                                                                                          𝑡𝑝 = √
ℏ𝐺

𝑐5                                                                              (146) 

Then for equivalent hidden energy for mass 𝑚 we should work out the density of bit information over 

time scale 𝑡𝑝 times ℏ :                                       𝐸 = ℏ
𝑛

𝑡𝑝
= 𝑚𝑐2                                                                           (147) 

This reveals the exact mass-energy formula in the context of especial relativity and asserts it as a potential 
form of energy that can be appeared just in the interactions with other bodies. This is equivalent with the 
pseudo-momentum in crystal lattices as the hidden momentum that appears when the lattice exposed to 
interactions with particle waves and photons.  
 

9.18           Beckenstein Bound 
  
The maximum information confined in a region with radius 𝑅 and energy 𝐸 due to Beckenstein is: 

                                                                                            𝐼 ≤
2𝜋𝑅𝐸

ℏ𝑐 ln2
                                                                           (148) 

Here the time span for bit information is the interval by which the light travels from center of black hole 
(singularity point) to horizon at the radius 𝑅: 

                                                                                                ∆𝑡 =
𝑅

𝑐
                                                                             (149) 

Therefor the bit density over this interval is proportional to energy 𝐸 up  

to a coefficient ℏ :                                                    𝐸 ≃ ℏ
𝐼

∆𝑡
= ℏ

𝐼𝑐

𝑅
⇒ 𝐼 ≃

𝑅𝐸

ℏ𝑐
                                                  (150)        

 is compatible with Beckenstein bound. 
 

9.19           Rotation (velocity) curve problem as the results of generalized inflation   
 

Velocity (rotation) curves of distant stars relative to their galaxy’s center do not obey the Newtonian 
dynamics. Based on astronomical observations, the orbiting velocities of these stars are approximately 
equal or slowly increasing over the large distances whereas the Newtonian dynamic predicts a lowering 

speed proportional to 
1

√𝑟
 with 𝑟  as the distance of star from galaxy’s center. The problem has been 

justified by assuming an unobservable dark matter distributed in the galaxies with a certain pattern. The 
modified Newtonian dynamics (MOND) is also another approach to this discrepancy by suggesting a 
modification of Newtonian dynamics at very large distances and very low gravity accelerations. I suggest 
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an interpretation of both Universe inflation and velocity (rotation) curve in the context of BDM theory. 
From the main equations of the model we conclude that all base vectors of all parameters inflate through 
time: 

                                                                                    〈𝐸〉 =  
1

2

𝜕

𝜕𝜏
log 𝑔                                                                      (151) 

Because 𝑔 is the determinant of parametric space metric which include base vectors of all parameters i.e. 
spatial, linear momentum and angular momentum. Therefor in BDM the inflation involves all parameter 
and not only the spatial dimension and consequently it implies a generalized inflation. The rate of 
inflation is proportional to energy content of the system. For universe, the expansion rate is proportional 

to its energy or mass content. If 𝑎 stands for the scale factor of this inflation, then the ratio 
�̇�

𝑎
  equals the 

Hubble constant 𝐻:                        

                                                                                           𝐻 =
�̇�

𝑎
                                                                             (152) 

As a generalization to inflation of spatial metric, equation (151) guarantees the inflation of all parameters 
with equal footing. Therefore, as the Hubble law describes the expansion rate through such an equation: 

                                                                                     𝐻 =
�̇�

𝑎
=

�̇�

𝑟
                                                                               (153) 

Due to generalized inflation principle, we could also apply the same equation for linear and angular 
momentum: 

                                                                                      𝐻 =
�̇�

𝑝
 =

�̇�

𝐿
                                                                              (154) 

For linear momentum we obtain:          �̇� = 𝑝𝐻 → �̇� = 𝑣𝐻 → 𝑣 = 𝑟𝐻 → 𝑟 ≅ 𝑟0𝑒
𝐻𝑡  

Which is compatible with Hubble law. For angular momentum we have: 

                                     �̇� = 𝐿𝐻 →
𝑑(𝑣𝑟)

𝑑𝑡
= 𝑣𝑟𝐻 → log 𝑣𝑟 = 𝐻𝑡 → 𝑣𝑟 = 𝑣0𝑟0𝑒

𝐻𝑡 = 𝑣0𝑟                               (155) 

