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Abstract: Colorectal cancer (CRC) is one of the most common cancers worldwide, with a high
mortality rate, especially in those that are diagnosed in late stages of the disease. The current
screening blood-based markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen
19-9 (CA19-9), have low sensitivity and specificity. Meanwhile, other modalities are either expensive
or invasive. Therefore, recent research has shifted towards a minimally invasive test, namely, liquid
biopsy. Exosomes are favorable molecules sought in blood samples, since they are abundant, stable
in circulation, and harbor genetic information and other biomolecules that could serve as biomarkers
or even therapeutic targets. Furthermore, exosomal noncoding RNAs, such as miRNAs, lncRNAs,
and circRNAs, have demonstrated the diagnostic potential to detect CRC at an early stage with
a higher sensitivity and specificity than CEA and CA19-9 alone. Moreover, they have prognostic
potential that is TNM stage specific and could serve as predictive biomarkers for the most common
chemotherapeutic drug and combination regimen in CRC, which are 5-FU and FOLFOX, respectively.
Therefore, in this review, we focus on the role of these exosomal noncoding RNAs as diagnostic,
prognostic, and predictive biomarkers. In addition, we discuss the advantages and challenges of
exosomes as a liquid biopsy target.
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1. Introduction

Recent research has shifted into developing minimally invasive biomarkers in the form of liquid
biopsy, which is the sampling and analysis of various types of cells and molecules collected from
biological fluids. The sampled fluid may be in the form of blood, plasma, cerebrospinal fluid,
bronchoalveolar lavage fluid, pleural effusions, saliva, or urine. The diverse cells and molecules
analyzed include circulating tumor cells (CTCs), circulating free DNA (cfDNA), circulating tumor
DNA (ctDNA), circulating messenger RNAs (mRNAs), micro-RNAs (miRNAs), long non-coding
RNAs (lncRNAs), circular RNAs (circRNAs), tumor-educated platelets, proteins, peptides, metabolites,
and exosomes. The eclectic information that can be acquired provides liquid biopsy with vast clinical
potential via the identification of diagnostic, prognostic, and predictive markers of different diseases,
including cancer. Diagnostic biomarkers facilitate cancer screening and tumor heterogeneity detection.
Prognostic biomarkers allow for risk estimation for progression versus relapse. The predictive
biomarkers can be utilized to identify therapeutic targets, detect drug-resistance, and monitor response
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to treatment [1]. Across several cancers, evidence of the pivotal role that liquid biopsies could play in
patients’ management has been growing, especially in colorectal cancer (CRC).

Several types of liquid biopsies have already demonstrated their potential role in CRC diagnosis,
prognosis, and therapy prediction. For CRC diagnosis, a study has demonstrated that tumor
heterogeneity could be detected in blood via ctDNA with 97% accuracy when correlated to
corresponding tissue biopsy results. Moreover, in some cases, it might be better than tissue biopsy [2].
Furthermore, we can potentially diagnose patients with KRAS-mutant CRC via a liquid biopsy, since
KRAS mutant fragments are detected in patients’ ctDNA [3]. Currently, there is an FDA approved
screening tool that detects the SEPT9 promotor region methylation in plasma, which is considered to be
a specific biomarker of early CRC stages. Across several studies, it has demonstrated good sensitivity
and specificity as a diagnostic tool for CRC [4]. Some prognostic biomarkers include total cfDNA levels
that correlate with DFS and OS, irrespective of tumor stage, use of adjuvant chemotherapy, tumor
marker, and sample type [5–13]. Additionally, it has been demonstrated that ctDNA is a more accurate
predictor of relapse than CEA [14]. Another prognostic biomarker is cell-free microRNA (cf-miR),
such as cf-miR-21, 203, or 1290, whose high expression is associated with poor prognosis [15–17].
In addition, the high expression of cf-miR-200c in serum is associated with lymph node and distant
metastasis [18]. Furthermore, CTC-positivity is associated with decreased disease-free survival (DFS)
and poor overall survival (OS), irrespective of stage [19–26]. Liquid biopsies have also been able to
identify mutations that cause resistance to EGFR inhibitors [27,28]. We are particularly interested in
exosomes, in addition to all of these biomarkers.

CRC is the third most common cancer worldwide and it ranks second in terms of mortality [29].
Five-year survival rates for diagnosis at early stages is as high as 90% in comparison to the dismal rate
of 13% for stage IV. Screening tests available today either have low sensitivity and specificity, high
cost, or are invasive in nature, which affects patients’ compliance. As such, there is a need to develop
robust, inexpensive, and minimally invasive screening biomarkers to detect CRC at an early stage [30].
Currently, the two blood-based biomarkers commonly utilized, Carcinoembryonic antigen (CEA)
and carbohydrate antigen 19-9 (CA19-9), are not effective due to their insufficient sensitivities and
specificities [31,32]. Hence, we ought to find more reliable molecules to study should liquid biopsies be
sought. The plethora and stable nature of exosomes in circulation make them a potentially favorable
entity to pursue. In addition, they carry genetic information and other biomolecules, which could
potentially serve as biomarkers or even therapeutic targets [32]. Furthermore, several studies have
demonstrated that aberrant expression of exosomal noncoding RNAs, such as miRNAs, lncRNAs, and
circRNAs, is involved in the regulation of various cellular mechanisms in tumorigenesis. Therefore,
these exosomal noncoding RNAs could serve as potential diagnostic, prognostic, and predictive
markers [33].

In this review, we summarize the findings of the most recent studies exploring the potential of
exosomes that were detected in blood samples of CRC patients. This article focuses on exosomal miR,
lncRNA, and circRNA as diagnostic, prognostic, and predictive biomarkers in CRC. In addition, we
discuss the advantages and challenges of exosomes as a liquid biopsy target.

