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Regulation of systemic energy homeostasis
by serotonin in adipose tissues
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Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However,

accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis.

Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological

inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose

tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermo-

genesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit

a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically,

suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit

increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment

with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest

important roles for adipocyte-derived 5-HT in controlling energy homeostasis.
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5-Hydroxytryptamine (5-HT, serotonin) is a monoamine
that modulates central and peripheral functions. It is
primarily found in the gastrointestinal tract, platelets,

pineal gland and the central nervous system. 5-HT is synthesized
from the essential amino acid tryptophan by the sequential
actions of tryptophan hydroxylase (Tph) and aromatic amino
acid decarboxylase. Hydroxylation of tryptophan is the initial and
rate-limiting step in the synthesis of 5-HT. There are two
isoforms of Tph: Tph1 and Tph2. Tph1 is primarily expressed in
peripheral tissues, whereas Tph2 is exclusively expressed in
neuronal tissues including the central nervous system and enteric
neurons1. 5-HT commonly acts locally in neural and paracrine
circuits, and it has a variable function depending on the tissue2.
The action of released 5-HT is terminated by uptake into cells
through 5-HT transporter (SERT)3.

As 5-HT cannot cross the blood–brain barrier, central and
peripheral 5-HT systems are functionally separated. Almost 90%
of body 5-HT is synthesized peripherally in the gastrointestinal
tract and stored in platelets. Small amount of 5-HT is also present
in other peripheral tissues4. Once released, 5-HT exerts its
biological action by binding to 5-HT receptor (Htr). More than

14 Htrs have been identified and they are G-protein-coupled
receptor except for Htr3, which is a ligand-gated cation channel.

Central 5-HT functions as an anorexigenic neurotransmitter by
activating the Htr2c in the brain5–8. Direct intracranial injection
of p-chlorophenylalanine (PCPA), a Tph inhibitor, into the
ventricle induced marked hyperphagia and obesity9. However,
body weight was reduced in Tph1 and Tph2 knockout (KO)
mice10. Mice with a SERT-null mutation (Slc6a4 KO) are
expected to be slim due to the increased 5-HT activity, but
these mice exhibit an obese phenotype11. The enhancement of 5-
HT activity using a selective SERT inhibitor was associated with
weight loss, but the effect was transient and restoration occurred
during maintenance period12. These discordant results suggest
that peripheral 5-HT might have opposite functions to central 5-
HT in the regulation of energy homeostasis.

Here we show that 5-HT has a functional role in adipose tissues.
We inhibited 5-HT synthesis in mice genetically by inducing Tph1
KO in adipose tissue and pharmacologically by administrating the
systemic Tph inhibitor PCPA13 and the peripheral Tph inhibitor
LP-533401 (ref. 14). Under high-fat diet (HFD) condition, the
inhibition of 5-HT synthesis reduced body weight gain, improved
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Figure 1 | PCPA protects against diet-induced obesity. (a) Growth curves of vehicle- or PCPA-treated mice fed an SCD or HFD. n¼4 mice per group.

*Po0.05 versus HFDþ PCPA by Student’s t-test. (b) Gross images of vehicle- or PCPA-treated mice after 10 weeks of HFD feeding. (c) Intraperitoneal

glucose tolerance test (IPGTT) after fasting for 16 h. n¼ 3 mice per group. *Po0.05 versus HFD by Student’s t-test. (d) Intraperitoneal insulin tolerance

test (IPITT) after 4 h fasting. n¼ 3 mice per group. *Po0.05 versus HFD by Student’s t-test. (e) The metabolic rates of vehicle- or PCPA-treated mice after

6 weeks of HFD feeding. The metabolic parameters were measured using an 8-chamber Oxymax system. Mice were acclimatized to cages for 24 h and

data were collected for an additional 48 h. n¼4 mice per group. *Po0.05 versus vehicle by Student’s t-test. All data are presented as the mean±s.e.
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glucose tolerance, increased thermogenic activity in brown adipose
tissue (BAT) and decreased lipogenesis in white adipose tissue
(WAT). We also show that 5-HT inhibited thermogenesis through
Htr3 in BAT and increased lipogenesis through Htr2a in WAT.
Our data indicate that adipocyte-derived 5-HT plays important
roles in controlling energy homeostasis and might be a therapeutic
target for obesity and metabolic disease.

Results
Reduced weight gain by inhibiting 5-HT synthesis. We hypo-
thesized that if peripheral 5-HT has opposite effects to central 5-
HT in the regulation of body weight, long-term systemic inhibi-
tion of 5-HT synthesis may reduce body weight or the degree of
weight gain by an HFD. In this regard, mice were fed an HFD and
administered PCPA by intraperitoneal injection for 12 weeks
from 11 weeks of age. PCPA-treated mice ate more food than
control mice during the first week of HFD, but their food intake
became comparable to control mice from the second week
throughout the HFD period. These changes of eating patterns
matched well with previous reports9. As a result of the systemic
inhibition of 5-HT synthesis, PCPA-treated mice exhibited
decreased body weight gain on an HFD (Fig. 1a) and their

visceral fat mass was reduced (Fig. 1b), although they showed
similar body weight on a standard chow diet (SCD).