Or:                                                              𝑣𝑟 = 𝑣0𝑟 → 𝑣 = 𝑣0                                                                             (156)    
Here 𝑣 stands for orbiting velocity of stars and𝑣0 is a constant velocity. These equations are valid at the 
limit of a far distance 𝐷0 from other galaxies where the gravitational acceleration amounts to negligible 
limit and the observable inflation begins. At this critical distance which is about 2-4 Mpc (Mega Parsec) 
the radial velocity respect to Hubble’s law start to be observable and yields: 
                                                                                       𝑣0 = 𝐷0𝐻                                                                             (157) 
The initial velocity 𝑣0 should be interpreted as the escape velocity which determines the lower limit of 
expansion velocity. Consequently, the orbit velocity 𝑣  also equals this escape velocity and obeys the 
expansion effects in the negligible gravity. Then we have: 
                                                                                     𝑣 = 𝑣0 = 𝐷0𝐻                                                                   (158) 
Evidently the observable expansion of galaxies is possible for galaxy’s stars at very large distances where 
the gravity loses required binding potential to hinder expansion of spatial and non-spatial parameters. 
Based on astronomical observations, the least distance 𝐷0 is about 2-4 Mpc (Mega Parsec) [38]. Then the 
estimated constant velocity 𝑣0 will be read as (with 𝐻 ≅ 70𝑘𝑚/𝑠.𝑀𝑝𝑎𝑟𝑠𝑒𝑐: 
                                                                  𝑣0 ≅ 𝐷0𝐻 = 140 − 280 𝑘𝑚/𝑠                                                          (159) 
Surprisingly, this is the range of asymptotic constant velocities of the stars at the rim of galaxies. The 
acceleration emerged from generalized inflation at large distances will read as: 

                                                                           𝑎 =
𝑣0

2

𝑟
=

(𝐷0𝐻)2

𝑟
                                                                            (160) 

This acceleration replaces the Newtonian acceleration around the distance 𝐷0 and dominates it at the 
astronomical distances comparable to it. Therefore, we get two separable acceleration, Newtonian which 

is proportional to  
1

𝑟2  and BDM derived acceleration that is proportional to  
1

𝑟
 .  At the astronomical 

distances the Newtonian acceleration decreases rapidly and 𝑣 approaches to 𝐷0𝐻 as the final constant 
velocity that corresponds to 𝑣∞ in MOND theory. Equation that fits almost all observed data of galaxies 
rotation curves could be extrapolated in a way followed by MOND approach to connect these limits of 
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velocities at the far and near astronomical distances. At this level it is compatible with MOND results after 
clarifying the reason for Newtonian modification at very large distances based on BDM theory results.  
This reveals the reason for rotation curve discrepancies without invoking the existence of hidden Dark 
matter or phenomenological modification of Newtonian dynamics (MOND). For far orbiting stars in a 
galaxy, the angular momentum obeys the Newtonian dynamics up to a distance where the expansion of 
parameters overcomes the gravitational field acceleration. Of course, this velocity is equal to asymptotic 
velocity of stars in the galaxy disk as assumed in the context of MOND theory and be achieved by stars 
when the distances are about 𝐷0 = 2 − 4 Mpc from galaxy center. Stars speed behave asymptotically 
between the points where we arrive the fundamental acceleration 𝑎0 and the point of critical distance 
𝐷0 which have been observed through astronomical data. Here we proved the relation between the 
Hubble constant, orbit velocity limit and 𝐷0 as the minimum distance where the inflation begins.  

 
 

9.20         Physical constants and generalized inflation 
 
The spin of particles as an internal angular momentum with its involvement in electromagnetic interaction 
between electron and photon, is included in the parametric space. The any generalized inflation that 
evolves the angular momentum as described in previous section, would impact on electron spin. The 

electron spin 𝑆 with the value of 
ℏ

2
 will lose its quantity due to the equation (155): 

                                                                                        𝑆 = 𝑆0𝑒
𝐻𝑡                                                                                (165) 

If we calculate the relative change of spin over 1 year, we get: 

                                                                                        
�̇�

𝑆
≅  6 × 10−11                                                                      (166) 

Fine structure constant (𝛼) is among the most suspicious constant which should be evolved over universe 
evolution. The definition for this electromagnetic coupling constant is: 

                                                                                        𝛼 =
𝑒2

ℏ𝑐
                                                                                (167) 

e and c are constants that are not included in parameters of BDM and therefor are not involved by inflation 
evolution. However, ℏ as an angular momentum will alter over inflation and results in negative relative 
change to 𝛼. Consequently, the rate of relative change of 𝛼 reads as: 

                                                                                    
�̇�

𝛼
=

�̇�

𝑆
≅  6 × 10−11 

This change rate is compatible with one of the related data was given by Shylakhter [ 35] and reviewed by 
Cardenas [36,37] which is reported as 4 × 10−11. This shows an amazing compatibility of BDM generalized 
inflation results and astronomical results of physical constants evolution.   
 
