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Abstract

Cumulative effect in social contagion underlies many studies on the spread of innovation, behavior, and influence. However,
few large-scale empirical studies are conducted to validate the existence of cumulative effect in information diffusion on
social networks. In this paper, using the population-scale dataset from the largest Chinese microblogging website, we
conduct a comprehensive study on the cumulative effect in information diffusion. We base our study on the diffusion
network of message, where nodes are the involved users and links characterize forwarding relationship among them. We
find that multiple exposures to the same message indeed increase the possibility of forwarding it. However, additional
exposures cannot further improve the chance of forwarding when the number of exposures crosses its peak at two. This
finding questions the cumulative effect hypothesis in information diffusion. Furthermore, to clarify the forwarding
preference among users, we investigate both structural motif in the diffusion network and temporal pattern in information
diffusion process. Findings provide some insights for understanding the variation of message popularity and explain the
characteristics of diffusion network.
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Introduction

We are witnessing the emergence and rapid proliferation of

various social applications, including resource sharing sites (e.g.,

Flickr, Youtube), blogs (e.g., Bloggers, LiveJournal), social

networks (e.g., Facebook, Myspace), and microblogs (e.g., Twitter,

Sina Weibo). These social applications facilitate users to produce,

share, and consume online content. A prominent characteristic of

these systems is the relationships formed among users. These

relationships can be described by networks, where nodes represent

users and links denote the relations or interactions among them.

Many efforts have been made to understand the structure of theses

networks [1]. Recently, much research attention is paid to various

dynamics on these networks, investigating users’ tendency to

engage in activities such as forwarding messages, linking to articles,

joining groups, purchasing products, or becoming fans of certain

pages after their friends have done [2–11].

Existing studies mainly focused on identifying the properties of

these dynamics and the potential principles governing them [12–

15]. Scientists have noticed several salient phenomena about

information diffusion on networks and the evolution of underlying

networks, including the rich-get-richer phenomenon [16], burst

[17], the stability constrains [18], homophily [19], clustering [20],

bridgeness [21], structural balance [22], structural regularities

[23], and two-step flow [24]. However, the fundamental mech-

anism of information diffusion on networks is still unclear. Does

there exist the ‘‘cumulative effect’’ in information diffusion on

social networks? Are there fundamental differences among the

mechanisms underlying the diffusion of various messages? Does

the relevant topic or the associated event of messages help explain

the distinct characteristics of these messages? More importantly,

are there any structural or temporal patterns frequently occurring

in the process of information diffusion?

With the increasing availability of data recording the informa-

tion diffusion on social networks, many efforts have been made to

study the effect of multiple exposures on social networks. Using the

data from LiveJournal and DBLP, Backstrom et al. found that the

propensity of individuals to join communities was dominated by a

‘‘diminishing return’’ property [3]. Leskovec et al. examined the

probability of purchasing a product as a function of the number of

received recommendations about the product [7]. They observed

a saturation point after receiving around 10 recommendations.

Romero et al. studied the mechanics of information diffusion by

comparing the information diffusion process across different topics

on Twitter [25]. They found that the effect of multiple exposures

decayed rapidly for hashtags representing idioms and neologisms.

Ugander et al. found that the probability of contagion was tightly

controlled by the number of connected components in an

individual’s neighborhood, rather than by the actual size of

neighborhood [26]. In addition, Milo et al. defined ‘‘network

motifs’’ and found them in networks from biochemistry, neuro-

biology, ecology, and engineering [27]. Zhang et al. proposed a

new mechanism for the local organization and tested potential

theory [28]. They found that the Bi-fan structure was the most

favored local structure in directed networks. Bao et al. predicted

the popularity of messages on social networks by leveraging the
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structural diversity of diffusion network [29]. However, recent

works mainly focused on the diffusion of innovation, the adoption

of new product, and the spread of certain behavior. It is still

unclear whether these findings are applicable to the information

diffusion on microblogging network.

