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ABSTRACT

DNA cytosine-5 methylation is a well-studied epi-
genetic pathway implicated in gene expression
control and disease pathogenesis. Different
technologies have been developed to examine the
distribution of 5-methylcytosine (5mC) in specific
sequences of the genome. Recently, substantial
amounts of 5-hydroxymethylcytosine (5hmC), most
likely derived from enzymatic oxidation of 5mC by
TET1, have been detected in certain mammalian
tissues. Here, we have examined the ability of
several commonly used DNA methylation profiling
methods to distinguish between 5mC and 5hmC.
We show that techniques based on sodium bisulfite
treatment of DNA are incapable of distinguishing
between the two modified bases. In contrast, tech-
niques based on immunoprecipitation with anti-5mC
antibody (methylated DNA immunoprecipitation,
MeDIP) or those based on proteins that bind to
methylated CpG sequences (e.g. methylated-CpG
island recovery assay, MIRA) do not detect 5hmC
and are specific for 5mC unless both modified
bases occur in the same DNA fragment. We also
report that several methyl-CpG binding proteins
including MBD1, MBD2 and MBD4 do not bind to
sequences containing 5hmC. Selective mapping of
5hmC will require the development of unique tools
for the detection of this modified base.

INTRODUCTION

In mammalian cells, DNA methylation is an enzymatic
modification at the 5-position of cytosine present abun-
dantly within the CpG dinucleotide sequence context. This
DNA modification is inheritable and reversible without
primary DNA base sequence changes resulting in
possible epigenetic modulation of phenotype and gene

expression (1,2). The de novo formation and maintenance
of 5-methylcytosine (5mC) is catalyzed by DNA
methyltransferase proteins (DNMTs) (3). The biological
importance of 5mC as a major epigenetic modification has
been recognized widely, and a variety of techniques for the
study of DNA methylation have been developed and used
over the past three decades. The most commonly used
assays that distinguish 5mC from normal cytosine can
be classified into several groups on the basis of their prin-
ciples: (i) selective restriction enzyme digestion of
unmethylated DNA, (ii) selective chemical conversion of
unmethylated cytosine by sodium bisulfite treatment and
(iii) selective affinity of antibodies or proteins towards
5mC (4–6).
In addition to 5mC, mammalian DNA contains very

low levels of various modified DNA bases arising from
DNA damage through normal metabolic activities and/
or environmental factors, which are generally eliminated
by DNA repair processes. However, recently Kriaucionis
and Heintz reported that substantial amounts of a specific
modified DNA base, 5-hyroxymethylcytosine (5hmC) are
present in mouse Purkinje and granule neurons (7).
Independently, another research group discovered the
existence of an enzymatic activity involved in producing
5hmC from 5mC and carried out by the TET1
5-methylcytosine oxidase (8). In addition, 5hmC may be
produced by the addition of formaldehyde to DNA cyto-
sines by DNMT proteins (9).
5hmC might serve biologically important roles, or it

might serve as an intermediate in direct DNA
demethylation. For example, the oxidation of 5mC at
methylated CpG sites is known to inhibit binding of the
methyl-CpG-binding domain (MBD) of MeCP2, which is
a transcriptional repressor, suggesting a potential regula-
tory role of 5hmC (10). Deamination of 5hmC will
produce 5-hydroxymethyluracil (5hmU) and generate a
mismatched base pair between 5hmU and guanine
promoting DNA demethylation by potential DNA
repair mechanisms (11,12). In other studies, a reversible
enzymatic reaction catalyzed by DNMT proteins, leading
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to the release of formaldehyde from 5hmC and thus
producing unmodified cytosine was proposed, suggesting
that 5hmC might be an intermediate in direct DNA
demethylation (9).
Since 5hmC is present in mammalian DNA at physiolo-

gically relevant levels and in a tissue-specific manner (7,8),
there is an important need to determine how 5hmC can be
distinguished from 5mC and normal cytosine. Here, we
have addressed this question by comparing the ability of
some of the most commonly used DNA methylation
mapping techniques to detect 5mC and 5hmC, respectively.

