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An increase in global energy demand has caused oil prices to reach record levels in recent times. High oil prices together with
concerns over CO2 emissions have resulted in renewed interest in renewable energy. Nowadays, ethanol is the principal renewable
biofuel. However, the industrial need for increased productivity, wider substrate range utilization, and the production of novel
compounds leads to renewed interest in further extending the use of current industrial strains by exploiting the immense, and still
unknown, potential of natural yeast strains. -is review seeks to answer the following questions: (a) which characteristics should
S. cerevisiae have for the current production of first- and second-generation ethanol? (b) Why are alcohol-tolerance and thermo-
tolerance characteristics required? (c) Which genes are related to these characteristics? (d) What are the advances that can be
achieved with the isolation of new organisms from the environment?

1. Introduction

-e yeast Saccharomyces cerevisiae is undeniably the best
studied and one of the most widely used eukaryotes in a wide
variety of industrial processes such as ethanol production
[1]. Currently, the annual production of alcohol worldwide
is over 100 billion liters, with S. cerevisiae being the pre-
dominantly used industrial microorganism for ethanol
production [2]. -e yeast S. cerevisiae is the organism of
choice for the industrial production of ethanol and, as such,
represents the largest industrial biotechnological utilization
of yeast.

-e yeast S. cerevisiae has many desirable industrial
properties such as rapid growth, efficient glucose anaerobic
metabolism, high ethanol productivity, great yield, and high
tolerance to different environmental stress factors, such as

high ethanol concentration, low pH, and low oxygen level
[3]. -e use of existing or adapted industrial yeast strains in
biotechnological and industrial fermentations is intensive;
however, there is still much room for improvement since
current industrial processes rarely exploit new natural
strains [4].

-e improvement in the production of first-generation
ethanol is a process that involves the selection of yeasts with
high fermentation speeds and dominance, long-lasting life-
spans during the harvest, good fermentation capacity, elevated
sugar-to-ethanol conversion rates, low output of glycerol, low
foam levels, tolerance to high concentrations of substrate and
ethanol, resistance to acidity and high temperatures, genetic
stability, flocculence, good fermentation efficiency, high pro-
ductivity, elevated cell growth speeds, elevated ethanol output,
and substrate consumption speeds [5].
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Improving second generation production includes iso-
lating or developing microorganisms that ferment, in ad-
dition to glucose, pentose sugars that are abundant in
lignocellulose hydrolysates, xylose, and L-arabinose, as well
as microorganisms that can ferment different hydrolyzed
sugars simultaneously and microorganisms that are resistant
to inhibitors [3] and stressful conditions such as increased
ethanol concentration and temperature [6]. -e yeast
S. cerevisiae has been widely studied and engineered for
lignocellulosic valorization for second generation ethanol
production [7] and high-value chemicals [8].

Despite of the efficient adaptation of the various
S. cerevisiae strains used in these processes, there is still a
great potential for either optimizing existing strains or
exploiting the immense natural reservoir of environmental
isolates [1]. However, there are a number of challenges
common to yeasts during sugar fermentation due to in-
creased temperature and ethanol levels. S. cerevisiae has
limited tolerance to ethanol, and the maximum concen-
tration that allows growth is 10% (p : v). Although
S. cerevisiae yeasts are mesophilic (growth from 25°C to
30°C), often the temperatures in the distilleries reach 38°C
[9]. Performing fermentation at higher temperatures using
thermotolerant yeast could not only achieve a higher ethanol
production with faster polysaccharide hydrolysis rates and
shorter SSF (simultaneous saccharification and fermenta-
tion) times but could also reduce the cost of cooling and the
rate of contamination [10].

-is review provides an overview of studies with in-
dustrial and natural strains of S. cerevisiae for ethanol
production and discusses the characteristics S. cerevisiae
should have for current ethanol production, what advances
can be achieved from the isolation of new organisms from
the environment, why the characteristics of alcohol-toler-
ance and thermal tolerance are required, and which genes
are related to these characteristics.

1.1. 1e Yeast Saccharomyces cerevisiae. -e yeast
S. cerevisiae belongs to the group of Ascomycete yeasts
(phylum: Ascomycota; subphylum: Saccharomycotina; class:
Saccharomycetes; order: Saccharomycetales) [11]. One of the
first publications on yeast taxonomy was made by Guil-
liermond [12], in which the genus Saccharomyces had 46
species in 6 highlighted groups according to their fermen-
tative potential with sugars. Since that time, Saccharomyces
has undergone important changes, especially the group
Saccharomyces sensu stricto, which, in 1970, resulted in 41
species within the genus. According to Vaughan-Martin and
Martini [13], the species included in the genus Saccharo-
myces are S. arboricolus, S. bayanus (S. bayanus var.bayanus
and S. bayanus var.uvarum), S. cariocanus, S. cerevisiae,
S. kudriavzevii, S. mikatae, S. paradoxus, and S. pastorianus
(Figure 1).