In this paper, to understand the mechanism of information

diffusion on social networks, we conduct a comprehensive

empirical analysis on a population-scale dataset from Sina Weibo,

the largest Chinese microblogging website. We study the statistics

of diffusion network which characterizes the relationship among

the individuals involved in diffusion process. We then investigate

the cumulative effect of multiple exposures during the spread

process of messages, with or without URL and events. We find a

peak in the curve of forwarding probability at 2 exposures and a

subsequent slow drop. We also find that the probability of

forwarding messages with URL or events are significantly higher

than that of the other messages. When examining the exposure

curves corresponding to different events, we find that the exposure

curve is heavily affected by outside intervention, such as

restrictions on media coverage. Furthermore, we investigate the

structural and temporal patterns frequently occurring in informa-

tion diffusion. These findings provide us great insights in

understanding the fundamental mechanism of information diffu-

sion and predicting the forwarding behavior of individuals.

Results

Diffusion network
To study the information diffusion on social networks, we

represent the cascade of message as a diffusion network. For each

message, its diffusion network is a directed network where each

node is a user who involves in the diffusion of this message. A link

from user u to user v denotes that v receives the message from u and

then forwards it. To be sure, one user can forward a message more

than one time. In this paper, when constructing the diffusion

network of a message, we only consider one user’s first forwarding

behavior of the message as done in [7]. We adopt this definition of

diffusion network with two considerations: 1) given a particular

message, multiple forwarding from one user is very rare and; 2)

multiple forwarding behaviors may obscure the analysis of

cumulative effect in diffusion process. In a diffusion network,

there is only one node having no incoming link. We call this node

the root node of diffusion network because this node corresponds

to the source user of message. Similarly, we call the nodes without

outgoing link as leaf nodes.

Diffusion network provides us important descriptive information

for the cascade of a message. On one hand, the outgoing degree of

a node characterizes its amplification factor at the diffusion process

of message. The nodes with larger outgoing degrees are usually the

so-called ‘‘opinion leaders’’ [24] and are essential to the popularity

of a message. By inspecting the outgoing degree in diffusion

network, we can easily identify these opinion leaders. On the other

hand, each path from the root node to a leaf node depicts a

forwarding trajectory of message. To a certain extent, the

maximum length of all the paths reflects the penetration capability

of message. Furthermore, a diffusion network generally has

multiple layers. The nodes in the same layer have the same

distance from the root node. Finally, the size of a diffusion network

characterizes the popularity of the corresponding message. Figure

1 gives an example of diffusion network. The root node, colored in

red, has a large outgoing degree and thus promotes the early

popularity of the message. The large node in yellow is another

node with a large outgoing degree, triggering a new spread range

for the message.

We adopt three quantities to characterize the properties of

diffusion network, i.e., the size, depth and width of diffusion network.

The size of a diffusion network is the number of nodes in the

diffusion network and reflects the popularity of message among

users. The depth of a diffusion network is the length of the longest

path from the root node to leaf nodes. The width of a diffusion

network is the number of nodes in the layer with the largest

number of nodes. As shown in Figure 2(a), the size of diffusion

network follows a power law distribution with exponent 0.66,

indicating that the popularity of messages is unequally distributed.

This poses a big challenge for predicting the popularity of

messages [29–33]. Figure 2(b) shows the distribution of width over

all diffusion networks. The width distribution can be well fitted

with a two-stage power law distribution with exponents respec-

tively being 1.16 and 1.89. Figure 2(c) shows the distribution of

depth over all diffusion networks. The depth roughly follows an

exponential distribution with exponent 0.89, indicating that the

majority of diffusion networks have shallow depth. To characterize

the shallow structure of diffusion network, we further investigate

the average number of nodes in each layer of diffusion networks.

As shown in Figure 2(d), the average number of nodes decreases

dramatically with respect to the depth of layer. The majority of

nodes appear in the first five layers of diffusion network. In

addition, we also show the error bars in the Figure 2(d) for the first

five layers. These error bars show that the number of nodes in the

same layer is quite heterogeneous.