The severe loss of visceral fat mass after 12 weeks of PCPA
treatment concerned that massive destruction of adipose tissue
might cause lipodystrophy. However, we could find small fat cells
with normal structure in WAT (Supplementary Fig. 1a). PCPA
treatment improved glucose tolerance and insulin sensitivity in
the HFD-fed mice (Fig. 1c,d). The serum levels of total
cholesterol, free fatty acid and leptin were decreased in
accordance with the reduction of WAT in the PCPA-treated
mice (Supplementary Fig. 1b). Intriguingly, serum adiponectin
levels were also decreased in PCPA-treated mice (Supplementary
Fig. 1b). As 5-HT is known to decrease adiponectin expression in
3T3-L1 adipocytes15 and adiponectin improves insulin sensitivity,
PCPA treatment was expected to increase serum adiponectin
levels, which the improved insulin sensitivity could be attribute
to. Thus, the decreased serum adiponectin in PCPA-treated mice
is more likely to be an indirect reflection of reduced fat mass
rather than the direct downregulation of adiponectin expression
by inhibiting 5-HT synthesis in adipose tissues.

To investigate the mechanism of reduced weight gain following
systemic administration of PCPA, we analysed the food intake
and energy expenditure using indirect calorimetry. Under HFD
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Figure 2 | PCPA increased metabolic activity in BAT. (a) Tph1 mRNA expression in adipose tissues was assessed by quantitative reverse transcriptase–

PCR (qRT–PCR) after 2 weeks of HFD feeding. n¼4 mice per group. *Po0.05 versus SCD by Student’s t-test. (b) Tissue 5-HT levels were assessed by

LC-MS after 2 weeks of HFD feeding. n¼4 mice per group. *Po0.05 and ***Po0.001 versus SCD by Student’s t-test. (c) Metabolic activity of BAT of

vehicle- or PCPA-treated mice after 6 weeks of HFD feeding was assessed by PET-computed tomography (CT). Representative axial PET-CT images

(left panel) and quantitative comparisons of 18fluorodeoxyglucose (18F-FDG) uptake in PET-CT images (right panel). BAT (triangle) and the heart (arrow)

are highlighted. *Po0.05 versus vehicle by Student’s t-test. (d) Haematoxylin and eosin (H&E) staining of BAT sections from vehicle- or PCPA-treated mice

after 8 weeks of HFD feeding. Scale bar, 20mm. (e) Expression of thermogenesis-associated genes in BAT, as assessed by qRT–PCR. n¼ 5 per group.

*Po0.05 and ***Po0.001 versus SCD by Student’s t-test. All data are presented as the mean±s.e. LC–MS: liquid chromatography–mass

spectrophotometry.
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condition, PCPA-treated mice showed higher oxygen consump-
tion and heat production than control mice that could not be
attributed to changes in food intake or physical activity (Fig. 1e
and Supplementary Fig. 1c). However, PCPA treatment did not
affect the metabolic rates of mice fed an SCD (Supplementary
Fig. 1d), suggesting the requirement of metabolic stress for the
positive effect of PCPA on energy expenditure. These data
suggested that peripheral 5-HT affected positively on body weight
control in contrast to central 5-HT.

Inhibition of 5-HT synthesis increased thermogenesis. In per-
ipheral tissues, 5-HT is mainly produced and secreted by enter-
ochromaffin cells in the gut and actively taken up by platelets,
which store most of the body 5-HT2,16. However, gut-derived 5-
HT is not associated with diet-induced obesity17, suggesting more
localized effects of 5-HT in regulating energy homeostasis. It has
been known that 5-HT is present in WAT and BAT, and it
promotes adipogenesis in 3T3-L1 preadipocytes15,18,19. Thus, we
tested 5-HT production in adipose tissues. Indeed, all the genes
involved in 5-HT metabolism, except for Tph2, were expressed in
adipose tissues (Supplementary Fig. 2a). Interestingly, the HFD
feeding increased the Tph1 messenger RNA level in epididymal
WAT (eWAT) and inguinal WAT (iWAT), and increased tissue
5-HT levels accordingly (Fig. 2a,b). These data suggested the
potential role of adipocyte-derived 5-HT in the development of
diet-induced obesity. Therefore, we investigated metabolic
changes in adipose tissue.