Archaeological evidence exists regarding the production
of a fermented beverage in China in 7000 BC and of wine in
Iran and Egypt in 6000 BC and 3000 BC, respectively
[14–16]. Since that time, these fermentation technologies
have expanded from Mesopotamia to the rest of world. It is

assumed that, at the beginning, fermentation was driven by
the natural occurrence of yeasts in the substrate/environ-
ment, with probable exchange and interaction of yeasts
between different fermentation processes. It is not known
when the practice of conscious use of yeasts began in the
manufacture of beverages. However, it was only at the end of
the 19th century that this habit was gradually replaced by
selected cultures containing single or combined strains
[17, 18].

In this regard, Martini [19] concluded that wine yeast
comes mainly from wineries since isolation of the strain
from nature or plants is rare [20] and concluded that this
species is domesticated. As for its application in techno-
logical processes, scientific knowledge in the area has ad-
vanced since the first microscopic observation of yeasts by
Antonie van Leeuwenhoek in 1680 and the studies by Louis
Pasteur in 1858, who conclusively proved the primary
catalytic role of yeasts in wine fermentation [21, 22].

Saccharomyces species are the most important com-
mercial yeasts and have been studied as models of a
eukaryotic organism for many years [23]. A typical
S. cerevisiae haploid cell has genomic DNA of approximately
12,000 kb, divided into 16 linear chromosomes with a size
ranging from approximately 200 to 2200 kb [24, 25].
S. cerevisiae also presents important characteristics for
laboratory work, such as nonpathogenicity, easy growth, and
is susceptible to transformation techniques and isolation of
mutants, among others. It is the first eukaryotic organism
with a sequenced genome in the Saccharomyces Genome
Project [26], which is a project that monitors the presence of
more than 6,608 ORFs (open reading frames or open reading
matrix) which 5,797 encoded polypeptides. Before that,
more than a third of these ORFs had no known function,
even four years after their discovery. S. cerevisiae has 4,666
proteins with functions annotated in the Saccharomyces
Genome Database [27].

-e importance of the genus Saccharomyces in the
technological development of fermentation processes and as
amodel in scientific studies is unquestionable; however, little
is known about its natural history, ecology, genomic pro-
cesses, and evolution, which are essential factors for un-
derstanding the biology of these microorganisms. -e
evolution of the yeasts of the genus Saccharomyces shows a
direct relationship of each species with the natural envi-
ronment since populations that coexist in the same habitat
develop phenotypic convergence, while competition be-
tween species and lineages from different niches is rare or
unstable. -ese interactions define metabolic traits and
survival strategies, and a determining factor is the different
use and availability of resources in each environment
[22, 28]. Phylogenetic analyses point to events in evolu-
tionary development that mark the adaptation and favoring
of certain species to growth at higher or lower temperatures.
In the study by Lip et al. [29], a phenotypic screening of 12
industrial yeast strains and the laboratory strain
CEN.PK113-7D was performed at cultivation temperatures
between 12°C and 40°C which revealed significant differ-
ences in maximum growth rates and temperature tolerance.
-e authors observed differences in biomass and ethanol
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yields in glucose, biomass protein and storage carbohy-
drates, and biomass yields in ATP between strains and
culture temperatures. -e increase in temperature tolerance
coincided with the greater energy efficiency of cell growth,
indicating that temperature intolerance is a result of energy-
wasting processes, such as increased turnover of cellular
components due to temperature-induced damage.

-e biological characteristics of S. cerevisiae have been
reviewed by Landry et al. [30], and this work also included
genetic characteristics. In short, S. cerevisiae is a diplontic
yeast with a high degree of clonal reproduction. It is also
homothallic, which confers the possibility of regenerating a
diploid cell from a haploid, and this can be interpreted as a
form of genome renewal. -is mechanism may be re-
sponsible for the high rate (28%) of homozygote strains
found in vineyards [31].

-e life cycle of budding yeasts goes through asexual and
sexual reproductive cycles. -e budding yeast reproduces
both as haplontic (haploid) and diplontic (diploid) cells
during the asexual life cycle through mitosis (Figure 2).

Haploid cells of opposite mating types (a or α) can go on to
mate (conjugate) and reform diploid cells [32]. However,
under highly stressful conditions, such as nutrient starva-
tion, haploid cells will die, while diploid cells undergo
meiosis to form haploid spores through sporulation [33, 34].

-e budding yeast grows and divides through an
asymmetric budding process. During mitosis, the daughter
cell begins to form as a small bud on the tip of the mother
cell. In metaphase, one set of sister chromatids moves into
the bud. -e continued growth of the bud eventually be-
comes a separated daughter cell. Budding yeasts have all the
typical eukaryotic cell cycle stages of G1, S, G2, and M
(mitosis) phases, which can be recognized by DNA content,
nuclear morphology, and bud morphology. -e yeast cells
are found in fluctuating environments in the wild and are
often subjected to shortages of food. S. cerevisiae cells are
therefore likely to spend much of their time in a nondividing
state known as quiescence [35], in which conditions become
favorable and the yeast is able to grow on a modest array of
fermentable and nonfermentable carbon sources (mostly
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six-carbon sugars). -e availability of nutrients is likely to
result in a rapid, mitotic clonal expansion of diploid yeast
cells.