Temporal characteristics of information diffusion
Information diffusion is a dynamical process on social networks.

Besides the structural characteristics depicted in the previous

section, information diffusion also exhibits several temporal

patterns which are the focus of this section.

We further analyze the time lag of forwarding behaviors in

diffusion process. Figure 3(a) shows the distribution of time interval

between two successive forwarding behaviors in the resolution of

five minutes from the cascades of all messages, which follows a

power law distribution with exponent 2.16. In addition, Figure 3(b)

gives the distribution of the time latency of message forwarding,

which characterizes how long it will take for a message to be

forwarded. This distribution roughly follows a log-normal

distribution with a peak at 10 minutes. Indeed, after a message

is submitted by a user, it usually takes several minutes to be

forwarded by other users, which may result from the fact that users

are not always online and they check messages at a certain rate.

Therefore, if a user is not active in a certain period, the messages

submitted will need to wait for a long time to be forwarded by this

user. As a typical example, users are usually active at days and not

active at nights.

To verify the activity pattern of users, we investigate the number

of messages posted hourly. Figure 3(c) shows the averaged hourly

activity of users for 30 days. We can see that users are active

between 10am–10pm and are not active between 1am–7am.

Cumulative effect of multiple exposures
We now turn to the diffusion dynamics of messages on social

networks. Specifically, we study the cumulative effect of multiple

exposures, i.e., a user is more likely to forward a message if this

user is exposed to the message for more times. There are two

assumptions about the cumulative effect of multiple exposures.

The first one claims that a user’s multiple exposures to a message

will always increase the possibility of the user’s forwarding

behavior. The second one insists that more exposures will not

increase the forwarding possibility if a user has ever been exposed

to the message but does not forward it.

CummulativeEffectInfoDiff
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To investigate the cumulative effect of multiple exposures, we

need to capture the number of exposures before a user forwards a

message. For this purpose, we define that a user is k2exposed to a

message if the user has received the message for k times but still

does not forward it. When a message is submitted or forwarded by

a user, all followers of the user are exposed to this message. Using

the ordinal time estimate method [25], we denote W(k) the number

of users who are k-exposed to a message at certain time, and R(k)

the number of users who forward the message directly after being

k-exposed to the message. We then calculate the probability P(k)

that a k-exposed user forwards the message before this user

becomes (k+1)-exposed, i.e., P(k) = R(k)/W(k).

With the above definitions, we empirically study the forwarding

probability P(k) using all the messages forwarded by more than 10

users. To alleviate the influence from activity pattern of users, we

only consider the messages posted between 10am and 10pm per

day, which is the active period as depicted in Figure 3(c). Figure

4(a) -(b) show W(k) and R(k) with respect to the number k of

exposures. Both W(k) and P(k) roughly follow power law

distributions with cutoffs and the exponents are respectively 0.66

and 1.19. Figure 4(c) gives the forwarding probability P(k) as a

function of the number k of exposures. We can see that there is a

peak in the curve of forwarding probability P(k) at the place of 2

exposures. After the peak, the value of P(k) drops in a power law

manner. These findings can provide some insights for making viral

marketing strategies, such as the product promotion campaign and

influence maximization. Kempe at el. have proposed the Linear

Threshold Model based on the idea of node-specific thresholds,

Figure 1. An example of diffusion network. Colors differentiate the nodes in different layers. The root node is colored in red and its large
outgoing degree indicates the early popularity of the message. The large node in yellow triggers the further spread of this message.
doi:10.1371/journal.pone.0076027.g001

Figure 2. Statistics of diffusion networks. (a) The distribution of size of diffusion network. (b) The distribution of width of diffusion network. (c)
The distribution of depth of diffusion network. (d) The average number of nodes with respect to the layer of diffusion network.
doi:10.1371/journal.pone.0076027.g002

CummulativeEffectInfoDiff
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which has a certain relationship with the cumulative effect of

multiple exposures to a user and is one of the most famous social

cascade model [8]. In addition, the exposure curve P(k) of each

user can help us understand users’ forwarding behavior and

further identify the users that are critical to trigger a diffusion from

the perspective of sender and receiver. Actually, Aral et al. have

moved along this line and suggested that influential people with

influential followers may be instrumental in the spread of product

on social networks [34].