To examine the mechanism of increased energy expenditure by
PCPA treatment, we measured the metabolic activity of mouse

organ by assessing 18fluorodeoxyglucose uptake, using positron
emission tomography (PET)-computed tomography20. We found
that the inhibition of 5-HT synthesis by PCPA significantly
increased glucose uptake into BAT (Fig. 2c). Histological analysis
also revealed that PCPA-treated mice showed decreased lipid
droplet size and increased multilocular adipocytes in BAT
(Fig. 2d). PCPA treatment increased the mRNA expression of
thermogenic genes in BAT and the highest increase was observed
in the Dio2 mRNA level (Fig. 2e and Supplementary Fig. 2b). In
addition, the number and size of the mitochondria and the density
of the cristae were increased in the BAT of PCPA-treated mice
(Supplementary Fig. 2c). These data suggested that inhibition
of 5-HT synthesis increased the thermogenic activity of BAT.

In eWAT, PCPA administration led to a decrease in adipocyte
size with normal cellular structures (Fig. 3a,b). The expression of
lipogenic genes was decreased in PCPA-treated mice compared
with control mice (Fig. 3c and Supplementary Fig. 3a). In the
iWAT of PCPA-treated mice, the adipocyte size was decreased
and brown adipocyte-like cells expressing Ucp1 were observed
(Fig. 3d-f), indicating the browning of iWAT21. In agreement
with the Ucp1 immunostaining, Ucp1 and Dio2 mRNA levels
were increased in iWAT following PCPA treatment (Fig. 3g and
Supplementary Fig. 3b). These results suggested that 5-HT might
play a role in lipogenesis and thermogenesis in WAT.

Peripheral Tph inhibitor prevents HFD-induced obesity. To
exclude the possibility that anti-obesity effects of PCPA might be
related to the inhibition of 5-HT synthesis in the brain, we have
tested peripheral Tph inhibitior, LP-533401, which cannot cross
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Figure 3 | PCPA decreased lipogenesis in eWAT and induces brown fat-like changes in iWAT. (a) Representative haematoxylin and eosin (H&E) images

of eWAT from vehicle- or PCPA-treated mice after 8 weeks of HFD feeding. (b) Average adipocyte sizes of eWAT were measured from H&E images using
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analysis of variance (ANOVA). (c) Expression of genes associated with lipogenesis in eWAT, as assessed by quantitative reverse transcriptase–PCR (qRT–

PCR). n¼4 mice per group. *Po0.05 and ***Po0.001 versus vehicle by Student’s t-test. (d) Representative H&E images of iWAT from vehicle- or PCPA-

treated mice after 8 weeks of HFD feeding. (e) Average adipocyte sizes of iWAT were measured from H&E images using ImageJ software. n¼ 5 mice per

group. ***Po0.001 versus SCDþ vehicle and HFDþ PCPA by two-way ANOVA. (f) Immunohistochemical staining for Ucp1 in iWAT from vehicle- or
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the blood–brain barrier14. Mice treated with LP-533401 showed
reduced weight gain and improved glucose tolerance compared
with control mice under an HFD (Fig. 4a,b). The BAT of LP-
533401-treated mice displayed similar histological changes to
those observed in PCPA-treated mice after an HFD feeding
(Fig. 4c). The BAT of LP-533401-treated mice also showed
increased thermogenic gene expressions (Fig. 4d). Taken together,
our data suggested that the inhibition of peripheral Tph1
increased energy expenditure by increasing thermogenic activity
of BAT and iWAT.

Cell autonomous function of 5-HT in adipose tissues. To test
the cell autonomous function of 5-HT in adipose tissues, we
isolated the stromal vascular fraction (SVF) from BAT of adi-
pocyte-specific Tph1 KO (Adipoq-Creþ /� /Tph1floxlflox, Tph1
FKO) mice and differentiated into mature brown adipocytes.
After 8 days of culture in differentiation medium, Ucp1 expres-
sion was upregulated in Tph1-null brown adipocytes, which was
abrogated by 5-HT treatment (Fig. 5a). Furthermore, the increase
in Ucp1 mRNA expression by b3 adrenergic receptor (b3AR)
stimulation was significantly augmented in the Tph1-null brown
adipocytes (Fig. 5a). These data demonstrated the inhibitory role
of 5-HT in thermogenic activity of BAT22.

To investigate the role of 5-HT in mature adipocytes, we
generated inducible Tph1 KO (aP2-CreERT2þ /� /Tph1floxlflox,
Tph1 AFKO) mice and induced Tph1 KO in adipose tissues at 6
weeks of age by injecting tamoxifen intraperitoneally. Tph1
AFKO mice looked grossly normal, maintained normal serum
5-HT levels (Fig. 5b) and no histological difference was observed
in their adipose tissues (Fig. 5c). However, Tph1 AFKO mice
showed reduced weight gain, improved glucose tolerance and
insulin sensitivity compared with wild-type (WT) littermates after

6 weeks of HFD feeding (Fig. 6a–c). HFD-fed Tph1 AFKO mice
showed similar histological changes in adipose tissues as the
PCPA-treated mice, reduced adipocyte size in both eWAT and
iWAT (Fig. 6d,e), increased Ucp1 expression in iWAT (Fig. 6f)
and increased multilocular adipocytes in BAT (Fig. 6g). These
phenotypes of Tph1 AFKO mice suggested the important role of
adipocyte-derived 5-HT in the regulation of systemic energy
homeostasis.