1.2. First- and Second-Generation Ethanol Production.
Nowadays, bioethanol is the main source of renewable
biofuel with about 27 billion gallons produced globally in
2021 [36], most of which is obtained from corn starch and
sugarcane. -e United States is the world’s leading producer
with about 15 billion gallons. When combined with the 7.5
billion gallons produced from sugar cane by Brazil, the two
countries produce about 82% of the world’s ethanol. Brazil is
the second largest producer and consumer of ethanol in the
world [36].

-e Melle-Boinot fermentation process is the most
popular in Brazil [37] (Figure 3). It is based on yeast recovery
from fermented wine by centrifugation, allowing the reuse of
yeast after treatment to avoid bacterial contamination. -e
produced wine proceeds to distillation columns, in which
ethanol is separated from the wine based on the different
boiling points of the components in this mixture.-e wine is
decomposed into two streams: phlegm (vapors with
40–50°GL) and vinasse (liquid stream with less than 0.03°GL
used as fertilizer in the crop fields). Phlegm follows the
rectification process to achieve 96°GL and results in hydrous
ethanol. Ethanol in hydrated form can be used as a final
product, e.g., vehicular fuel, or proceed to the dehydration
process. -e anhydrous ethanol (99.7°GL) is most com-
monly obtained by using cyclohexane for dehydration, and
addition of cyclohexane results in a ternary mixture with
water and ethanol, whose boiling point is lower than the
initial binary mixture. After separation, the dehydrated
product is recovered and reused. Anhydrous ethanol is
widely used in the chemical industry as a rawmaterial for the
manufacture of esters, ethers, solvents, paints, varnishes,
cosmetics, or it can be mixed with gasoline as an additive for
this vehicular fuel.

In 2005, the United States surpassed Brazil and became
the world’s number one ethanol producer. Dry milling is

dominant in the country and accounts for almost 90% of
total USA ethanol production [38]. In the dry milling
process (Figure 3), the whole corn kernel is ground into a
powder and mixed with water to form a mash, to which
liquefying enzymes (amylase) are added to break down the
starch into simple sugars. Ammonia is also added for pH
control and as a nutrient for the yeast in the subsequent
fermentation step. -e mash is then boiled to avoid bacterial
contamination and then proceeds to the saccharification
step, in which liquefied starch is hydrolyzed to glucose with
saccharifying enzymes (glucoamylase). After cooling, the
mash proceeds to the subsequent steps of ethanol produc-
tion. -e glucose-rich mash obtained after saccharification
step advances to the fermentation process, which normally
takes about 30–40 h at mesophilic temperatures [39, 40]. In
order to reduce the residence time of reactors, the appli-
cation of simultaneous saccharification and fermentation
(SSF) is widely used, in which glucoamylase and yeast
(Saccharomyces cerevisiae) are added simultaneously [41].
-e resulting mixture, containing about 15% ethanol and
solids from the grain and added yeast, is pumped to a
multicolumn distillation system, where the ethanol is sep-
arated from the remaining stillage. From distillation,
93–95% pure ethanol is obtained, which is dehydrated to
approximately 99% pure ethanol in a molecular sieve system
[39].

For the American process, the industrial strain ethanol
Red [42] is the most widely employed yeast. In Brazil, two
important strains of the species S. cerevisiae designated
CAT-1 and PE-2 are used. More recently, the yeasts PE-2,
CAT-1, BG-1, and SA-1 are being used in more than 70% of
all Brazilian distilleries [43].

1.3. Yeast Characteristics Needed for First-Generation Ethanol
Production. In the production of first-generation ethanol
from corn, the starch must be solubilized and then sub-
jected to two enzymatic steps to obtain fermentable sugars
[44, 45]. -e use of α-amylase in starch-based industries
has been prevalent for many decades, and a number of
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microbial sources exist for the efficient production of this
enzyme; however, only a few selected strains of fungi and
bacteria meet the criteria for commercial production [46].
In order to obtain a new strain of yeast that can produce
ethanol directly from starch without the need for a sep-
arate saccharification process that supports the stressors
during fermentation, studies on methods that improve the
fermentation potential of existing strains or isolate new
strains with important characteristics are increasingly
necessary.

-e American process imposes a high concentration of
ethanol, while the Brazilian process imposes acid treatment,
cell recycling, high temperatures, competition with indig-
enous yeasts and bacteria, and also osmotic stress due to the
high concentrations of sugar at the beginning [6]. In this
process, a good industrial strain must be sufficiently robust
to respond well to environmental variations in this envi-
ronment, without altering its fermentative characteristics
[3, 6].