2. Exosome Biogenesis and Function in CRC

Exosomes are phospholipid bilayer nanovesicles, measuring 30–150nm in diameter that contain a
range of molecules, including proteins, lipids, and different types of nucleic acid. Various cell types
secrete them, including cancerous cells [34,35] and they are present in many biological fluids [36–49].
Endocytic vesicle invagination on the plasma membrane to form an early endosome represents
the initiation step of exosomal biogenesis (Figure 1). Multiple intra-luminal vesicles are created
within the endosome via the folding of its phospholipid bilayer. This results in the formation of a
multi-vesicular body (MVB), which eventually fuses with the plasma membrane to release its contents,
namely exosomes [50]. Thereafter, exosomes can enter the recipient cell utilizing various mechanisms,
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such as binding cell surface receptors, fusion with the plasma membrane, and internalization via
endocytosis [51] (Figure 1).
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Figure 1. Exosome biogenesis and role in colorectal cancer (CRC).

Although several endosomal-sorting complex required for transport (ESCRT)-independent
mechanisms have been identified, exosomal packaging and MVB transportation are primarily
regulated via ESCRT and its accessory proteins (Alix, HSC70, HSP90β, and TSG101). These are
the “exosomal marker proteins”, since they are expected to be detected on exosomes irrespective
of their cell of origin [52–55]. Other commonly found transmembrane proteins include cluster of
differentiation 9 (CD9), CD63, and CD81 [56,57]. In addition to these, exosomes comprise of several
types of proteins, including, but not limited to, heat shock proteins (Hsp70), major histocompatibility
complex-II, Ras-related protein, signal transduction proteins, transport proteins (annexins, flotillin-1,
GPI-anchored proteins, tyrosine kinases), cytoskeleton proteins (actin, tubulin, cofilin), and enzymes
(phospholipases) [58–62]. In addition, they are enriched in lipid-rafts, including cholesterol, ceramide,
sphingolipids, and phosphoglycerides [32,63]. Furthermore, exosomes contain various types of nucleic
acids, including dsDNA, mRNA, miRNA, lncRNA, and circRNA [32].

Exosomes that are secreted by CRC cell lines in vitro or by tissues in vivo have several
functions in cancer elicited by its content. They can promote tumor growth [64–66], immune
evasion [67,68], angiogenesis [69–71], metastasis [69,72–76], chemoresistance [76–79], and inducing
endothelial-mesenchymal transition (EMT) in recipient cells [73,74,80,81] (Figure 1).

3. CRC Derived Exosomes

Patients with colorectal adenocarcinoma and high-grade adenoma have presented with a
significantly higher number of plasma derived exosomes than participants with low-risk lesions
(hyperplastic polyps and low-grade adenoma) or healthy controls. In addition, there was significant
correlation between the number of exosomes and the size of representative lesion, the number of
lesions, and the total volume of the lesions [82]. These findings present a potential screening method
for the detection of high-risk individuals. The content of the exosomes has been studied as a potential
biomarker for CRC.



Int. J. Mol. Sci. 2020, 21, 1398 4 of 21

3.1. Exosomal miRNA in CRC Patients

miRNAs are small non-coding single-stranded RNAs that are 19-24 nucleotides long. They silence
genes post-transcriptionally via binding to the 3′-untranslated regions of mRNAs. Free-circulating and
exosomal miRNAs have been found to be dysregulated in cancers and their potential as biomarkers is
being explored. Their stability makes them useful biomarkers for study in retrospectively collected
samples [83]. As for exosomal miRNA content, it is significantly higher in cancer exosomes in
comparison to that of normal exosomes. This is primarily due to the higher content of RNA-induced
silencing complex (RISC)-loading complex that converts pre-miRNA to mature-miRNA [84].

3.1.1. Diagnostic Biomarkers

Ostenfeld et al. [85] found eight dysregulated miRs in CRC tissue; miR-16, miR-23b-3p, miR-27b-3p,
miR-30b, and miR-30c were downregulated, while miR-23a-3p, miR-27a-3p, and miR-222-3p were
upregulated when compared to normal mucosa. However, all of them were upregulated in
EpCAM+-exosomes in the plasma of CRC patients when compared to healthy controls (HCs) (Table 1).
The levels of these exosomal miRs decreased post-surgery, which indicates they are of tumor origin.
Exosomes can be utilized by the tumor tissue to dispose of tumor-suppressor miRNAs to elucidate the
dysregulation discrepancy between CRC tissue and exosomes (low in tissue, high in exosome), and
they can create pre-metastatic niches in distant areas by loading exosomes with oncogene miRs (high
in both tissue and exosome) [86]. Furthermore, Li et al. [87] have demonstrated the downregulation
of miR-96 and miR-149 in tissue and plasma from CRC patients as well as in GPC1+ exosomes in
plasma from CRC patients in comparison to their healthy counterparts. These levels normalized
two months after surgical intervention. Moreover, the overexpression of these miRs significantly
increased cell apoptosis, while it decreased cell proliferation as well GPC1 expression in CRC cell
lines, plasma of mice bearing these CRC cell line tumors, and xenograft tumors. Exosomal miR-92
was also discovered to be significantly downregulated in CRC patients when compared to those with
colorectal adenoma and other non-cancerous (NC) lesions. It was significantly decreased in patients
with high-grade intraepithelial neoplasia than in patients with NC lesions [88]. On the other hand,
studies have shown that exosomal miR-17, miR-18a, miR-18b, miR-181a, miR-125a, and miR320c are
significantly upregulated in the plasma of CRC patients [89,90]. The last two miRs were especially
overexpressed in early stage CRC. In differentiating CRC patients from HCs, the addition of miR-125a
to CEA resulted in a better predictive model than that of CEA alone [89].