5-HT regulates thermogenesis via Htr3. As the anti-obesity
effects of PCPA were attributed to the potentiation of adaptive
thermogenesis in BAT, we attempted to identify the Htr
responsible for the activation of BAT. Among Htrs in BAT
(Supplementary Fig. 2a), we focused on Htr3, which is a het-
eropentamer of Htr3a and Htr3b, and acts as a functional 5-HT-
gated cation channel23,24. Previously, we reported that Htr3
regulates glucose-stimulated insulin secretion in pancreatic
islets25. While we were studying the effects of Htr3
in insulin secretion, we noticed that HFD-fed Htr3a KO
(Htr3a� /� ) mice showed improved insulin sensitivity and
reduced weight gain after 10 weeks of age25,26. These findings
prompted us to test the role of Htr3 in adaptive thermogenesis.

Htr3a KO mice were fed an HFD for 6 weeks from 10 weeks of
age and analysed their metabolic phenotypes (Supplementary
Fig. 4a). As shown in Fig. 7, Htr3a KO mice were resistant to
HFD-induced obesity (Fig. 7a,b). However, glucose tolerance was
not improved in Htr3a KO mice, despite the improved insulin
sensitivity (Fig. 7c,d). Defective insulin secretion in Htr3a KO
mice can explain the discrepancy between glucose tolerance and
insulin sensitivity26. As expected, Htr3a KO mice exhibited
increased oxygen consumption and heat production compared
with their WT littermates (Fig. 7e and Supplementary Fig. 4b).
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HFD-fed Htr3a KO mice did not exhibit enlarged unilocular lipid
droplets in the BAT, which were observed in the BAT of their WT
littermates after HFD feeding (Fig. 8a). Thermogenic gene
expressions also increased in BAT of Htr3a KO mice (Fig. 8b).

Furthermore, mitochondrial biogenesis was increased in BAT of
Htr3a KO mice (Fig. 8c,d). These data suggested that the
metabolic and histological changes observed in HFD-fed Tph1
AFKO mice could be attributed to the reduced Htr3 activity in
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Figure 6 | Tph1 AFKO mice are resistant to diet-induced obesity. (a) Growth curves of Tph1 AFKO mice and their WT littermates fed an HFD. n¼4 mice

per group. *Po0.05, **Po0.01 and ***Po0.001 versus WT by Student’s t-test. (b) Intraperitoneal glucose tolerance test (IPGTT) in HFD-fed Tph1 AFKO

mice and their WT littermates after 16h fasting. n¼4 mice per group. *Po0.05 versus WT by Student’s t-test. (c) Intraperitoneal insulin tolerance test

(IPITT) in HFD-fed Tph1 AFKO mice and their WT littermates after 4 h fasting. n¼4 mice per group. **Po0.01 versus WT by Student’s t-test. (d)

Representative hematoxylin and eosin (H&E) images of WAT of Tph1 AFKO mice and their WT littermates after 6 weeks of HFD feeding. (e) Average

adipocyte sizes of eWAT and iWAT were measured from H&E images using ImageJ software. n¼4 mice per group. *Po0.05 versus WT by Student’s t-test.

(f) Immunohistochemical staining for Ucp1 in iWAT from Tph1 AFKO mice and their WT littermates after 6 weeks of HFD feeding. (g) Representative H&E

images of BAT of Tph1 AFKO mice and their WT littermates after 6 weeks of HFD feeding. All data are presented as the mean±s.e. Scale bar, 20mm.
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BAT. However, WAT of Htr3a KO mice did not exhibit similar
changes to Tph1 AFKO after HFD, suggesting the more selective
effects of Htr3 in BAT (Figs 7b and 8e).

To know the localized actions of Htr3 in BAT, we explored the
effects of an Htr3 antagonist on immortalized brown adipocytes
(IBA). After differentiation, cells were treated with an Htr3
antagonist (ondansetron) or an Htr3 agonist (1-(m-chlorophe-
nyl)-biguanide, m-CPBG), and thermogenic response to b3AR
stimulation was tested. Ondansetron and m-CPBG did not
have significant effects on IBA in the absence of the b3AR
agonist (Fig. 9a,b). However, ondansetron increased cyclic AMP
production and phosphorylation of hormone-sensitive lipase (Hsl)
and protein kinase A substrate in the presence of the b3AR
agonist (Fig. 9a,b and Supplementary Fig. 4c). Ondansetron also
increased the mRNA expression of thermogenic genes, such as
Ucp1 and Ppargc1a, in IBA (Fig. 9c). Conversely, m-CPBG
decreased Ucp1 mRNA in IBA (Fig. 9d). To examine whether
blocking of Htr3 increases the energy metabolism of brown
adipocytes, we measured the oxygen consumption rate (OCR) of
IBA using XF analyser. Ondansetron increased the OCR
synergistically with the b3AR agonist (Fig. 9e,f). Ex vivo
experiment using primary BAT from Htr3a KO mice showed
similar results. Primary brown adipocytes lacking Htr3
showed higher Ucp1 expression and higher sensitivity to b3AR
stimulation (Fig. 9g). Taken together, these data indicated

that 5-HT regulates thermogenesis in BAT through Htr3 in cell
autonomous manner.