     

Appendix A 
 In the case of black holes where all the physical variables of its constituent confined to infinitesimal 

intervals 𝛿𝑥𝑖, around the singularity point, if we fix the center of mass of black hole on the origin of spatial 
coordinates, the expected values of position and momentum of constituents are near zero  corresponding 

BDM metric will be concentrated over these intervals with negligible values out of 𝛿𝑥𝑖 and mean values 
near to zero. Thus the correlation (covariance) matrix element ℜ𝑖𝑗 while the mean of all random variables 

vanishes i.e. �̅� = 0 reads as: 
                                                                     ℜ𝑖𝑗 = 𝜎𝑖𝑗 = 〈𝑔𝑖𝑗𝛿𝑥𝑖𝛿𝑥𝑗〉 = 𝑔𝑖𝑗𝛿𝑥𝑖𝛿𝑥𝑗                                              (A1) 

Determinant of 𝜎𝑖𝑗 matrix (denoted by ∆ ) could be calculated as: 

                                                                               ∆= ∑ 휀𝑖𝑗𝑘… 𝑖𝑗𝑘… 𝜎𝑖1𝜎𝑗2𝜎𝑘3 …                                                    (A2) 

Substitution of 𝜎𝑖𝑗 with 𝑔𝑖𝑗𝛿𝑥𝑖𝛿𝑥𝑗 gives rise to: 
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                                                                                         ∆ = 𝑔 ∏ (𝛿𝑥𝑖)
2

𝑖                                                                  (A3) 
Logarithm of both sides results in: 
                                                                 log ∆ = log𝑔 + 2∑ log 𝛿𝑥𝑖𝑖 = log𝑔 + 𝐶                                           (A4) 
On the other hand a multivariate normal distribution at the limits 𝜎𝑖 → 0 approaches to Dirac delta. At 
this limit 𝑑𝑥 is proportional to 𝜎  i.e. 𝜎𝑖 = 𝛼𝑥𝑖 . This results in an equivalence between Fisher metric and 
space metric: 

                                                            ℊ𝑖𝑗 = 〈
𝜕 log𝑃

𝜕𝜃𝑖

𝜕 log𝑃

𝜕𝜃𝑗
〉 ≅

1

𝛼2
〈
𝜕 log𝑃

𝜕𝑥𝑖

𝜕 log𝑃

𝜕𝑥𝑗
〉 ≅

1

𝛼2 𝑔𝑖𝑗                                   (A5) 

Where 𝜃𝑖 = 𝜎𝑖  and  𝑃  multivariate normal distribution. The reason is the exchangeability of  𝜎𝑖  and 𝑥𝑖  
in log𝑃:                                                          

                                                                                        log𝑃 ≅
𝑥2

𝜎2                                                                          (A6) 

Metric tensor 𝑔𝑖𝑗  stands for Fisher metric for coordinates 𝑥𝑖  and could be regarded as metric of BDM 

theory that in empty space converts to usual metric of space and in the presence of matter requires stress 
- energy tensor. Therefor the limit identity (A1) reveals the equivalence of BDM entropy and Fisher 
entropy: 

                                                                          ℋ =
1

2
log ∆=

1

2
log 𝑔 + 𝐶                                                                (A7) 

The distributions of 𝜎𝑖 and 𝑥𝑖 from which we derive the expectations in (A1) are identical because the 
normal distributions at the limit 𝜎𝑖 → 0 tends to Dirac delta: 
                                                                     𝑃 → 𝛿(𝑥𝑖) = 𝛿(𝜎𝑖/𝛼) = 𝛼𝛿(𝜎𝑖)                                                      (A8) 

 
 
Conclusion   
 

Binary data matrix (BDM) and constructed Hilbert space fitted for physical measurements recording, 
represents a set of base vectors with associated metric tensor and entries that interpreted as observed 
joint density probabilities of related system parameters. Both metric tensor and joint probabilities are 
symmetric and positive semi-definite. Definition of density matrix in the sense of quantum statistics 
conveys the full analogy between these matrices and metric tensor. We define a manifold with the 
dimension of the whole parameters intervals number, and its submanifolds expanded by basis vector 
subsets identified on each independent parameter intervals. We prove that this geometry and induced 
metric not only reveals the properties of a Riemannian manifold, but also proves the equivalence of metric 
compatibility and Liouville-Von Neumann equation. We generalize the equivalence to spatial dimensions 
and prove the compatibility of BDM model with Hamilton-Jacobi formalism. This model also explores the 
relation of the manifold curvature and ensemble average energy of the under measurement system and 
uncovers the rational for equating the pure geometrical side and stress energy tensor of Einstein field 
equation. We have shown that this mean energy is proportional to energy per bit of information that 
recovered from measurements. We assert the compatibility of normalized Ricci flow dynamics with our 
Hamiltonian action integral and equivalence of this integral with Einstein-Hilbert action integral. Other 
successful interpretations included in this model, consist of equipartition theorem of energy, average 
energy in canonical ensemble, and Landauer's principle. Compatibility with Universe inflation and FRW 
equation is mentioned in last section. Interestingly the concept of generalized inflation justifies the 
rotation curves of galaxies’ far stars and obviates the assumption of dark matter with a strong theoretical 
framework that could substitutes the MOND theory.  
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