Table 1. Summary of exosomal miRNA studies in CRC patients.

miRNA
Number of

CRC
Patients*

Sample
Type

Exosome
Isolation
Method

Expression Type of
Biomarker Refs

miR-16,
miR-23a-3p,
miR-23b-3p,
miR-27a-3p,

miR-27b-3p, miR-30b,
miR-30c, and miR-222

13 Serum and
plasma Ultracentrifugation Upregulated Diagnostic [85]

miR-96
and

miR-149
102 plasma ExoCapTM exosome isolation

and enrichment kit
downregulated Diagnostic [87]

miR-23a and
miR-301a 25 serum ExoQuick upregulated Diagnostic [91]

miR-17,
miR-181a, miR-18a,

and miR-18b
18 plasma ExoQuick upregulated diagnostic [90]

miR-320d 142 serum ultracentrifugation upregulated Diagnostic [92]

miR-125a and
miR-320c 50 plasma ExoQuick upregulated Diagnostic [89]
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Table 1. Cont.

miRNA
Number of

CRC
Patients*

Sample
Type

Exosome
Isolation
Method

Expression Type of
Biomarker Refs

miR-92b 40 plasma ultracentrifugation downregulated Diagnostic [88]

let-7a, miR-1229,
miR-1246, miR-150,

miR-21, miR-223, and
miR-23a

88 serum ultracentrifugation upregulated Diagnostic [93]

miR-6869 142 serum Invitrogen Total Exosome
Isolation Kit downregulated Prognostic [94]

miR-146a 53 serum Ultracentrifugation,
ExoQuick upregulated Prognostic [95]

miR-1229 97 serum ultracentrifugation upregulated Prognostic [96]

miR-19a 227 serum Invitrogen Total Exosome
Isolation Kit upregulated Prognostic [97]

miR-21 326 plasma ultracentrifugation Upregulated Prognostic [98]

miR-25-3p 75 serum ultracentrifugation upregulated Prognostic [99]

miR-4772-3p 84 serum ExoQuick downregulated Prognostic [100]

miR-17, miR-18a,
miR-18b, miR-19a,
miR-19b, miR-20a,

miR-20b and
miR-106a

100 plasma ExoQuick upregulated Prognostic [101]

miR-193a 25 plasma Ultracentrifugation,
exoEasy Maxi Kit upregulated Prognostic [102]

miR-17 and
miR-92a-3p 29 serum

Ultracentrifugation and
qEV Size Exclusion

Columns
upregulated Prognostic [103]

miR-203 240 serum ultracentrifugation upregulated Prognostic [104]

miR-21,
miR-1246,

miR-1229, and miR-96
43 serum

Ultracentrifugation,
Invitrogen Total Exosome
Isolation Kit, western blot

upregulated Predictive [105]

miR-548c 108 serum Invitrogen Total Exosome
Isolation Kit downregulated Diagnostic and

Prognostic [106]

miR-27a and
miR-130a 369 plasma Invitrogen Total Exosome

Isolation Kit upregulated Diagnostic and
Prognostic [107]

miR-6803 168 serum Invitrogen Total Exosome
Isolation Kit upregulated Diagnostic and

Prognostic [108]

miR-221 158 serum Ultracentrifugation upregulated Diagnostic and
Prognostic [109]

miR-150 133 serum ExoQuick downregulated Diagnostic and
Prognostic [110]

miR-196b 150 serum exoRNeasy
Serum/Plasma Maxi Kit upregulated Prognostic, and

Predictive [111]

miR-125b 61 plasma ultracentrifugation upregulated Prognostic, and
predictive [112]

* number of CRC patients who had blood samples drawn which were utilized for exosomal analysis.

In other studies, several miRs were upregulated, including let-7a, miR-1229, miR-1246, miR-150,
miR-21, miR-223, miR-23a, and miR-301a when compared to HCs [91,93]. They were significantly
downregulated post-surgical intervention. The sensitivities of miR-21, miR-150, let-7a, miR-223,
miR-1224-5p, miR-1229, miR-1246, and miR-23a were 61.4%, 55.7%, 50.0%, 46.6%, 31.8%, 22.7%, 95.5%,
and 92.0%, respectively. All but one miR had better sensitivity than CEA and CA19-9, which were
30.7% and 16.0%, respectively [93]. Furthermore, miR-320d was found to significantly distinguish
patients with metastatic CRC from those who were non-metastatic with a sensitivity of 62% and a
specificity of 64.7%. When it was combined with CEA, the sensitivity and specificity rose to 63.3% and
91.3%, respectively [92]. In summary, these miRs could be utilized as potential diagnostic markers of
CRC, whereby some are diagnostic of early stages, while others of distant metastatic disease.
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3.1.2. Prognostic Biomarkers