5-HT regulates lipogenesis via Htr2a. In contrast to the results
of Tph1 inhibition genetically or pharmacologically, Htr3a KO
mice maintained substantial amount of eWAT mass and no
histological differences were observed in the eWAT and iWAT
compared with the WT littermates. These results suggested that
the effect of Htr3 inhibition is more selective in BAT, and that
another mechanism could be responsible for the lipogenesis of
WAT. In an attempt to identify the additional mechanism that
could explain the reduction of eWAT mass caused by inhibiting
Tph1 we focused on Htr2a, because recent genetic association
studies have reported that HTR2A is significantly associated with
obesity27–29. In addition, 5-HT is an adipogenic inducer of 3T3-
L1 adipocytes and Htr2a expression is increased in hypertrophied
3T3-L1 adipocytes15,18. Indeed, 3T3-L1 adipocytes synthesized 5-
HT during differentiation (Fig. 10a) and the expression of Htr2a
gradually increased after day 8 (Fig. 10b). These results suggest
that 5-HT may regulate lipogenesis in mature adipocytes through
Htr2a. Therefore, we treated 3T3-L1 adipocytes with an Htr2a
agonist (2,5-dimethoxy-4-iodoamphetamine, DOI) or an Htr2a
antagonist (ketanserin), and assessed mRNA expression of
lipogenic genes. DOI increased the mRNA levels of lipogenic
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genes in mature adipocytes (Fig. 10c). On the other hand,
ketanserin decreased lipid accumulation (Fig. 10d). In the glycerol
release assay, 5-HT and the DOI suppressed lipolysis in mature
adipocytes (Fig. 10e). These data indicated that 5-HT positively
regulates lipogenesis in mature adipocytes through Htr2a.

Discussion
Although most studies on the effects of 5-HT on obesity have
been focused on its central action5–8, recent studies have reported
the relationship between peripheral 5-HT and obesity30,31.
Genetic studies have reported that polymorphisms in human
Htr genes (for example, HTR1A, HTR1Db and HTR2A) are
associated with obesity32–34. A recent study using Tph1 KO mice
reported that inhibition of peripheral Tph1 protects against diet-
induced obesity and promotes BAT thermogenesis35. They found
that inhibition of Tph1 increases the sensitivity of BAT to b3AR
stimulation and its effects depend on Ucp1-mediated
thermogenesis.

Most peripheral 5-HT is produced in enterochromaffin cells in
the gut and stored in platelets. However, gut-specific Tph1 KO
mice did not show resistance to diet-induced obesity17, which led
us to focus on adipose tissue-derived 5-HT. In the present study,
we demonstrated that adipocytes can produce 5-HT separately
from the gut and HFD increases Tph1 mRNA expression and
tissue 5-HT levels in adipose tissues. Mice with inducible Tph1
KO in adipose tissues were resistant to HFD-induced weight gain
and their glycemic control was improved.

Adaptive thermogenesis was enhanced in BAT of Htr3a KO
mice after HFD feeding, which indicated that 5-HT regulates
thermogenesis of BAT via Htr3. Previously, we reported that Htr3
activation depolarizes the b-cell membrane, thereby increasing

glucose-stimulated insulin secretion in pancreatic islets25. The
membrane potential is also important in BAT activity. The
activation of BAT in response to b3AR stimulation involves a
transient hyperpolarization of membrane potential36, suggesting
the possibility that Htr3 inhibition could enhance the
responsiveness of BAT to b3AR stimulation through membrane
hyperpolarization.

Although Htr3a KO mice showed reduced weight gain in
HFD-induced obesity model, their WAT did not show remark-
able differences in fat mass and histology compared with WAT of
WT littermates (Figs 7a,b and 8e), suggesting that insulin
resistance of Htr3a-null WAT was comparable to WT WAT.
Thus, the improved insulin sensitivity of Htr3a KO mice is
probably due to the enhanced adaptive thermogenesis in BAT. In
this context, obese WAT of Htr3a KO mouse could be considered
as a neutral bystander, otherwise insulin sensitivity would not be
improved in HFD-fed Htr3a KO mice. In addition, the inhibition
of 5-HT synthesis under HFD resulted in the decreased
lipogenesis in WAT and the increased thermogenesis in BAT,
suggesting the role of different Htr in WAT. Indeed, in vitro
experiments using 3T3-L1 adipocytes showed that Htr2a agonist
treatment increased lipid accumulation and 5-HT suppressed
lipolysis. Taken together, these results suggested that 5-HT could
regulate energy storage in WAT through Htr2a and energy
expenditure in BAT through Htr3.