-e characteristics required by a yeast used in the
production of first-generation ethanol are those of fast
growth, efficient anaerobic glucose metabolism, high ethanol
productivity, high yield, and high tolerance to several en-
vironmental stress factors such as high ethanol levels, lower
pH, and low oxygen. -e isolation of new environmental
strains of S. cerevisae with characteristics such ethanol
tolerance, thermotolerance, among other characteristics, are
necessary in order to increase the yield in the ethanol

industry [47]. -is is why exploring the existing natural
diversity of strains in the search for yeasts with traits that can
contribute to a phenotype with tolerance to specific pro-
cesses during production is essential.

1.4. Second-Generation Ethanol Production and Yeast
Requirements. Based on the International Energy Agency
(IEA) definition, the term second-generation biofuel refers
to biofuels produced from lignocellulosic biomass, i.e., from
cellulose-hemicellulose-lignin composed feedstock [48]
(Figure 4). -e utilization of lignocellulosic biomass for
second-generation ethanol (2GE) production is preferable
over sugar and starch-based first-generation ethanol (1GE)
production because of the absence of competition with food
production [49, 50]. Examples of lignocellulose include
agricultural wastes (corn stover, wheat, or rice straw),
sugarcane bagasse, grass, domestic waste, and dedicated
energy crops (Chinese silver grass and switchgrass) [51].
2GE is an attractive technology that increases the production
of fuels per hectare [52].

-e consolidated bioprocessing (CBP) of lignocellulosic
biomass is sustainable strategy what connects the three steps
of lignocellulosic bioethanol production, namely, enzyme
production, enzymatic saccharification, and sugar fermen-
tation, followed by biological conversion of the pentoses and
hexoses to valuable products using a single organism or a
consortium [53, 54]. Remarkable efforts to engineer
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S. cerevisiae for that purpose are noted in several studies such
as then in the study by Davison et al. [55], in which high
yields of corn cob ethanol were achieved by S. cerevisiae YI13
coexpressing EGII (Trichoderma reesei endoglucanase) and
BGLI (Saccharomycopsis fibuligera beta-glucosidase). In
another study, a strategy was developed by constructing a
cell-surface displayed consortium using two engineered
yeasts (Y5/XynII-XylA (codisplaying two types of xylanases)
and Y5/EG-CBH-BGL (codisplaying three types of cellu-
lases)) that heterologously expressed functional lignocellu-
lolytic enzymes to convert pretreated corn stover to ethanol
[56].

Several governments and private entities have financed
new plants for the production of second-generation ethanol,
which may be integrated or not in the first-generation
ethanol production process or renovated existing plants in
preparation for this new technology in order to optimize
productivity. In the US, the most important companies are
DuPont Cellulosic ethanol LLC and Poet-DSM Advanced
Biofuels LLC-Libertya Project, both using corn cobs for
ethanol production. -ese companies produce 113.6 and 75
million liters of cellulosic ethanol per year, respectively. In
Canada, the most productive company is Enerkem Alberta
Biofuels LP, which produces 38 million liters of cellulosic
ethanol per year from separated domestic solid waste [57].

-e world’s first large-scale ethanol plant was built in
Guangxi (China) by COFCO in 2007 [58]. Italy, anticipating
world demand and using state-of-the-art technology, is now
home to the largest cellulosic ethanol plant in the world. An
initiative of the company Beta Renewables, which is a global
leader in second-generation biofuels and part of the Mossi
and Ghisolfi group. -e plant has a structure that is capable
of producing 75 million liters of cellulosic ethanol per year,
using wheat straw, rice straw, and a kind of giant sugarcane
(Arundo donax) as raw materials [59].

In some parts of Europe, especially France and Italy,
grapes have become a raw material for fuel ethanol pro-
duction since ethanol can be made from surplus wine. -e
Norwegian company Borregaard Industries AS-ChemCell

ethanol has the capacity to produce 20 million liters of
cellulosic ethanol per year from wood pulp residues. Nigeria
and Ghana are also establishing cassava plantations for
ethanol production. In Brazil, two plants are already pro-
ducing second-generation ethanol: the companies Granbio
and Raı́zen. Granbio, in the state of Alagoas and Raı́zen, in
the state of São Paulo. Together, they have a production
capacity of 100 million liters per year. As such, from 2023,
Brazil intends to increase, in a summarized manner, the
synthesis of second-generation ethanol in order to reach
production of 2.5 billion liters per year [59].

-e process of converting lignocellulosic biomass into
fermentable sugars to produce second-generation ethanol
(2GE) involves four sequential steps: (1) pretreatment, to
breaks down the plant cell wall, by disrupting the cellulose
from lining and hemicellulose, and exposes it to the enzymes
[60]; (2) hydrolysis, to degrade cellulose fibres and hemi-
cellulose into sugar monomers [61], (3) fermentation, to
convert sugars into ethanol, and (4) distillation, a stage in
which the solution obtained from the fermentation process
is then distilled to separate high quality ethanol from the
aqueous solution [62] (Figure 4). However, these processes
can be performed independently (SHF: separate hydrolysis
and fermentation) or combined (SSF: simultaneous sac-
charification and fermentation) [63].