Teng et al. [102] have detected significantly higher levels of miR-193a in the exosomes of metastatic
CRC cell lines and plasma of CRC patients with liver metastasis. Cell cycle assessment showed that
miR-193a causes G1 phase cell cycle arrest. In addition, its overexpression inhibits cell proliferation by
targeting Caprin1, which is represented by a decrease in both Caprin 1 mRNA and protein expression.
As a result, CCND2 and c-MYC are also downregulated, since they are downstream of Caprin1.
Moreover, this was also demonstrated in in vivo studies, whereby the overexpression of miR-193a
resulted in a significant increase in survival of CRC bearing mice. As to the cells’ mechanism of
dispensing of this tumor-suppressive miR into exosomes, it was via the major vault protein (MVP),
since the knockout of MVP resulted in the accumulation of the miR in the cells instead of the exosomes.
Another study that was conducted by Liu et al. [100] demonstrated a significant downregulation
of miR-4772-3p in patients with recurrent CRC. The reduced expression was correlated with risk of
recurrence and death. Standing alone, this miR had a sensitivity of 78.6% and specificity of 77.1%
in distinguishing recurrent from non-recurrent patients. Moreover, miR-4772 was a better predictor
for recurrence than tumor location and lymph node metastasis. Yet another downregulated miR
in CRC tissue and serum exosomes of CRC patients was miR-6869. A significant association was
observed between toll-like receptor 4 (TLR4) and this miR. The overexpression of miR-6869 inhibited
cell proliferation and nuclear translocation of phosphorylated NF-κB/p65, reduced inflammatory
cytokines IL-6 and TNF-α, and promoted apoptosis. Hence, the tumor-suppressive role of miR-6869
was via regulating the TLR4/NF-κB signaling pathway. Furthermore, poor three-year survival rate was
observed in CRC patients with low levels of this serum exosomal miR [94].

Exosomal miR-1229 was found to be significantly upregulated in the CRC cell lines and serum
exosomes from CRC patients, which was associated with tumor size, stage, lymphatic metastasis, and
poor survival. Moreover, these miR levels decreased post-surgery. The overexpression of miR-1229
promoted tubulogenesis of human umbilical vein endothelial cells (HUVECS) via inhibiting its target
protein Homeodomain-interacting protein kinase 2. The inhibition of miR-1229 in xenograft mouse
model resulted in an inhibitory effect on tumor growth and angiogenesis [96]. Another set of miRs
was identified to be upregulated in CRC tissue, plasma, and exosomes of CRC patients, which include
miR-17, miR-18a, miR-18b, miR-19a, miR-19b, miR-20a, miR-20b, and miR-106a. They were also
associated with posttreatment relapse [97,101]. In addition, the overexpression of miR-18b resulted in
increased cell proliferation [101]. Moreover, a high exosomal miR-19a was associated with a higher
tumor stage, serosal invasion, lymphactic permeation, lymph node, and liver metastasis. Further
analysis showed that it was an independent risk factor for OS and DFS [97]. Another study that was
conducted by Tsukamoto et al. [98] showed that miR-21 was significantly high in primary tumor, liver
metastasis tissues, and plasma exosomes of CRC patients. This upregulation was associated with
tumor stage and liver metastasis. It was a significantly independent factor in predicting poor DFS and
OS in stage II and III CRC patients and poor OS in stage IV patients.

Zeng et al. studied miR-25-3p, which was found to be upregulated in CRC cell lines, CRC
tissues, and exosomes in CRC patients with metastasis. It forms a pre-metastatic niche via promoting
angiogenesis and vascular permeability. The overexpression of miR-25-3p in HUVECs resulted in a
decrease in the expression of Krüppel-like factor 2 and Krüppel-like factor 4. Consequently, genes
that were downstream of these factors were dysregulated, whereby VEGFR expression increased,
while the levels of ZO-1, occludin, and Claudin5 decreased. Furthermore, it was shown that CRC cells
could transfer miR-25-3p to endothelial cells via exosomes. In vivo studies showed that exosomal
miR-25-3p increased vascular leakiness and promoted liver and lung metastasis in mice with CRC [99].
miR-17, miR-92a-3p, and miR-203 were other upregulated serum exosomal miRs that were associated
with metastasis [103,104]. miR-203 was found to be an independent prognostic factor with a poor
DFS and OS in patients with advanced stages. Poor DFS in stage III, while poor OS in stages III
and IV, were observed. In addition, a group of patients with high levels of exosomal miR-203 had
a higher incidence rate of venous invasion, lymph node metastasis, liver and lung metastasis, and
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peritoneal dissemination. An increase in liver metastasis was also demonstrated in xenograft mouse
models. Concerning the poor prognosis, it is due to the incorporation of exosomes carrying this miR
into monocytes, which promoted their differentiation to M2 macrophages. THP-1 cells that were
co-cultured with miR-203 transfected CRC cell lines had an increase of CD163 expression (M2 marker)
and a decrease in CXCL10 (M1 marker) [104].

Furthermore, Cheng et al. [95] studied sphere-derived colorectal cancer stem cells (CRCSC) from
HCT15, HT29, and murine CT26 cells. miR-146a was found to be overly expressed in these cell lines.
Moreover, miR-146a-loaded exosomes from these sphere-derived cancer stem cells were associated with
a downregulation of the Numb protein in the recipient cells. Upon the introduction of an antagomiR
against miR-146a, a decrease in the expression of this miR and intestinal stem cell genes (CD44, ASCL2,
CD166), spheroid formation impairment, tumorgenicity, and an increase in the expression of the
differentiated gene CK20 and Numb protein levels were observed. Furthermore, CRC patients with a
high amount of enriched-miR146a exosomes in serum demonstrated higher miR-146aHigh/NumbLow
CRCSC traits. In addition, neutrophils were in abundance, while the CD8+ T cells were scarce. All in
all, these numerous miRs have prognostic potential, even with some being TNM stage specific.

3.1.3. Predictive Biomarkers

The CRC cell lines and serum exosomes of chemo-resistant patients to 5-FU and oxaliplatin have
demonstrated an upregulation of miR-21, miR-1246, miR-1229, and miR-96 when compared to their
respective chemo-sensitive counterparts. GO analysis and KEGG pathway analysis have shown that
these miRs are enriched in several pathways, including PI3K-Akt, FoxO, and autophagy. Furthermore,
this panel of exosomal miRNAs could significantly distinguish between chemo-sensitive and resistant
groups, with a sensitivity of 78% and specificity of 88.9%. Therefore, this panel of exosomal miRs could
be a potential predictive marker in CRC patients [105].