To understand the variation of exposure curve for different

messages, we classify messages into different categories and

compare the exposure curves of each category. In our data set,

messages could contain embedded URL and could be annotated

with certain events denoted by several keywords. We classify all

messages into different categories according to three criteria: (1)

messages with embedded URL versus messages without embedded

URL; (2) messages with events versus messages without events;

and (3) messages with a single event versus messages with more

than one event. The comparison of exposure curves is shown in

Figure 5. We can see that the probability of forwarding a message

with embedded URL is higher than that of forwarding a message

without embedded URL, as shown in Figure 5(a). The probability

of forwarding a message with events is higher than that of

forwarding a message without events, as shown in Figure 5(b). The

probability of forwarding a message with more than one event is

higher than that of forwarding a message with a single event, as

shown in Figure 5(c). In addition, the probability of forwarding a

message with embedded URL or with events is higher than P(k)

over all messages which is depicted in Figure 4(c). These findings

indicate that users are prone to forward messages containing more

information, e.g., with a URL providing additional information or

with events implying much more information related to the

message. In addition, a message with events can trigger more

discussions about the events.

We further investigate the exposure curves of messages

corresponding to individual event. The majority of them are

similar to the overall shape in Figure 4(c). In particular, we notice

that P(k) increases with more exposures to a message for some

examples while P(k) decrease with more exposures for others. As

examples, Figure 6(a) and Figure 6(b) show the exposure curves for

the event ‘‘Foxconn worker falls to death’’ and ‘‘Wenzhou train

collision’’ respectively. For these two particular cases, only a very

small number of users are exposed more than five times. This

makes the value of P(k) unreliable in the sense of statistics. Thus,

we depict the curve P(k) only for k, = 5. This kind of difference lies

in the specific contexts of these messages. The ‘‘Foxconn worker

falls to death’’ event occurred successively in a short period of time

and prompted wide and in-depth discussions about laborers’

working condition and payment. As a result, the more exposures

one is exposed to, the higher probability one might become

involved. However, the ‘‘Wenzhou train collision’’ event happened

suddenly. Two high-speed trains collided with each other, 40

people were killed, and at least 192 were injured. Officials

responded to the accident by hastily concluding rescue operations

and ordering the burial of the derailed cars. These actions elicited

strong criticism from Chinese media and online communities. In

Figure 3. Temporal characteristics of information diffusion. (a) The distribution of time interval between two successive forwarding behaviors
in the resolution of five minutes. (b) The distribution of time latency of message forwarding. (c) The averaged hourly activity of users.
doi:10.1371/journal.pone.0076027.g003

Figure 4. Exposure curve. (a) The distribution of W(k), where W(k) denotes the number of users who are k-exposed to a message at certain time.
(b) The distribution of R(k), where R(k) denotes the number of users who forward a message directly after being k-exposed to it. (c) The probability of
forwarding a message as a function of the number of exposures over all cascades.
doi:10.1371/journal.pone.0076027.g004
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response, the government issued directives to restrict media

coverage, which was met with limited compliance, even on state-

owned networks. Thus, the distinct forwarding curve P(k) for the

messages about this event is partly caused by outside intervention

(http://en.wikipedia.org/wiki/Wenzhou_train_collision).

Analysis of structural motif and temporal pattern
In this section, we study the structural and temporal patterns in

diffusion process to answer the ‘‘forwarding-whom’’ question: for

an individual exposed to a message for multiple times, whom does

the individual echo, the first one, the last one, or the most

influential one? Among all the cases where a user forwards a

message after multiple exposures, 2-exposure case is the most

frequent one and the study of ‘‘forwarding-whom’’ for 2-exposure

case can be easily extended to other cases of multiple exposures.