MATERIALS AND METHODS

Synthesis of oligonucleotides containing modified cytosines

Production of modified base-containing synthetic DNA
fragments using polymerase chain reaction (PCR) ampli-
fication was accomplished through the use of modified
deoxycytidine triphosphates, 5-methyl-20-deoxycytidine
50-triphosphate (5mdCTP) (Fermentas; Glen Burnie,
MD) and 5-hydroxymethyl-20-deoxycytidine
50-triphosphate (5hmdCTP) (Bioline; Taunton, MA). A
starting amount of 0.5 ng of single-stranded 76-mer oligo-
nucleotide (sequence 50-CCTCACCATCTCAACCAATA
TTATATTACGCGTATATCGCGTATTTCGCGTTAT
AATATTGAGGGAGAAGTGGTGA-30) containing
three BstUI restriction sites (50-CGCG) was used to
generate 76 bp DNA amplicons by PCR reactions with
reaction buffer containing 0.1mM of each dNTP (or
5mdCTP or 5hmdCTP in place of dCTP), and Taq poly-
merase (Roche; Branchburg, NJ). PCR cycling conditions
in 25 ml reaction volumes were as follows: 94�C for 2min
and then 22 cycles of PCR at 94�C for 20 s, 55�C for 25 s
and 72�C for 30 s, followed by a final extension step at
72�C for 2min, using the forward primer 50-CCTCACCA
TCTCAACCAATA-30 and the reverse primer 50-TCACC
ACTTCTCCCTCAAT-30. In order to effectively remove
unmodified DNA templates from the final products,
another 30 cycles of subsequent PCR amplifications
were performed using 0.5ml of first round PCR products
in 50 ml of reaction volume under the same reaction con-
ditions. PCR products were then purified using PCR puri-
fication kits (Qiagen; Valencia, CA). These three
oligonucleotides containing C, 5mC or 5hmC at all three
BstUI sites are referred to as C76, 5mC76 and 5hmC76,
respectively. In addition, 76-mer oligonucleotides
(sequence 50-CCTCACCATCTCAACCAATATTATAT
TACGCGTATAACGCGTATTGCGC GCTATAATAT
TGAGGGAGAAGTGGTGA-30) containing MluI (50-A
CGCGT), NruI (50-ACGCGT) and HhaI (50-GCGC) re-
striction sites were prepared as described above. The
purified PCR products were digested with
methylation-sensitive restriction enzymes. The digested
PCR products were separated by electrophoresis on 3%
Nusieve GTG agarose gels (Cambrex; Charles City, IA).
Oligonucleotides referred to as 5mC5hmC76 contain both
5mC and 5hmC, with 5hmC bases at the central BstUI site
and 5mC bases at the 50 and 30 BstUI sites. They
were synthesized using 5-hydroxymethylcytosine
phosphoramidite (Glen Research; Sterling, VA). A

control oligonucleotide with 5mC at the 50 and 30 BstUI
sites and normal C at the central BstUI site was also
prepared and is referred to as 5mC76a. All restriction
enzymes were obtained from New England Biolabs
(Ipswich, MA).

Combined bisulfite restriction and bisulfite
sequencing analysis

Bisulfite conversion and purification of 76-mers were ac-
complished using the EpiTect Bisulfite kit (Qiagen;
Valencia, CA). Each purified 76-mer 0.5mg were treated
with sodium bisulfite and the obtained PCR products were
subjected to combined bisulfite restriction analysis
(COBRA) (13). Bisulfite modified DNAs were amplified
using the following primers; the forward primer 50-CCCT
TTTATTATTTTAATTAATATTATATT-30 and reverse
primer 50-TCACCACTTCTCCCTCAAT-30. The
reaction buffer contained all four regular dNTPs and
Hotstart Taq polymerase (Qiagen) and the samples were
incubated at 95�C for 15min, and then 48 cycles of PCR
at 94�C for 30 s, 45�C for 30 s and 72�C for 30 s were
performed, followed by a final extension step at 72�C for
3min. The PCR products were digested with the BstUI
restriction enzyme, which cleaves only methylated DNA
after bisulfite conversion. The digested PCR products
were separated by electrophoresis on 3% Nusieve GTG
agarose gels (Cambrex). For sequence analysis, the PCR
products obtained after bisulfite conversion were purified
using QIAquick PCR purification kits (Qiagen) and were
then ligated into the pCR2.1 TA cloning vector
(Invitrogen; Carlsbad, CA). Ten colonies for each cloned
sample were sequenced and evaluated. Quantitative PCR
with 1 ng of 76-mer templates was performed at 95�C for
3min followed by 40 cycles at 95�C for 10 s and 50�C for
45 s. PCR was performed with primers as described above
and the probe 50-CGCGTATATCGCGTATTTCGCG-30