3.1.4. Diagnostic and Prognostic Biomarkers

A significant upregulation of exosomal miR-27a and miR-130a was detected in CRC cell lines and
the plasma of CRC patients. It was correlated with tumor grade and stage as well as poor OS. These
miRs were significantly downregulated post-surgery, which indicates that they were tumor derived. In
differentiating HCs from CRC patients, miR-27a had a sensitivity of 81.82% and a specificity of 90.91%,
while miR-130a had a sensitivity of 69.32% and specificity of 100%. These miRs combined together had
a sensitivity of 85.23% and specificity of 90.91%. Moreover, these exosomal miRs were significantly
higher in plasma of CRC patients than HCs. They have also shown potential to differentiate even
early stage tumors (stage 1) from HCs. miR-27a had a sensitivity of 75% and specificity of 77.5%,
while miR-130a had a sensitivity of 82.5% and specificity of 75%. These miRs combined together had
a sensitivity of 82.5% and specificity of 75%. Furthermore, it was shown that they could promote
CRC progression via the Wnt/β-catenin and TGFβ pathways, for miR-27a targets include RXRa,
SMAD2, SMAD4, and SFRP1, while Nkd2 is a target of miR-130a. Moreover, the inhibition of miR-27a
significantly decreased the expression of CD44, TCF4, cyclin D1, c-myc, SMAD2, and SMAD4. In
addition, the inhibition of miR-130a decreased the expression of the same proteins as miR-27a, except
for SMAD2 and SMAD4 [107].

Liu et al. [109] found that miR-221 was overexpressed in CRC tissues, plasma, and exosomes
of CRC patients, which was associated with tumor size, grade, stage, and lymph node metastasis.
Patients with upregulated miR-221 in tissues had a survival rate, local recurrence rate, and metastasis
rate of 59.32%, 62.25%, and 34.75%, respectively, while the numbers for those with downregulated
miR-221 were 92.50%, 25.00%, and 15.00%, respectively. As for those with enriched-miR-221 exosomes
had survival rate, local recurrence rate, and distant metastasis rate of 62.39%, 64.96%, and 34.19%,
respectively, while the numbers for those with downregulation were 82.93%, 26.83%, and 17.07%,
respectively. Furthermore, studies have detected a significant increase in serum exosomal miR-6803
and a significant decrease in exosomal miR548c in CRC patients, especially those at a later stage and
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those with liver metastasis. They were found to be significant independent factors in predicting poor
DFS and OS [106,108].

Interestingly, unlike the results of Ogata-Kawata et al. [93], serum exosomal miR-150 was
significantly downregulated in the CRC cohort that was studied by Zou et al. [110]. In addition,
post-operative samples detected an upregulation of this miR. The decreased levels were correlated
with advanced stage, positive lymph node metastasis, and poor OS and DFS. In addition, miR-150
differentiated CRC patients from healthy individuals with a sensitivity of 81% and specificity of 76.1%.
Meanwhile, CEA alone had a sensitivity of 78.2% and specificity of 75%. However, a combination
of both markers was the best, whereby sensitivity and specificity increased to 87.2% and 83.3%,
respectively. Moreover, this miR’s target was identified as ZEB1. Therefore, exosomal miRs 27a, 130a,
150, 221, 548c, and 6803 could play a major role in the detection and prognosis of CRC.

3.1.5. Prognostic and Predictive Biomarkers

Ren et al. [111] reported a significant upregulation of miR-196b in CRC tissues and the serum
exosomes of CRC patients, which correlated with tumor stage, metastasis category, and poor OS.
In vitro, the overexpression of miR-196b resulted in enhanced spheroid formation ability, increased
fraction of side population cells, stem cell factors, and mitochondrial potential. In addition, it
suppressed apoptosis when CRC cells were treated with 5-FU, whereby there was an increase in
anti-apoptotic proteins Bcl-2 and Bcl-xL, and a decrease in caspase-3 or caspase-9. However, the cells
were re-sensitized to the drug upon the suppression of miR-196b. Moreover, the overexpression of
miR-196b decreased the mRNA and protein levels of SOCS1 and SOCS3, but it increased stem cell
factors, such as NANOG, BMI-1, OCT4, and SOX2. Therefore, the activation of the STAT3 signaling
pathway via miR-196b’s inhibition of the negative regulators SOCS1 and SOCS3 seems to be the
mechanism by which it promotes stemness and chemoresistance. miR-196b seems to be a potential
prognostic and predictive marker of CRC. In another study, the exosomal miR-125b levels were
significantly high in CRC patients, especially in those resistant to mFOLFOX6-based chemotherapy.
It was associated with worse PFS than in patients with low levels of this miR. The miR-125b levels
were significantly lower in patients with partial response to the treatment in comparison to levels prior
to treatment. The patients with stable disease had no change in miR-125b levels while patients with
progressive disease had significantly higher levels post-treatment. Significantly different levels of
miR-125b were observed between the groups as early as one-month post-treatment initiation [112].
These results demonstrate the prognostic and predictive potential of these miRs in CRC.

3.2. Exosomal IncRNA in CRC patients

lncRNAs are transcripts that are made up of 200 nucleotides or more [113]. They regulate several
biological processes, since they interact with chromatin-modifying proteins and transcription factors.
They are implicated in tumorigenesis, progression, and metastasis in several cancers and they are
currently studied as potential diagnostic and prognostic factors [114].