One of the factors to have an efficient bioethanol pro-
duction process is the maximum reduction of the formation
of inhibitor compounds during pretreatment. -ese sub-
stances are weak acids (acetic, formic, and levulinic acids),
furan derivatives (furfural and 5-hydroxymethylfurfural (5-
HMF)), and phenolic compounds (such as syringic acid,
vanillin, ferulic acid, vanillic, and coumaric acid) [64]. Some
techniques on detoxifying the hydrolysates by removing the
toxic chemical residues have been reported, including
physical (evaporation and membrane separation) and
chemical (overliming with calcium hydroxide, activated
charcoal treatment, ion exchange resins, neutralization, and
organic solvent extraction) [65–67]. Other strategies include
changes in fermentation methodologies and metabolic
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engineering [68]. -ese inhibitory compounds are cytotoxic
and inhibit microbial growth, metabolism, and ethanol yield
[69]. Some studies report that the concentrations of furfural
found in fermentations of hydrolysates of bagasse, rice husk,
and Bactris gasipaes can vary between 0.10–0.36, 0.05–0.17,
and 0.009–0.02, respectively. -ese authors also reported
that HMF concentrations found in fermentations of hy-
drolysates of bagasse, rice husk and Bactris gasipaes fer-
mentations ranged from 0.03–0.07, 0.10–0.21, and 0.06–0.18,
respectively. -e variations in the concentrations of Furfural
and HMF in these studies were mainly due to the hydrolysis
time and type of substrate used [70, 71].

-ere is still much scope for developing superior in-
dustrial yeast strains that could address the challenges and
limitations of cellulosic ethanol production. However, the
limited pool of available industrial strains represents only a
small share of the actual genetic diversity present in nature.
At the same time, numerous recent studies have highlighted
the enormous unexploited diversity of Saccharomyces stricto
sensu yeast [71, 72] and that many natural strains exhibit
superior complex traits, such as inhibitor and temperature
tolerance, that can be beneficial to the industry. It would thus
serve academia and the industry at large to devote equal
efforts towards improving existing industrial strains for
second-generation ethanol production, but simultaneously
explore the vast diversity available in nature as well. More
extensive genotyping and phenotyping of native strains will
support identifying strains and species with novel and/or
improved industrially driven properties. -e more extensive
use of molecular techniques to study and enhance complex
traits such as cofermentation of hexoses and pentoses, in-
hibitor tolerance, osmotolerance, and thermotolerance are
crucial [4, 73].

Some common challenges of yeasts can be overcome by
using ethanol-tolerant and thermotolerant yeast. Ethanol
fermentation at high temperature is a beneficial process as it
selects thermo-tolerant microorganisms and does not require
the expenditure involved with cooling costs or with the
cellulase enzyme [4]. -e thermotolerance of the ethanol red
strain of the species S. cerevisiae was analyzed in the study to
Pinheiro et al. [72], and the strain was subjected to high
temperatures. Under these conditions, the strain increased
the expression of proteins involved in sterol and glycogen
synthesis, together with Hsp104p, known to play a role crucial
in adapting to heat. In another study, Techaparin et al. [74]
analyzed that the highly expressed genes encoding heat shock
proteins, HSP82 and SSA4, potentially play an important role
in helping S. cerevisiae KKU-VN8 deal with various stresses
that occur during fermentation of high temperature, leading
to greater efficiency in ethanol production.

Another important factor is that, in contrast to corn or
sugar cane, cellulosic biomass is more difficult to convert
into fermentable sugars than corn or sugar cane because it
has five-carbon sugars, mainly xylose, due to the presence of
lignin, a highly recalcitrant network polymer of aromatic
alcohols that account for 17–25% of common cellulosic
biomass [75] and because cellulose is much more resistant to
hydrolysis than starches and simple oligosaccharides. -e
first obstacle can be overcome through the selection and/or

engineering of microorganisms capable of carrying out al-
coholic fermentation of xylose and other pentoses. -e
traditional ethanol fermenters, S. cerevisiae and Z. mobilis
cannot utilize pentoses but can only ferment glucose to
ethanol. Pichia stipitis, Candida shehatae, and Pachysolen
tannophilus are the major pentose e fermenting yeasts that
have been used extensively [73]. On the other hand, there are
microorganisms that produce lignocellulolytic enzymes,
with Trichoderma reesei and Aspergillus Niger being the most
important industrial producers [76]. Other microorganisms
are being studied in the last years such as Myceliophtora
thermophila (cellulase and xylanase), Aspergillus ibericus
(cellulase, β-glucosidase, and xylanase), Coriolus versicolor
(Mn peroxidase, lignin peroxidase, and laccases) [77–79].