with 50-Cy5 and 30-Iowa Black RQ-Sp modifications (IDT;
Coralville, IA) using 0.6 units iTaq polymerase in an iQ5
real-time PCR cycler (Biorad; Hercules, CA). Data was
analyzed with the iQ5 optical system software.

DNA immunoprecipitation with anti-5mC antibody

To test antibody affinity towards modified cytosines,
immunoprecipitation with an antibody directed against
5-methylcytidine was carried out as described previously
with some modifications (14). Each purified 76-mer was
32P-end-labeled with T4 polynucleotide kinase and
[g-32P]ATP and purified by G-50 spin columns (Roche).
These end-labeled oligomers were denatured in TE buffer
for 10min at 98�C and immediately chilled on ice for
10min. Approximately 1� 105 cpm of each 76 bp
oligomer and 1 mg of a mouse monoclonal anti-5mC
antibody (Eurogentec; Seraing, Belgium) in a final
volume of 200 ml IP buffer (10mM sodium phosphate
pH 7.0, 140mM NaCl and 0.05% Triton X-100) were
incubated for 2 h at 4�C on a rocking platform.
To allow selective collection of immunocaptured
76-mers, the mixtures were then incubated with 7 ml of
magnetic Dynabeads M-280 sheep antibody to mouse
IgG (Dynal Biotech), pre-washed with PBS including
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0.1% BSA, for 2 h at 4�C on a rocking platform and
washed three times with 600 ml of IP buffer for 5min at
room temperature. The levels of immunocaptured oligo-
mers were measured using a liquid scintillation counter
(LS-6500, Beckman Coulter; Fullerton, CA) and the
data were displayed as % by referring to the level of
5mC immunocaptured by anti-5mC antibody.

Binding of the MBD2b/MBD3L1 complex and other
MBD proteins to modified cytosines

For gel mobility shift assays, His-tagged MBD2b,
MBD3L1 and MBD4 proteins were prepared according
to published procedures (15,16). Recombinant MBD4
was kindly provided by David Baker and Timothy
O’Connor (City of Hope). Full-length MBD1 protein
was obtained from Abnova (Taipei, Taiwan). The
32P-end-labeled probes were prepared as described
above. Approximately 200 ng of recombinant proteins
(MBD2b and MBD3L1 were pre-incubated on ice for
30min) and 0.1 ng of probes (1� 104 cpm) were
incubated at room temperature for 40min in binding
buffer containing 20mM HEPES, pH 7.9, 1mM
EDTA, 3mM MgCl2, 2mM dithiothreitol, 4% glycerol,
0.1% Triton X-100 and 125 ng of sonicated JM110 (dcm
minus) Escherichia coli genomic DNA. The protein-DNA
complexes were fractionated by electrophoresis on a 5%
non-denaturing polyacrylamide gels in 1�Tris-buffered
EDTA at 4�C and visualized by autoradiography.