3.2.1. Diagnostic Biomarkers

Barbagallo et al. [115] have shown that urothelial carcinoma associated 1 (UCA1) was upregulated
in CRC tissues, while downregulated in serum exosomes of CRC patients in comparison to HCs. The
sensitivity and specificity of UCA1 levels in differentiating CRC patients from HCs were 100% and
43%, respectively. Moreover, it was demonstrated that UCA1 can be controlled via the binding of
CCAAT/enhancer-binding protein beta (CEPB) onto its binding site upstream of UCA1. There was
a significant linear correlation between CEPB and UCA1 in CRC tissues, which suggests that CEPB
might be a transcription activator. Furthermore, the overexpression of UCA1 in CRC cells resulted in a
downregulation of miR-135a, miR-143, miR-214, and miR-1271, and an increase of mRNAs ANLN,
BIRC5, IPO7, KIF2A, and KIF23. Moreover, experiments have shown that UCA1 can bind those miRs
and mRNAs. They prevent miRNA binding to degrade these target mRNAs via interacting with
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mRNA 3′-UTRs, which promotes CRC progression. Functional enrichment analysis has implicated
UCA1′s involvement in cellular migration (Table 2). As for the asymmetric distribution of UCA1, it
is hypothesized that tumor cells limit the secretion of UCA1 via exosomes to retain UCA1, which
suggests that it has a crucial oncogenic function in CRC progression.

Table 2. Summary of exosomal lncRNA studies in CRC patients.

lncRNA
Number of

CRC
Patients *

Sample
Type Exosome Isolation Method Expression Type of

Biomarker Refs

UCA1 20 serum Ultracentrifugation,
ExoQuick Downregulated Diagnostic [115]

CCAT2 100 serum ExoQuick upregulated Diagnostic [116]

LNCV6_116109,
LNCV6_98390,
LNCV6_38772,
LNCV_108266,
LNCV6_84003,
LNCV6_98602

50 plasma Ultracentrifugation upregulated Diagnostic [117]

RPPH1 52 plasma Ultracentrifugation,
SBI upregulated Diagnostic

And prognostic [118]

CRNDE-h 148 serum ExoQuick Upregulated Diagnostic and
prognostic [113]

GAS5 158 Serum Ultracentrifugation Downregulated Diagnostic and
Prognostic [109]

HOTTIP 100 serum
Exosome isolation kit

(ThermoFisher Scientific®,
Cat-Nr.: 4478360)

Downregulated Diagnostic
and Prognostic [119]

* number of CRC patients who had blood samples drawn which were utilized for exosomal analysis.

Studies have demonstrated a significant overexpression of LNCV6_116109, LNCV6_98390,
LNCV6_38772, LNCV_108266, LNCV6_84003, LNCV6_98602, and Colon cancer-associated transcript 2
(CCAT2) in CRC tissue, serum levels, and exosomes of CRC patients when compared to HC [116,117].
The levels of all the aforementioned lncRNAs, with the exception of CCAT2, were significantly altered
in each stage [117]. Meanwhile, the higher expression of CCAT2 was associated with local invasion
and lymph node metastasis. In addition, there was a significant decrease in the CCAT2 serum levels
post-operatively [116]. Collectively, these lncRNAs could serve as diagnostic markers of CRC.

3.2.2. Diagnostic and Prognostic Biomarkers

Liang et al. [118] have shown that ribonuclease P RNA component H1 (RPPH1) was significantly
upregulated in CRC tissues and exosomes in CRC patients’ plasma, which was associated with advanced
stages, poor OS, and poor DFS. This is explained by the findings that RPPH1 promoted CRC metastasis
in vitro and in vivo. RPPH1′s interaction with β-III tubulin (TUBB3) prevents its ubiquitination
and induces EMT. Its overexpression in CRC cells have demonstrated an increase in vimentin and
N-cadherin with a decrease in E-cadherin mRNA and expression levels. Furthermore, RPHH1 promoted
CRC cell proliferation and metastasis via the transportation of RPPH1-enriched exosomes from CRC
cells into macrophages, which resulted in macrophage M2 polarization. Upon the stimulation of
macrophages with RPPH1-enriched exosomes, they manifested a CD206high/HLA-DRlow phenotype,
elongated cellular morphology, an increase in M2 markers (CCL17, CCL18, CXCL8, IL-10, and TGF-β),
and it increased the number of CTCs in comparison to the control group. It was better than CEA and
CA199 markers as for the diagnostic value of exosomal RPPH1 in CRC patients’ plasma, and its levels
decreased post-surgery.

In a study that was conducted by Liu et al. [113], colorectal neoplasia differentially expressed - h
(CRNDE-h) exhibited an upregulation in CRC cell lines and exosomes in the serum of CRC patients
in comparison to patients with benign colorectal disease (BCD) and HCs. Moreover, the exosomal
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CRNDE-h levels were associated with regional lymph node metastasis, distant metastasis, and low OS.
A five-year OS rate analysis showed that exosomal CRNDE-h levels was an independent prognostic
factor. In addition, they assessed for the prognostic value of combining serum exosomal CRNDE-h
and CEA. It showed that the OS rates in descending order were as follows: patients with low exosomal
levels of both, followed by low CRNDE-h and high CEA levels, then high exosomal CRNDE-h alone,
and the lowest OS rates in patients with both exosomal levels high. Furthermore, CRNDE-h was better
than CEA in differentiating the CRC patients from patients with BCD and HCs with a sensitivity of
70.3% vs. 37.16% and a specificity of 94.4% vs. 88.75%. However, combining both markers was superior
to either alone. Therefore, it is recommended to combine exosomal CRNDE-h and CEA levels for better
detection rates. Furthermore, the downregulation of growth arrest-specific transcript 5 (GAS5) that was
associated with an upregulation of miR-221 was demonstrated in CRC tissues, serum and exosomes of
CRC patients. These levels correlated with CRC stage, lymph node metastasis, local recurrence rate,
and distant metastasis rate. It was found to be an independent prognostic factor of CRC. miR-221
expression decreased and an inhibition in cell proliferation, migration, and invasion was observed
when GAS5 was ectopically over expressed in CRC cell lines [109]. Furthermore, Oehme et al. [119]
found another downregulated lncRNA in CRC tissue and serum exosomes from CRC patients, namely,
HOXA transcript at the distal tip (HOTTIP). Multivariate analysis showed that it is an independent
prognostic factor for OS that was specifically associated with poor OS. These studies provide evidence
of the potential diagnostic and prognostic roles of lncRNAs CRNDE-h, GAS5, and HOTTIP.