All forms of microorganisms have undergone experi-
mental modifications resulting in what are called genetically
modified organisms (GMOs). GMOs have been developed to
improve the resistance of microorganisms to inhibitors
generated during pretreatment, as well as their tolerance to
ethanol and high concentrations of sugar and to increase the
range of sugars (hexoses and pentoses) consumed, making
the ethanol process more efficient [69, 80]. -e genetic
modifications have been widely done in three microor-
ganisms, such as S. cerevisiae (yeast), Z. mobilis (bacterium),
and E. coli (bacterium) [81]. Some examples of GMO Sac-
charomyces cerevisiae yeast strains for bioethanol production
are ER-Xpress, FT 858L, CelluX (Leaf Technologies), rich
yeast +GA (Richmond Chemicals), Innova Drive (Novo-
zymes), and Xyloferm (Lallemand/Taurus Energy AB). -e
use of GM strains of S. cerevisiae is absolutely necessary for
optimizing the conversion of both hexose and pentose
sugars to ethanol. -ere is great promise for synthetic bi-
ology in such processes, and more generally, for yeast
biotechnology in the future [2].

-e significant amount of knowledge about S. cerevisiae
in databases makes this yeast an attractive platform for
genetic improvement and metabolic engineering [82]. In the
study by Cadete et al. [83] was observed that S. cerevisiae
TMB 3504, which expresses XYL1.2p from Sp. passalidarum,
showed significant ethanol yield and productivity (0.40 vs.
0.34 g g− 1 CDW). In another example, Kobayashi et al. [84]
observed an overexpression of all enzymes involved in
nonoxidative PPP (via pentose phosphate), including RKI1,
RPE1, TKL1, and TAL1, and improved xylose uptake rates
and ethanol yields in recombinant S. cerevisiae expressing
the pathway. And, in another study, an overexpression of
XYL2 in the S. cerevisiae SF7-Ft3 strain consistently led to
better utilization of xylose by various enzymatic hydrolates
of lignocellulose residues and increased bioethanol yields (%
dry matter) and concentrations (g/L) at 11%–42% [85].

Research on bioethanol production has several axes,
which include the discovery of new natural microorganisms
(or the “construction” of genetically modified ones) that
produce ethanol in significant concentrations of the final
product and high volumetric productivities and/or small
amounts antagonistic to the metabolites of the ethanol (i.e.,
glycerol). One of the problems in yeast fermentation of
bioethanol is the ability to ferment pentose sugars.
S. cerevisiae is the most commonly used in bioethanol
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production; however, it can only ferment hexoses, though
not pentoses [86]. From this perspective, several works have
focused on pentose consuming organisms (e.g., xylose and
arabinose), which are sugars that are found in significant
quantities in lignocellulosic biomass [25, 35–37].

1.5. What Are the Genes and Metabolic Pathways Related to
the Characteristics Required in Yeast for Ethanol Production?
During the industrial production of first- and second-
generation ethanol, yeasts are submitted to several stressing
factors such as high ethanol concentration and high tem-
peratures. Temperature has long been known to affect the
metabolism of yeasts, and fermentation at high temperature
becomes more prone to bacterial contamination. In addi-
tion, the yeast is more sensitive to alcohol toxicity, leading to
the formation of metabolites such as trehalose, glycerol,
acetic acid, and succinic acid, among others [6, 87–89].

-e decrease in yeast cell viability at higher temperatures
is also due to the accumulation of intracellular ethanol,
which produces cell toxicity and alters the membrane
structure, thus decreasing its functionality [88, 90–92].
According to Dorta [9], the yeast S. cerevisiae has limited
tolerance to the ethanol, whose maximum concentration
that allows growth is 10% (p : v), and high concentrations of
ethanol can affect the structure of the enzymes, resulting in
decreased catalytic activity [93]. -erefore, determining
factors, such as high ethanol concentration and high tem-
perature, must be improved to increase the productive
capacity of yeast strains during industrial production of first-
and second-generation ethanol.

S. cerevisiae is known to employ many stress-responsive
pathways in order to adapt to drastic changes in the envi-
ronment [94]. Data reported by Teixeira et al. [95] indicate
that the expression of the FPS1 (farnesyl diphosphate syn-
thase 1) gene contributes to the reduction of alcohol ac-
cumulation within the cell during the fermentation process,
suggesting that FPS1 may have a role in regulating the level
of intracellular ethanol and that the increased expression of
this gene can increase the yeast’s ability to produce high
concentrations of alcohol.

Another protein, called ASR1 (alcohol sensitive RING/
PHD finger1protein) is encoded by the ASR1/YPR093C
gene. Under alcoholic stress, this protein modifies its in-
tracellular distribution in the cytoplasm and accumulates in
the nucleus, transmitting an alcoholic stress signal from the
plasma membrane to the nucleus. -us, it becomes a key
element in ethanol tolerance and is essential for the normal
development of the cell in a medium containing high
concentrations of alcohol [94, 96].