In the present study, we provide evidence for a complex model,
explaining the regulation of energy metabolism in different
adipose tissues (Fig. 10f). In the over-fed state, 5-HT level
increased in WAT, leading to the augmentation of lipogenesis via
Htr2a. 5-HT also suppressed thermogenesis in the BAT via Htr3.
When 5-HT signalling was inhibited, lipogenesis decreased in the
eWAT and thermogenesis increased in both iWAT and BAT. The
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b3AR signalling stimulated by an HFD coupled with uninhibited
thermogenesis by the blocking of Htr3 signalling resulted in
enhanced energy expenditure in BAT. Thus, the inhibition of
5-HT production in adipose tissues may represent a novel
strategy for anti-obesity treatment.

Methods
Reagents. PCPA, D-glucose, insulin, CL 316243, ondansetron, m-CPBG, triio-
dothyronine (T3), 3-isobutyl-1-methylxanthine (IBMX), indomethacin, dex-
amethasone, Oil Red O dye, ketanserin, DOI, isopropyl alcohol (IPA), formalin,
ascorbic acid, perchloric acid, tamoxifen and polyethylene glycol 400 (PEG-400)
were purchased from Sigma (St Louis, MO, USA). LP-533401 was purchased from
Dalton Pharma Services (Toronto, Ontario, Canada). TRIzol reagent, DMEM
medium, calf serum, fetal bovine serum (FBS) and penicillin/streptomycin (P/S)
were obtained from Invitrogen (Carlsbad, CA, USA).

Animals and diets. The generation of Tph1flox/flox mice, Adipoq-Cre mice and
aP2-CreERT2 mice has previously been reported37–39. C57BL/6 J mice, Htr3a KO
mice (B6.129X1-Htr3atm1jul/J) and ob/ob mice (B6.V-Lepob/J) were purchased from
the Jackson Laboratory (Bar Harbor, ME, USA). To generate the adipocyte-specific
Tph1 KO (Tph1 FKO) mice and inducible Tph1 KO (Tph1 AFKO) mice, Tph1flox/

flox mice were crossed with Adipoq-Cre mice and aP2-CreERT2 mice, respectively.
The mice were housed in climate-controlled, specific pathogen-free barrier facilities
under a 12-h light–dark cycle, and chow and water were provided ad libitum. The
Institutional Animal Care and Use Committee at the Korea Advanced Institute of
Science and Technology approved the experimental protocols for this study. Htr3a

KO mice and Tph1flox/flox mice were backcrossed with C57BL/6 J mice for more
than ten generations. Cre recombination of 6-week-old Tph1 AFKO mice was
induced by intraperitoneal injection of five doses of 2 mg of tamoxifen (Sigma) for
a week. Male mice (aged 8B10 weeks) were fed either an SCD (12% fat calories,
Purina Laboratory Rodent Diets 38057) or an HFD (60% fat calories, Research
Diets D12492). PBS or 300 mg kg� 1 PCPA was administered as a daily
intraperitoneal injection. LP-533401 was dissolved in PEG-400 and 5% dextrose
(40:60 ratio). Vehicle or 30 mg kg� 1 LP-533401 was administered daily with a
feeding needle. We randomly divided C57BL/6J mice into two to approximately
four groups. For transgenic mice, we compared data between KO mice and their
WT littermates. No blinding was performed.

Cell culture. Murine 3T3-L1 cells (American Type Culture Collection) were cul-
tured in DMEM supplemented with 10% FCS and 100mg ml� 1 P/S in a humidified
atmosphere of 5% CO2 at 37 �C. Two days after reaching confluence, the cells were
induced to differentiate using medium supplemented with 0.5 mM IBMX,
1 mg ml� 1 insulin and 1 mM dexamethasone (day 0). After 2 days, the medium was
replaced with DMEM supplemented with 1 mg ml� 1 insulin in 10% FBS and P/S
(day 2), and it was changed every 2 days from day 4 to 8. IBA were cultured in
DMEM supplemented with 10% FBS and P/S in a humidified atmosphere of 5%
CO2 at 37 �C40. After reaching 95% confluence, the cells were induced to
differentiate using DMEM with 10% FBS, 0.5 mg ml� 1 insulin, 1 nM T3, 0.125 mM
indomethacin, 2 mg ml� 1 dexamethasone, 0.5 mM IBMX and P/S (day 0). After 2
days, the medium was replaced with DMEM supplemented with 10% FBS,
0.5 mg ml� 1 insulin, 1 nM T3 and P/S (day 2), and it was changed every 2 days
from day 4 to 8. Primary brown pre-adipocytes were prepared from newborn Htr3a
KO mice and their WT littermates as described previously41. The interscapular
BAT was isolated from mice at postnatal day 2B3, minced and then incubated in
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isolation buffer (0.123 M NaCl, 5 mM KCl, 1.3 mM CaCl2, 5 mM glucose, 100 mM
HEPES and 4% BSA) containing 1 mg ml� 1 collagenase type II (LS004176,
Worthington) in 37 �C shaking incubator for 45B50 min. The digested tissue was
filtered through a 100-mm mesh filter (BD Bioscience). These filtered cells were
washed twice with culture media and these pre-adipocytes were then cultured in
DMEM supplemented with 20% FBS and 100 mg ml� 1 P/S in a humidified
atmosphere of 5% CO2 at 37 �C. After reaching 95% confluence, the cells were
induced to differentiate using DMEM with 20% FBS, 20 nM insulin, 1 nM T3,
0.125 mM indomethacin, 0.5 mM dexamethasone, 0.5 mM IBMX and P/S (day 0).
After 2 days, these cells were maintained in DMEM supplemented with 20% FBS,
20 nM insulin, 1 nM T3 and P/S for 4–5 days until exhibiting a massive
accumulation of fat droplets41. We confirmed that these cell lines were free from
Mycoplasma infection.