3.3. Exosomal circRNA in CRC Patients

circRNAs are a subset of lncRNAs that undergo backsplicing, whereby a downstream 5′ and an
upstream 3′ splice sites are joined [120–122]. This circular loop has a high tolerance to exonucleases.
circRNAs are more stable and they have longer half-lives than their linear counterparts [123–125]. They
have several functions, including acting as miRNA sponges and interacting with RNA-binding proteins,
to regulate transcription and alternative splicing [122,126,127]. They are investigated as potential
markers and therapeutic targets in cancer, since they are involved in initiation and progression [128–130].

3.3.1. Prognostic Biomarkers

Studies have shown that hsa-circ-0005100 (circFMN2) and hsa_circ_0067835 (circIFT80) were
significantly upregulated in the CRC cell lines, CRC tissues, and exosomes from CRC patients.
Higher circFMN2 and circIFT80 expressions were correlated with tumor size, stage, and distant
metastasis. Moreover, circFMN2 and circIFT80 knockdown in vitro and in vivo significantly inhibited
cell proliferation. There was an increase in G0/G1 phase cells and a decrease in the G2/M phase
cells [131,132]. However, circFMN2 knockdown did not have that effect on the human colonic epithelial
cell line. Neither circFMN2 knockdown inhibited cell proliferation, nor its overexpression promoted
proliferation [131]. This makes circFMN2 a promising therapeutic target, since normal cells were not
affected. In addition, circIFT80 knockdown increased CRC cell apoptosis, while circFMN2 knockdown
showed no change in CRC cell apoptosis [131,132]. Furthermore, it has been shown that circIFT80
promotes EMT. The invasion and migration of CRC cells significantly increased in the case of circIFT80
overexpression, which was associated with a decrease in E-cadherin expression and an increase in the
expression of vimentin and N-cadherin [132] (Table 3).
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Table 3. Summary of exosomal circRNA studies in CRC patients.

circRNA
Number of

CRC
Patients *

Sample
Type

Exosome Isolation
Method Expression Type of

Biomarker Refs

hsa-circ-0005100
(circFMN2) 35 serum ultracentrifugation Upregulated Prognostic [131]

hsa-circ-0067835
(circIFT80) 58 plasma ultracentrifugation Upregulated Prognostic [132]

hsa-circ-0000338 17 serum QIAGEN exoRNeasy Midi
Kit, ultracentrifugation Upregulated Predictive [133]

hsa-circ-0004771 135 serum Invitrogen™ Total Exosome
Isolation Kits

Upregulated Diagnostic
And Prognostic [134]

* number of CRC patients who had blood samples drawn which were utilized for exosomal analysis.

Experiments have shown that the mechanism of action of circFMN2 and circIFT80 is through the
circFMN2/miR-1182/hTERT axis and circIFT80/miR-1236-3p/HOXB7 axis, respectively. The hTERT
and HOXB7 expressions were higher in CRC tissues than in normal tissue. In addition, there was an
inverse correlation between the expression levels of the circRNAs and their respective miR targets in
cell lines and serum exosomes from CRC patients. Furthermore, circFMN2 and circIFT80 knockdown
decreased the expressions of hTERT and HOXB7, respectively, which was counteracted via introducing
an inhibitor of their miR targets [131,132]. These results demonstrate that exosomal circRNAs circFMN2
and circIFT80 are potential prognostic markers.

3.3.2. Predictive Biomarkers

Hon et al. [133] studied the role of hsa-circ-0000338 in CRC patients that were resistant to 5-FU
and oxaliplatin (FOLFOX). The findings include a significant more than two-fold upregulation of
exosomal hsa-circ-0000338 in the serum of non-responders than that of responders. Furthermore,
hsa-circ-0000338 knockdown increased the viability of HCT116 cells in 5-FU concentrations of
≥60µg/mL. Interestingly, they investigated whether chemoresistance was transferable from HCT116-R
(resistant) cells to HCT116-P (parental) cells. The results showed that HCT116-R exosomes selectively
transferred hsa-circ-0000338 into co-cultured HCT116-P cells. These HCT116-P cells demonstrated an
increased viability against drug treatment when compared to the control cells. Therefore, exosomal
hsa_circ_0000338 could be a predictive biomarker for CRC patients.

3.3.3. Diagnostic and Prognostic Biomarkers

Pan et al. [134] have shown that exosomal hsa-circ-0004771 was upregulated in CRC patients’
serum in comparison to that of patients with benign intestinal disease and HCs. In fact, the exosomal
hsa-circ-0004771 levels were 14-fold higher in CRC patients than in HCs. These levels correlated
with stage and distant metastasis. The sensitivity and specificity of these levels in differentiating
CRC patients from HCs were 80.91% and 82.86%, respectively. Furthermore, these levels significantly
decreased post-operatively and upon treating CRC cells (HCT-116 and SW-480) with an exosome
blocker, namely, GW4869. These results showed that these exosomal levels of hsa-circ-0004771 were
tumor derived and they can serve as a diagnostic biomarker for CRC.