RESULTS

Preparation of modified oligonucleotides

A 76-mer oligonucleotide sequence was designed for use in
this study (Figure 1A). The synthesized DNA fragment
contained three recognition sites for the methylation-
sensitive restriction enzyme BstUI (50-CGCG) allowing
for restriction digest analysis and the incorporation of
the modified bases 5mC and 5hmC only at CpG sites. In
order to prepare the 76-mers including unmodified (C76),
methylated (5mC76) or hydroxymethylated (5hmC76)
cytosines at CpG sites, a PCR method was used
allowing incorporation of only normal cytosines (by
using dCTP) or modified cytosines (by using 5mdCTP or
5hmdCTP), similar as described by Kriaucionis and
Heintz (7). We designed the 76-mers such that only the
BstUI sites selectively contained the normal (C) or the
specific modified cytosines (5mC or 5hmC) on newly
synthesized DNA strands extended from primers. To
assure that our final PCR products were depleted of
starting template DNA, subsequent PCRs were carried
out by using 0.5 ml of the first round PCR products as
template. Oligonucleotides containing both 5mC and
5hmC were synthesized using phosphoramidite chemistry.

To analyze the final PCR products, C76, 5mC76 and
5hmC76 were separated and visualized by electrophoresis
on 3% Nusieve GTG agarose gels (Figure 1B, lanes 1–3).
Analysis of PCR products indicated one single PCR
product band for each of the synthesized DNA fragments
consisting of normal or specific modified cytosines. In
order to further test if C, 5mC or 5hmC were present

in the synthesized PCR fragments, we performed AflIII
(50TCGCGA) restriction enzyme digestion with these
PCR products and thin layer chromatography (data not
shown). The methylation-sensitive restriction enzyme
BstUI cannot digest the fragment if the BstUI restriction
site is modified by methylation on the 5-position of
cytosine at CpGs. In Figure 1B, lanes 4–6, we observed
that C76 was fully digested, while the 5mC76 and 5hmC76
oligomers resisted digestion by BstUI. These data show
that the selectivity of the methylation-sensitive restriction
endonuclease BstUI is affected by the presence of 5hmC
within the restriction sites, which is consistent with
previous reports for other methylation-sensitive restriction
enzymes (8,17). Using a similar approach to synthesize
templates, we also tested the methylation-sensitive restric-
tion enzymes MluI, NruI and HhaI for reactivity towards
target sequences containing 5hmC in the recognition se-
quences. These enzymes were also strongly inhibited by
presence of 5hmC (Figure 1C).

Combined bisulfite restriction and bisulfite
sequencing analysis

Bisulfite assays are widely used in DNA methylation
studies due to the selective chemical reaction of sodium
bisulfite with cytosine versus 5mc residues (18–20). Thus,
it is important to test if the assay can distinguish 5hmC
from C or 5mC.
In total, 0.5 mg of purified 76-mers were treated with

sodium bisulfite and the products were then amplified
using normal dNTPs and Taq polymerase. Bisulfite-
treated 5hmC76 as well as C76 and 5mC76 were success-
fully amplified, indicating that treatment of 5hmC-
containing templates with sodium bisulfite does not affect
PCR amplification. Using these DNAs amplified from
bisulfite-treated 76-mers, we first performed a COBRA
assay using BstUI (50-CGCG), and observed that 5mC76
and 5hmC76 were clearly digested, but C76 fully resisted
digestion with BstUI (Figure 2A). This indicates that 5mC
and 5hmC were not converted to uracil during bisulfite
treatment and hence retained the BstUI restriction sites,
allowing for digestion of the PCR products.
The result was further verified by bisulfite sequencing

analysis. The amplified PCR fragments following bisulfite
treatment were cloned into pCR2.1 TA cloning vectors
and ten individual clones were sequenced (Figure 2B).
The 76 base pairs of C76, 5mC76 and 5hmC76 contain
six cytosines or modified cytosines (5mC or 5hmC) on
each strand, and sequencing data showed that 98% (59/
60) of the 5mC or 5hmC was read by polymerase as
cytosine during PCR amplification subsequent to bisulfite
treatment, while 98% (59/60) of unmodified cytosines
were converted to uracils on C76 and were read as
thymines in the sequencing reads. These results indicate
that bisulfite treatment can distinguish 5mC and 5hmC
from cytosine but cannot distinguish between 5mC and
5hmC. To address the issue whether templates containing
5hmC may be amplified less efficiently than templates con-
taining 5mC, we performed quantitative PCR reactions
with the different templates. Manual PCR over a wide
range of cycle numbers initially indicated that templates
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with 5hmC and 5mC were amplified with similar kinetics
but slightly less efficiently than templates containing C
(data not shown). Real-time PCR indicated clearly that
the 5hmC- and 5mC-containing templates had similar
amplification efficiencies (Figure 2C).