SVF isolation. The SVF of BAT from 7-week-old mice was separated by col-
lagenase digestion. Briefly, the adipose tissues were dissected, minced and digested
with 0.2% collagenase A (Roche) in Hank’s balanced salt solution (Sigma) for
45 min at 37 �C, with constant shaking. Mature adipocytes and connective tissues
were separated from the cell pellet by centrifugation at 800g for 10 min at 4 �C. The
cell pellet was then suspended with RBC lysis buffer (Sigma) and filtered through a
40-mm mesh filter (BD Bioscience). The pelleted stromal vascular cells were
re-suspended in DMEM containing 10% FBS and seeded in six-well plates for
adipogenic differentiation.

Oil Red O staining. After full differentiation (day 8), 3T3-L1 adipocytes were fixed
with 3.7% (w/v) formaldehyde in PBS for 15 min at room temperature and then
washed three times with PBS. The cells were then stained with filtered Oil Red O
solution (1.5 mg ml� 1 60% (v/v) IPA) for 30 min and rinsed twice with distilled water.
To quantify the amount of Oil Red O staining, the cells were eluted with 100% IPA for
10 min and the absorbance densities of the extracts were measured at 520 nm, using a
VersaMax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

Metabolic analysis. To measure the metabolic rate, the mice were housed indi-
vidually in an eight-chamber, open-circuit Oxymax/CLAMS (Columbus Instru-
ments Comprehensive Lab Animal Monitoring System) system as previously
described42. Each mouse was assessed for 72 h in the fed state to measure metabolic
rates. The respiratory exchange ratio (RER¼VCO2/VO2) and heat production
(HP¼ (3.185þ 1.232�RER)�VO2) were calculated43. PET imaging was
performed using a microPET R4 scanner (Concorde Microsystems, Siemens) as
previously described44.

Glucose tolerance test and insulin tolerance test. For the glucose tolerance
tests, the mice were administered 2 g kg� 1 D-glucose in PBS after overnight fasting.
For the insulin tolerance tests, the mice were intraperitoneally injected with insulin
(0.75 U kg� 1) after 4 h fasting. The blood samples were obtained from tail veins at
0, 15, 30, 45, 60, 90 and 120 min after injection and glucose concentrations were
measured using a Gluco DR Plus glucometer (Allmedicus, Korea).

Blood chemistry analysis. Tissue 5-HT was extracted by homogenization in
extraction buffer containing 0.02% ascorbic acid in 0.1 M perchloric acid followed
by centrifugation. The 5-HT levels in the supernatants were measured via the liquid
chromatography–mass spectrometry method.

cAMP assay. Differentiated IBA were treated with 1 mM ondansetron or
100 nM m-CPBG or 1 mM CL 316243 for 15 min. CL 316243 was used as a positive
control. The cAMP competitive ELISA (Promega) was performed according to the
manufacturer’s instruction. Briefly, cAMP was extracted by adding 0.1 M HCl with
0.5% Triton X-100 to the cells. After centrifugation at 600g for 10 min, the
supernatant was used for the determination of cAMP levels by competitive cAMP
ELISA.
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Oxygen consumption rate (OCR) assay. The OCR of the cells was measured
using a Seahorse XF analyser (Seahorse Bioscience, Billerica, MA, USA). After
seeding IBA on an XF-24 plate, the cells were incubated and differentiated using
the protocol described above. Fully differentiated IBA were pre-treated with PBS
and ondansetron for 30 min. The IBA were then treated with the b3AR agonist and
the mitochondrial inhibitors oligomycin and rotenone/antimycin. The OCRs were
calculated and recorded by a sensor cartridge and the Seahorse XF-24 software.

Quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Total RNA was
extracted from the mouse tissues or cell lines using TRIzol reagent, according to the
manufacturer’s protocol. After TURBO DNase (Invitrogen) treatment, 2 mg of total
RNA was used to generate complementary DNA with Superscript III reverse
transcriptase (Invitrogen). To analyse gene expression, real-time PCR was per-
formed with a ViiA 7 Real-Time PCR system (Applied Biosystems) and the Power
SYBR Green PCR master mix (Applied Biosystems). Relative quantification was
based on the ddCt method and ActB was used as an endogenous control (internal
control). The primer sequences are provided in the Supplementary Table 1.

Histological analysis. Inguinal, epididymal and interscapular adipose tissues were
harvested, fixed in 4% (w/v) paraformaldehyde in PBS and embedded in paraffin.
Then, 5-mm-thick tissue sections were deparaffinized, rehydrated and used for
haematoxylin and eosin staining, immunohistochemistry and immuno-
fluorescence. For antigen retrieval, the slides were submerged in 10 mM sodium
citrate (pH 6.0) and heated to 95 �C for 20 min. Visualization of Ucp1 and Plin1
was performed using a VECTASTAIN ABC Kit (PK-4001, Vector Laboratories,
Burlingame, CA, USA), according to the manufacturer’s instructions. Briefly, the
slides were incubated with BLOXALL Blocking solution (SP-6000, Vector
Laboratories) followed by incubation with 2% normal goat serum for 30 min at
room temperature, to block nonspecific binding. Sections were incubated with
primary antibody against Ucp1 (ab10983, Abcam) or Plin1 (ab3526, Abcam) for
1 h at room temperature, followed by 30 min incubation with a species-specific,
biotinylated secondary antibody. The slides were incubated with Vectastain ABC-
AP reagent for 30 min and then incubated with alkaline phosphatase substrate
(DAB, SK-4100, Vector Laboratories) for visualization. The stains and antibodies
used for the immunofluorescence staining included BODIPY (BODIPY493/503,
Invitrogen), anti-5-HT (ab10385, Abcam) and DAPI (D9542, Sigma). Electron
microscopy images of BAT were obtained by transmission electron microscopy
(Tecnai Spirit TEM) as previously described45. Briefly, the BAT was first fixed with
2.5% glutaraldehyde, and after fixation ultra-thin sections were cut, stained with
uranyl acetate and lead citrate, and then examined under an electron microscope.

Western blot analysis. Whole-cell lysates were extracted by incubating cells in
RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% SDS) plus protease inhibitors (Roche). Supernatants were
collected following a brief centrifugation and protein concentrations in the
supernatants were measured using the BCA Protein Assay Kit (Thermo Scientific,
Rockford, IL, USA). The cell lysates were then mixed with equal volumes of
2� Laemmli buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.01%
bromophenol blue and 120 mM Tris-HCl pH 6.8) and boiled for 5 min at 95 �C.
Next, the protein samples were separated by SDS–PAGE and transferred to a
polyvinylidene difluoride membrane (Millipore). After blocking in a 5% skim
milk solution (Sigma), the membranes were incubated with the following specific
primary antibodies: anti-phospho-HSL (Ser660) antibody (diluted 1:500, Cell
Signaling #4126), anti-phospho-(Ser/Thr) protein kinase A substrate antibody
(diluted 1:500, Cell Signaling #9621) and anti-Act antibody (diluted 1:1000, Cell
Signaling #3700). The membranes were then washed with 1� TBST and incubated
with anti-rabbit IgG horseradish peroxidase-linked antibody or anti-mouse
IgG antibody. The detection of each protein was performed using Supersignal
West Pico Chemiluminescent Substrate (Thermo Scientific), according to the
manufacturer’s instructions. Signals were captured by a ChemiDoc MP system
(Bio-Rad).

Glycerol release assay. Lipolysis was measured as the rate of glycerol release
using a free glycerol reagent (Sigma), following the manufacturer’s protocol.
Briefly, fully differentiated 3T3-L1 adipocytes in a 24-well plate were incubated
with 5-HT or DOI in Krebs Ringer phosphate buffer (136 mM NaCl, 4.7 mM KCl,
10 mM NaPO4, 0.9 mM MgSO4 and 0.9 mM CaCl2) containing 4% fatty acid-free
BSA (Sigma) for 24 h. Isoproterenol was used as a positive control. After incuba-
tion, 10 ml of the cell culture supernatant was mixed with 0.8 ml of the free glycerol
reagent and the mixture was then incubated at 37 �C for 5 min. The absorbance of
the sample was determined at 540 nm using a spectrophotometer (DU730 Life
Science UV/Vis, Beckman Coulter, Indianapolis, IN, USA). The amount of released
glycerol was expressed relative to the cellular protein content.

Statistics. All values are expressed as the mean and s.e.m. The groups were
compared by Student’s t-test or one-way analysis of variance (ANOVA) or two-
way ANOVA. Normal distribution was tested by the f-test. P-values o0.05 were
considered statistically significant.
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