Thus, we only focus on the 2-exposure case that one user is

exposed to a message for two times and then forwards it. In

addition, we only consider multiple exposures from different users

rather than multiple exposures to one distinct user.

For the 2-exposure case, without loss of generality, we assume

that one exposure is from user A and the other exposure is from

user B. Then, according to the relationship between A and B, we

have three types of structural motifs, which are (a) ‘‘Diverse motif’’

if there is no direct relationship between A and B, (b) ‘‘Reciprocal

motif’’ if A follows B and B also follows A, and (c) ‘‘Unidirectional

motif’’ if A follows B or B follows A.

Table 1 shows the percentage of the three types of two-node

motifs over all data set. We can see that the percentage of ‘‘Diverse

motif’’ over the whole data set is 76.5%, which is significantly

higher than the other two patterns. For a detailed analysis, we

further report the percentage of the three types of two-node motifs

in different categories depicted in the previous section. We find

that the percentage of ‘‘Diverse motif’’ over messages with events

is 83.9%, which is higher than that over messages without events.

The percentage of ‘‘Diverse motif’’ is even higher, i.e., 87.8%, over

messages with more than one event. In addition, the percentage of

‘‘Diverse motif’’ over messages with a single event is 83.1%, which

is still higher than the average percentage of that over all data set.

However, the percentage of the three types of motifs over messages

with or without URL is close to that over all data set. One possible

explanation for these findings is that a message with events might

trigger more discussions about the events, and then an individual is

more likely to be exposed to the message for multiple times.

Furthermore, we divide the messages into four different classes

according to their popularity. These classes are class 0 - Messages

that were forwarded by 10,100, class 1 - Messages that were

forwarded by 100,1000, class 2 - Messages that were forwarded

Figure 5. The variation of exposure curve for different kinds of messages. (a) The probability of forwarding a message with and without
embedded URL. (b) The probability of forwarding a message with and without events. (c) The probability of forwarding a message with more than
one event and with a single event.
doi:10.1371/journal.pone.0076027.g005

Figure 6. Two particular cases of exposure curve. (a) The exposure curve for the event ‘‘Foxconn worker falls to death’’, in which P(k) increases
with the number of exposures. (b) The exposure curve for the event ‘‘Wenzhou train collision’’, in which P(k) decreases with the number of exposures.
doi:10.1371/journal.pone.0076027.g006

CummulativeEffectInfoDiff
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by 1000,10000, and class 3 - Messages that were forwarded more

than 10000 times. As shown in Table 1, from class 0 to class 3, the

percentage of the ‘‘Diverse motif’’ increases while the other two

decrease. This finding shows us the correlation between message

popularity and structural diversity of diffusion network.

We turn to a problem we called ‘‘forwarding-whom’’. Given an

individual X who is exposed to a message from two different users:

A and B, whom will X forward the message from, A or B? We

analyze this ‘‘forwarding-whom’’ problem in our data set. The

results are shown in Table 2. When a user is exposed for twice, the

percentage of the temporal pattern that X forwards from the latter

exposure is 85.5%, while the percentage of the pattern that X

forwards from the earlier one is just 14.5%. Furthermore, if user

A’s indegree on social graph is bigger than B’s, the percentage of

the temporal pattern that X forwards from A is 38.9%. If A is the

source of message, the percentage is 43.7%. The results on the

temporal patterns in information diffusion provide several

empirical evidence for understanding the forwarding behavior of

individuals and the evolution of diffusion network.

Discussion

In this paper, we have analyzed the information diffusion on the

microblogging network in the microscopic perspective. Our study

is conducted on the biggest microblogging network in China.