DNA immunoprecipitation with anti-5mC antibody

In addition to sequence-specific enzymatic cleavage and
chemical conversion of 5hmC, affinity-based detection of
5hmC was investigated with a monoclonal antibody
directed against 5-methylcytidine. This antibody is used
commonly in the MeDIP procedure (14). To selectively
collect a population of 76-mers recognized by the

antibody, 32P-end-labeled 76-mers containing normal or
modified cytosines were subjected to immunoprecipitation
(IP) with anti-5mC antibody and then immunocaptured by
using a secondary antibody conjugated to magnetic beads.
The immunocaptured 76-mers were subjected to liquid
scintillation counting. As a negative control we used
normal mouse IgG for IP with C76, 5mC76 or 5hmC76.
As seen in Figure 3, we observed a high affinity of the
anti-5mC antibody towards 5mC on 5mC76 relative to
C76 and 5hmC76. Comparatively, the affinity of the
anti-5mC antibody to C76 or 5hmC76 is similar to that
of control IgG. The results indicate that the anti-5mC
antibody has a high selective affinity to 5mC but not to
cytosine or 5hmC in DNA. We also tested if the antibody

Figure 1. Preparation and validation of modified oligonucleotides. (A) Sequence and preparation of the 76-mers used in the assays. The synthesized
DNA fragments contain three BstUI sites (50-CGCG, underlined). Two rounds of PCR were performed to obtain C76, 5mC76 or 5hmC76 containing
C, 5mC or 5hmC at CpG sites. X indicates normal C, or modified bases 5mC or 5hmC. The boxed sequences indicate the PCR primers.
Oligonucleotides containing both 5mC and 5hmC were synthesized chemically. (B) Analysis of PCR products C76, 5mC76 and 5hmC76 by
BstUI cleavage. PCR products were prepared and digested with the methylation-sensitive restriction enzyme BstUI, then separated and visualized
by electrophoresis on 3% Nusieve GTG agarose gels. Lane 1 (C76), lane 2 (5mC76) and lane 3 (5hmC76) show clean single bands for each of the
PCR products. After BstUI digestion, C76 (lane 4) was fully digested, whereas samples in lane 5 (5mC76) and lane 6 (5hmC76) resisted digestion. (C)
Analysis of PCR products C76, 5mC76 and 5hmC76 by cleavage with different methylation-sensitive restriction enzymes. C76 (lanes 1, 4, 7 and 10),
5mC76 (lanes 2, 5, 8 and 11) and 5hmC76 (lanes 3, 6, 9 and 12) were left untreated (lanes 1–3) or were incubated with MluI (lanes 4–6), NruI (lanes
7–9) or HhaI (lanes 9–12).
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can still recognize aDNA fragment that contains both 5mC
and 5hmC. The antibody can recognize such a fragment
(5mC5hmC76 in Figure 3) albeit with lower efficiency
compared to the same fragment that lacks 5hmC and
contains C at the 5hmC positions (5mC76a in Figure 3).

Methyl-CpG-binding proteins and 5hmC binding

Among the methylated-CpG binding domain (MBD)
family of proteins, MBD2b has the highest affinity to
methylated CpG sites with an ability to effectively distin-
guish methylated from unmethylated CpGs (21). We pro-
ceeded to test the binding of MBD2b to 5hmC-containing
oligomers. Using recombinant His-tagged MBD2b
protein, we tested the affinity of this protein to
32P-end-labeled 76-mers containing normal or modified
cytosines at CpG sites. Gel mobility shift assays using a
5% non-denaturing polyacrylamide gel were performed.