Other essential genes identified as determinants of yeast
resistance to inhibitory concentrations of ethanol are
identified in the following list [95]:

(i) BDP1 (essential subunit of RNA polymerase III
transcription factor (TFIIIB)

(ii) CSL4 (subunit of the exosome, which is an es-
sential complex present in both the nucleus and

cytoplasm that mediates RNA processing and
degradation)

(iii) CWC25 (component of a complex containing
Cef1p, involved in pre-mRNA splicing)

(iv) HTS1 (cytoplasmic and mitochondrial histidine
tRNA synthetase)

(v) IRR1 (subunit of the cohesin complex, which is
required for sister chromatid cohesion during
mitosis and meiosis and interacts with centro-
meres and chromosome arms)

(vi) MED8 (subunit of the RNA polymerase II me-
diator complex associates with core polymerase
subunits to form the RNA polymerase II
holoenzyme)

(vii) MPE1 (essential conserved subunit of CPF
(cleavage and polyadenylation factor); plays a role
in 3′ end formation of mRNA via the specific
cleavage and polyadenylation of pre-mRNA; con-
tains a putative RNA-binding zinc knuckle motif)

(viii) PRP11 (subunit of the SF3a splicing factor
complex, required for spliceosome assembly)

(ix) RRP3 (involved in rRNA processing; required for
maturation of the 35S primary transcript of pre-
rRNA and for cleavage leading to mature 18S
rRNA)

(x) SPP381 (mRNA splicing factor, component of
U4/U6/U5 tri-snRNP)

(xi) TFC1 (one of six subunits of the RNA polymerase
III transcription initiation factor complex
(TFIIIC); part of the TauA globular domain of
TFIIIC that binds DNA at the BoxA promoter
sites of tRNA and similar genes)

(xii) FHL1 (putative transcriptional regulator with
similarity to DNA-binding domain of Drosophila
forkhead; required for rRNA processing)

(xiii) ARC35 (subunit of the ARP2/ARP3 complex,
which is required for the motility and integrity of
cortical actin patches)

(xiv) IDI1 (isopentenyl diphosphate:dimethylallyl di-
phosphate isomerase (IPP isomerase); catalyzes
an essential activation step in the isoprenoid
biosynthetic pathway

(xv) NAT2 (N-α-acetyltransferase; transfers acetyl
group from acetyl coenzyme A to the N-terminal
methionine residues of proteins)

(xvi) SIS1 (type II HSP40 cochaperone that interacts
with the HSP70 protein Ssa1p)

(xvii) STS1 (protein that interacts with the karyopherin
Srp1p; may have a role with Srp1p in ubiquitin-
mediated protein degradation)

(xviii) TOM40 (component of the TOM (translocase of
outer membrane) complex, responsible for rec-
ognition and initial import steps for all mito-
chondrially directed proteins) [95]
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Recent studies have been conducted to find thermo-
tolerance-conferring pathways in S. cerevisiae, and these
suggest the participation of several genes that are essential
for achieving a high-temperature growth strain. Among
these genes, RSP5 encoding ubiquitin ligase [97], TPS1,
TPS2, and NTH1 that are involved in trehalose metabolism
and ADH1 and CDC19 that are involved in the glycolytic
pathway have been described in association with the in-
crement of temperature tolerance [74].

-e heat-shock response is a well-known molecular
mechanism that makes cells more thermotolerant. In
S. cerevisiae, the 3′ adenosine-dependent protein kinase and
5′-cyclic monophosphate c AMP (PKA) signaling pathway
has been referred to as being a thermotolerance regulator.
-e cAMP/PKA pathway controls a variety of processes
including the stress response [98]. -e level of intracellular
cAMP is regulated by adenylate cyclase (Cyr1p), which
converts ATP to cAMP [99]. Depending on the CDC25p
activity, monomeric G proteins (Ras1p and Ras2p) control
Cyr1p activity. -is is a membrane-bound guanine nucle-
otide exchange factor (GEF) that activates RAS1p and
RAS2p by stimulating GDP release and GTP binding
[100, 101]. -e lowest level of cAMP initiates stress-re-
sponsive transcriptional activators such as Msn2p and
Msn4p, resulting in stress tolerance [98].

Much still can be studied and genetically developed so
that superior industrial yeast strains can face all the obstacles
of producing cellulosic ethanol more efficiently. However,
the limited set of available industrial strains represents only a

small portion of the actual genetic diversity present in
nature.

1.6. Environmental Isolation of Saccharomyces cerevisiae.
-e number of yeasts being discovered is increasing year on
year. It is assumed that only 1% of yeast species are currently
known, which represents approximately 1500 species. -e
total number of yeast species on Earth is estimated at 150,000
[102]. -e diversity of yeast species in particular niches is
determined by their ability to use different carbon sources
and their nutritional selectivity for presenting great habitat
specialization [103] and that many natural strains exhibit
superior complex traits, such as inhibitor and temperature
tolerance, that can be beneficial to the industry. Ethanol-
tolerant and thermotolerant strains that can resist stresses
can be isolated from natural resources such as soil, water,
plants, and animals. -is is because cells adapt to their
environment over time via natural selection.