Specifically, we have studied the cumulative effect of multiple

exposures on Sina Weibo. We have also studied the effect on the

spread of a message that was divided into groups according to the

contents of each event in detail. We have observed a peak in the

probability of forwarding at 2 exposures and then a slow drop. We

have found that the probability of forwarding a message

containing embedded URL, a single event related, and multi-

event related was significantly higher. We have examined the

exposure curves corresponding to different events specifically. To

our surprise, we have found that the exposure curve could be

affected by outside intervention, such as restrictions on media

coverage. Furthermore, we have investigated the structural and

temporal patterns frequently occurring in information diffusion.

These findings provide us great insights in understanding the

fundamental mechanism of information diffusion and predicting

the behavior of forwarding for an individual.

A long list of extensions can be conducted based on our findings.

Examples include deep exploration on the relationship between

the final popularity of a message and the characteristics of the

networks spanned by early adopters, i.e., the users who view or

forward the content in the early stage of content dissemination.

We will further study the various roles played by individuals on

social network. A probabilistic view might be introduced to explain

the cumulative effect of multiple exposures. Besides, one is also

encouraged to discover more temporal characteristics by time

series analysis. As future work, we will be devoted to the modeling

of forwarding behavior of individuals and the popularity

prediction problem.

Materials and Methods

The data set is collected from the most popular Chinese

microblogging service, namely Sina Weibo. Sina Weibo has more

than 300 million registered users and generates about 100 million

messages per day. The length of each message is no larger than

140 characters. Users obtain messages from other users through

following relationships among them. Each following relationship is

a directed link from the follower to the followee. For each user, the

messages from his/her followees are ranked chronologically. Users

can both deliver new messages and forward other users’ messages.

Table 1. Statistics of three types of structural motifs.

Types of structural motifs ‘‘Diverse’’ ‘‘Unidirectional’’ ‘‘Reciprocal’’

% over all messages 76.5% 9.0% 14.5%

% over messages with embedded URL 75.5% 10.3% 14.2%

% over messages without embedded URL 76.8% 8.6% 14.5%

% over messages without events 74.2% 9.8% 16.0%

% over messages with events 83.9% 6.7% 9.4%

% over messages with a single event 83.1% 6.6% 10.3%

% over messages with more than one event 87.8% 7.0% 5.2%

% over messages with popularity between 10,100 50.8% 17.0% 32.2%

% over messages with popularity between 100,1000 76.0% 9.6% 14.4%

% over messages with popularity between 1000,10000 82.6% 7.0% 10.4%

% over messages with popularity larger than 10000 87.8% 5.0% 7.3%

doi:10.1371/journal.pone.0076027.t001

Table 2. Statistics of temporal patterns.

Types of behavior of X X forwards from A X forwards from B

A is earlier than B 14.5% 85.5%

A’s indegree is bigger than B’s and A is earlier than B 38.9% 61.1%

A is the source of message 43.7% 56.3%

doi:10.1371/journal.pone.0076027.t002

CummulativeEffectInfoDiff
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We get the data set from the WISE 2012 Challenge (http://

www.wise2012.cs.ucy.ac.cy/challenge.html). This data set is

crawled via the API provided by Sina Weibo. According to Sina

Weibo’s Terms of Services, both the user IDs and the message IDs

are anonymized. The content of messages is also removed.

However, some messages are annotated with events. Each event

has the terms used to identify the event and a link to Wikipedia

(http://wikipedia.org) page containing descriptions to the event.

In this paper, we only use the messages that was originally

posted to Sina Weibo between July 1, 2011 and July 31, 2011.

There are 16.6 million messages. For each message, we collect its

forwarding information between July 1, 2011 and August 31,

2011. For each forwarding of a message, the recorded information

contains the anonymized user ids, the timestamp of this

forwarding, and the forwarding path containing all the anon-

ymized users in the path from the original user to the current user.

The timestamp is in the resolution of seconds.

In addition, the data set also contains a snapshot of the social

network recording the followships among users. The social

network contains 58.6 million users and 265.5 million followships

among them.
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