4. Advantages of Utilizing Exosomes over CTCs, cfDNA/ctDNA, and cf-miR

The tumor derived exosomes represent the characteristics of their parent tumor cells, since they
carry various molecules, such as proteins and miRNA profiles, amongst others, which affect their
tumorigenic potential [135]. In fact, several studies have demonstrated that the biomarkers detected
within exosomes highly correlate with the tissue analysis. Moreover, since a lipid bilayer membrane
surrounds these molecules, they are protected from being degraded while in circulation. Therefore,
after the collection of exosomes, there are numerous diverse downstream analyses that could be
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done from these vesicles alone. In addition, exosomes may export chemotherapeutic drugs, which
makes them ideal for monitoring therapeutic effect and detecting drug resistance prior to relapse [136].
Furthermore, these vesicles are relatively stable at room temperature, which eliminates concerns of
potential variability with specimen collection and storage [135].

On the other hand, CTCs and cfDNA/ctDNA are delicate, unstable, and have short half-lives,
which requires quick processing post blood sample collection. Unlike in the case of exosomes, it is not
possible to long-term bio-bank these blood samples. Moreover, detecting CTCs and cfDNA/ctDNA is
another major limitation, since they are rare across studied tumors and even more so in patients with
low tumor burden. In addition, most of the cfDNA in the blood is not from tumor cell origin, which
makes the detection of ctDNA even harder and limits the number of experiments possible. Additionally,
we cannot analyze the RNA transcriptome and proteome of the tumor via ctDNA [136]. Furthermore,
despite the marker-based enrichment method of CTCs, they are phenotypically heterogeneous, which
limits its effectiveness, and markers could be downregulated during different stages of cancer, such as
during EMT [137]. As for cf-miRs, they are prone to contamination from several sources, including
cell-derived miRNA from puncture site and lysed red blood cells, platelets, and leucocytes from
circulation. In addition, they lack tumor-specificity, whereas tumor-derived exosomal miRs would be
highly specific [138].

5. Limitations and Challenges of Using Exosomes

Ultracentrifugation is the gold standard for exosome isolation, which happens to be labor-intensive,
time-consuming, requires large amount of starting material, expensive equipment, and is not efficient
for high-throughput assays [139,140]. Despite the availability of commercial kits forexosome isolation,
they are not standardized and result in low purity. In addition, they utilize buffers that digest exosome
membranes, which limits qualitative and quantitative analyses, since intact particle collection is not
possible. Moreover, ultracentrifugation might result in particle clumps, which limits characterizing
single vesicles [140]. In addition, their small size and composition add to the difficulty of developing a
golden standard for quantification [141].

6. Future Perspectives

One primary focus ought to be the detection of tumor-derived exosomes. Some studies have
already demonstrated a significantly higher abundance of EpCAM+, GPC1+, and CD147+ exosomes in
the tissue and plasma/serum of CRC patients when compared to their healthy counterparts [85,87,142].
Moreover, Xiao et al. [143] found that the 5-FU resistant CRC cells (HCT-8/5-FU) secreted TAG72-rich
exosomes significantly more than normal colon cells. In addition, CK19-rich exosomes and CA125-rich
exosomes were significantly higher in normal colon cells and metastatic CRC cells, respectively.
Furthermore, there is a need to develop approaches that can purify exosomes in a quicker and more
sensitive manner, which ought to also be standardized. This would aid in receiving FDA approval for
the utilization of exosomes in CRC patient care. It is worth noting that three exosomal RNAs that are
associated with high-grade prostate cancer are assessed via an FDA approved test, namely, the ExoDx™
Prostate (IntelliScore) test. Currently high grade versus low grade prostate cancer is distinguished
utilizing this test alongside PSA [144].

7. Conclusions

Accumulating evidence suggests that exosomal noncoding RNA content, including miRs, lncRNAs,
and circRNAs, have a pivotal role in oncogenesis and resistance to therapy in CRC. Exosomes that
were collected from blood samples have demonstrated diagnostic potential in early stages of the
disease, prognostic potential that is TNM stage specific, and predictive potential to the most common
chemotherapeutic drug and combination regimen in CRC, namely, 5-FU and FOLFOX. Moreover,
exosomal noncoding RNAs have been shown to have a higher sensitivity and specificity than CEA and
CA19-9 alone. Nevertheless, a combination of these blood-based markers have resulted in sensitivities
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and specificities that have reached up to 90%. The data collected are promising and further studies will
help increase our understanding of exosomes and their potential value as cancer biomarkers despite
the technical challenges limiting their clinical application.
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BCD Benign colorectal disease
CA19-9 Carbohydrate antigen 19-9
CCAT2 Colon cancer-associated transcript 2
CD Cluster of differentiation
CEA Carcinoembryonic antigen
CEPB CCAAT/enhancer-binding protein beta
cfDNA Cell-free DNA
cf-miR Cell-free microRNA
circFMN2 Has-circ-0005100
circIFT80 Has-circ-0067835
circRNA Circular RNA
CRNDE-h Colorectal neoplasia differentially express-h
CTC Circulating tumor cell
ctDNA Circulating tumor DNA
DFS Disease free survival
ESCRT Endosoma-sorting complex required for transport
FOLFOX 5-FU and oxaliplatin
GAS5 Growth arrest-specific transcript 5
HC Healthy control
HOTTIP HOXA transcript at the distal tip
HUVECS Human umbilical vein endothelial cells
lncRNA Long non-coding RNA
miRNA/miR Micro-RNA
mRNA Messenger RNA
MVB Multi-vesicular body
MVP Major vault protein
NC Non-cancerous
OS Overall survival
RISC RNA-induced silencing complex
RPPH1 Ribonuclease P RNA component H1
TLR Toll-like receptor
TUBB3 B-III tubulin
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