Recently, numerous studies have highlighted the enor-
mous unexploited diversity of Saccharomyces stricto sensu
yeast [104, 105], some studies have been carried out using
environmental sources to isolate S. cerevisiae from fruits
such as grape berries, mangoes, pineapples and orange peel,
tree bark (Quercus rubra, Tapirira guianensis (Tapirira)),
and fermented musts (Table1).

-e environmental isolation of new yeast strains can lead
to advances in the production of first- and second-gener-
ation ethanol. -e production of first-generation ethanol

Table 1: Different strategies used for the isolation of Saccharomyces cerevisiae from environmental sources.

Origin Isolation technique Isolated use Reference

Grapes-spontaneously fermented
musts

15 to 20 grapes were placed in 150mL of MEM malt
extract medium and cultivated for 10 days at 23°C

Search for isolates with new
oenological properties for wine

production
[106]

Spontaneously fermented musts -e must fermentation process was carried out in a
1000 L barrel, at 18°C

Search for supply of isolates with
new oenological properties for

wine production
[106]

Pineapple and orange peel 1 gram of sample was soaked in 250ml of YMMyeast
maintenance medium at 30°C for 3 days

High-potential, stress-tolerant,
ethanol-producing yeasts [107]

Cucumber jangajji -ree yeast strains were fortified from cucumber
jangajji using a YM medium at 25°C for 48 h

Probiotics and important crops for
affected foods [108]

Bark of three tree species: Quercus
rubra, unidentified tree. Tapirira
guianensis

2 g of each sample was inoculated into flasks with RE
medium and, after turbidity, aliquots were seeded in

YMA with 8% ethanol

Second-generation ethanol
industrial processes [109]

Mango

Spontaneous mango fermentation took place for 7
days, and every 24 hours the sample was diluted,
seeded on GPY agar medium and incubated at 30°C

for 3 days

Cognac production [110]

Palm wine
Beverage samples (1mL) were directly diluted and
plated in medium (YPD) and incubated at 30°C for

3–5 days

Evaluation of the genetic diversity
and population structure of yeasts [111]

Distilleries in northeast Brazil
Must samples were plated onto WLN medium
containing nalidixic acid and ampicillin (both at

50 μgml−1) after appropriate dilutions
Ethanol production [112]

Distillery wastes, sewage and algal
bloom and dairy wastes

-e samples were mixed with YEPD broth and
incubated at 40°C at 150 rpm. After 24 h, 100 μl of the
diluted samples was spread on YEPD agar plates and

incubated at 40°C for 48 h.

Ethanol production [113]
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requires yeast strains that not only produce ethanol directly
from starch without the need for a separate saccharification
process but also withstand stressors such as high ethanol
levels and temperature during fermentation.-e isolation of
robust microbial strains that can grow and produce ethanol
from at least glucose and xylose and that have tolerance of
inhibitors and thermotolerance are crucial in the production
process of second generation ethanol [4] and significantly
influence the final yield in this process.

2. Conclusion

S. cerevisiae is the most used organism for 1st and 2nd
generation ethanol production, but improvements are still
needed, first generation ethanol production requires yeast
strains that can produce ethanol directly from starch without
the need for a saccharification process separated and that can
withstand stressors such as high levels of ethanol and high
temperatures during fermentation. Second-generation eth-
anol from lignocellulose will require the development of
robust strains of S. cerevisiae that can grow and produce
ethanol from at least glucose and xylose and that exhibit
thermotolerance and tolerance to inhibitors such as phenolic
compounds, furans, and weak acids.

Significant advances have already been achieved by
combining beneficial traits from different lineages using
adaptation and hybridization, as well as targeting specific
traits through genetic engineering; however, the limited set
of available industrial lineages represents only a small part of
the current genetic diversity present in nature. Several recent
studies have highlighted the enormous unexplored diversity
of the yeast Saccharomyces stricto sensu, which has superior
complex characteristics that could be beneficial to the al-
cohol industry.

Functional genomics is a powerful tool for directing
metabolic changes to increase the rate and yield of ethanol
production. Proteomic analysis of xylose fermentations has
already revealed 22 proteins such as Adh2p, Ald4p, and
Ald6p, showing significantly higher levels compared to
glucose fermentation. Proteins such as ASR1 and FPS1 are
essential for normal cell development in a medium con-
taining high concentrations of alcohol and high ethanol
production and that the highly expressed genes encoding
heat shock proteins, HSP82, SSA4, and HSP104p, are
known to play a crucial role in heat adaptation in
S. cerevisiae.

However, overcoming major limitations such as in-
complete substrate catabolism, low titers of heterologous
protein expression, thermotolerance, ethanol tolerance, and
impediment due to the accumulation of inhibitors/toxic
byproducts is still a challenge. Science must cooperate both
in improving existing industrial strains and in developing
new phenotypes by exploiting the vast biodiversity available.
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