As seen in Figure 4A, recombinant MBD2b protein can
only bind to 5mC76 but not to C76 or 5hmC76 indicating
that MBD2b can only identify 5mC and that its binding to
5mC can be inhibited by oxidation of 5mC to 5hmC at
CpG sites. MBD2b is able to bind to an oligonucleotide
that contains both 5mC and 5hmC (indicated as
5mC5hmC76 in Figure 4). In addition to MBD2b, we
also tested the binding of full-length MBD1 and MBD4
proteins towards oligonucleotides containing both
modified bases. Binding of these MBD proteins also is
strongly inhibited by presence of 5hmC (Figure 4B).
The binding affinity of MBD2b to 5mC at CpG sites is

enhanced by formation of a complex with MBD3L1, a
protein with substantial homology to MBD2 and MBD3
but lacking the MBD (15,22). The complex of MBD2b
and MBD3L1 is used in the methylated-CpG island
recovery assay (MIRA) technique, a method used for
genome-scale analysis of mammalian DNA methylation
patterns (16,22,23). Therefore, the binding affinity of the
MBD2b/MBD3L1 complex to 5mC and 5hmC was tested.
In Figure 4A, we show that the complex has little or no
affinity for C76 or 5hmC76, suggesting that MBD2b and
MBD3L1 form a protein complex, which can only recog-
nize 5mC at CpG sequences, but not 5hmC at the same
sites. The complex can still bind to an oligonucleotide that
contains both 5mC and 5hmC (Figure 4A).

DISCUSSION

The recent discovery of substantial amounts of the
modified DNA base 5-hydroxymethylcytosine in certain

Figure 2. Comparison of the reactivity of sodium bisulfite towards
5mC and 5hmC. (A) COBRA assay. The PCR products obtained
after sodium bisulfite treatment of the C-, 5mC- and 5hmC-containing
templates were analyzed by the BstUI combined bisulfite restriction
analysis (COBRA) method. Bisulfite-converted 76-mers were PCR
amplified and digested with the restriction enzyme BstUI (50-CGCG),
which produces digestion products only when restriction sites are not
converted by bisulfite. The electrophoresis on 3% Nusieve GTG
agarose gels shows that 5mC76 and 5hmC76 were clearly digested,
but C76 fully resisted digestion with BstUI. (B) Bisulfite sequencing.
The PCR products obtained after bisulfite conversion were cloned into
the pCR2.1 TA cloning vector (Invitrogen) and ten individual clones
were sequenced. The 76 base pairs of C76, 5mC76 and 5hmC76 contain
six cytosines or modified cytosines (5mC or 5hmC) on each strand. The
modified (unconverted) cytosines are depicted as solid black circles
while the unmodified cytosines are shown as open circles. Each CpG
site was counted separately. (C) Real-time PCR with templates contain-
ing 5mC and 5hmC. Blue (5mC76) and red (5hmC76) curves are for
three independent reactions. In the column graph, the ct value for the
two templates is shown with standard deviation.

Figure 3. DNA immunoprecipitation with anti-5mC antibody.
Immunoprecipitation with an antibody against 5-methylcytidine was
carried out to test the antibody’s affinity towards modified cytosines.
The levels of immunocaptured 76-mers were measured using liquid
scintillation counting. As a control, normal mouse IgG was used for
immunoprecipitation. The oligonucleotides C76, 5mC76 and 5hmC76
were synthesized by PCR and contain C, 5mC or 5hmC at three BstUI
sites as schematically indicated at the top of the Figure (see Figure 1
for sequence). Oligonucleotides 5mC5hmC76 and 5mC76a were
prepared by chemical synthesis and contain 5hmC or C at the central
BstUI site. Experiments were done in triplicates and the standard de-
viation is shown.
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mammalian cell types (7,8) has raised awareness of previ-
ously undiscovered DNA modifications with potential
physiological significance. The similarity of 5mC and its
oxidation product 5hmC suggests that investigations into
the methodology used for detecting 5mC in mammalian
DNA need to be conducted. We show here that two es-
tablished mapping techniques for 5mC in mammalian
genomes, MeDIP and MIRA (14,16), are in fact specific
for 5mC. Both the anti-5mC antibody and the methylated
CpG binding complex consisting of MBD2b and
MBD3L1 cannot recognize the oxidized base. Also the
MBD2b protein alone, as well as full-length MBD1 and
MBD4 (Figure 4) and the MBD domain of MeCP2 (10)
specifically bind to 5mC and binding does not occur when
5mC is oxidized. Lack of binding of MBD family proteins
to 5hmC will likely have biological significance in vivo.
The 5mC oxidation pathway carried out by the TET1
protein (8,24) may be relevant for reactivation of gene
expression from methylation-silenced promoters by
displacing bound transcriptional repressors of the MBD
family type.
An important finding of our study is that the most

commonly used technique for DNA methylation
mapping, sodium bisulfite sequencing and its derivative

approaches such as the COBRA assay, cannot distinguish
between 5mC and 5hmC. Earlier studies have shown that
5hmC can react with bisulfite and, instead of promoting
the usual cytosine deamination process, the reaction gives
rise to cytosine 5-methylenesulfonate as the product.
Cytosine 5-methylenesulfonate was only very slowly de-
aminated by treatment with bisulfite (25). It was suggested
that this adduct may interfere with PCR and sequencing
reactions (26). However, we show here that bisulfite-
treated DNA templates containing 5hmC can be amplified
efficiently (Figure 2) and that, analogous to 5mC, 5hmC
does not undergo conversion to a deaminated cytosine
ring that would be read as a T base after bisulfite treat-
ment and PCR. Thus, although the biological significance
of 5mC and 5hmC at CpG sequences may be completely
different, as exemplified by the inability of MBD family
proteins to bind to 5hmC, the readout of bisulfite
sequencing for these two modified bases is exactly identi-
cal (Figure 2).

A specific methodology for detection of 5hmC will need
to be developed. For mapping purposes, not requiring
single base resolution, an antibody specific for
hydroxymethylated cytosine can be prepared. If a particu-
lar stretch of DNA contains both 5mC and 5hmC,

Figure 4. Affinity of MBD proteins towards 5mC- and 5hmC-containing oligomers. (A) Binding of MBD2b and the MBD2b/MBD3L1 complex
(MIRA complex) to modified cytosines. 76-mer oligonucleotides containing symmetrically modified cytosines, 5mC or 5hmC at CpG sites were
incubated with recombinant MBD2b alone (200 ng of protein) or with the MBD2b/MBD3L1 complex (100 ng of each protein). The mobility shift
assay was carried out using a 5% non-denaturing polyacrylamide gel. The oligonucleotides C76, 5mC76 and 5hmC76 were synthesized by PCR and
contain C, 5mC or 5hmC at three BstUI sites (see Figure 1). Oligonucleotides 5mC5hmC76 and 5mC76a were prepared by chemical synthesis and
contain 5hmC or C at the central BstUI site (see Figure 3). (B) Binding of MBD1 and MBD4 to modified cytosines. These proteins bind effectively to
methylated CpG sequences but do not bind to the same sequences containing 5hmC in place of 5mC.
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antibodies against both modified bases will need to be
used. In addition, for single base resolution mapping of
5hmC, the requirements are more challenging. Specific
chemical or enzymatic cleavage of 5hmC coupled to
ligation-mediated PCR (27) may be one possibility.
More indirect approaches, by which 5hmC bases or
5hmC-containing molecules would first be removed, and
then the bisulfite sequencing data before and after removal
of 5hmC would be compared, are also conceivable. This
could be done, for e.g. by selecting 5mC-containing DNA
molecules by MeDIP or MIRA. Alternatively, the identi-
fication of enzymatic activities that either remove 5hmC
from DNA by base excision repair, or remove the
hydroxymethyl group from the modified base, may be
required, in particular if 5mC and 5hmC are present in
the same DNA strand. In summary, our data indicate that
significant limitations exist for interpreting data obtained
from commonly used techniques to map mammalian CpG
methylation.
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