

Supplementary Figure 1. Expression of pluripotency markers and karyotype analysis for TRiPSC line. (a) Representative co-staining of Oct4 and DAPI in undifferentiated TRiPSCs. (b) Co-staining of Tra-1-81 and DAPI in undifferentiated TRiPSCs. (c) Live cell FACS analysis for Tra-1-81⁺ undifferentiated TRiPSCs. Iso, isotype antibody control. (d) Alkaline Phosphatase (APS) live staining in undifferentiated TRiPSCs. (e) TRiPSCs exhibit normal karyotype. Scale bar, 200µm.

Supplementary Figure 2. Optimizing myogenic progenitor cell derivation. (a) Tet-on lentiviral plasmids used for transient Pax7 induction. **(b)** mRNA expression level of paraxial mesoderm markers, *MSGN1* and *TBX6*, and early mesoderm marker, *T*, under various treatments for mesoderm induction. EB D5/8/11: 5/8/11 days in embryoid body (EB) suspension culture; C D2: 2 days in CHIR99021 (10 μ M); C+L D2/4/6: 2/4/6 days in CHIR99021 (3 μ M) + LDN193189 (0.5 μ M). Expression shown as fold change relative to undifferentiated hPSCs (n=4 samples for hPSC ctrl, n=6 samples from 3 differentiations for other data points). **(c-d)** Comparison of MIM and E6 induction media before (c) and after (d) sorting for GFP. **(e)** Representative FACS analysis of GFP⁺ cells from H9 at sorting. **(f)** Representative immunostaining of GFP and Pax7 in H9 derived progenitors at day 4 post sorting. Scale bar, 50 μ m. Data are presented as mean ± SEM.

Supplementary Figure 3. Optimizing myogenic progenitor cell expansion. (a) Representative live images of post-sorted GFP⁺ cells in PMM and E6 expansion media. Arrows indicate cells with spindle-like shape. Scale bar, 100 μ m. (**b-c**) Quantification of GFP⁺ cell fractions (**b**) and total cell numbers (**c**) during passaging in different expansion media (*P<0.05 vs. E6 passage 0, #P<0.05 vs. PMM passage 3, Tukey-Kramer HSD test; n = 6 samples from 2 expansions for each condition, data are presented as mean ± SEM). (**d**) Representative images of expanded cells differentiated in monolayers for 1, 4 and 14 days showing higher myotube density in PMM-expanded cells. Scale bar, 100 μ m.

Supplementary Figure 4. Relative mRNA expression levels of *PAX7, PAX3, MYF5, MYOD*, and *MYOG* in undifferentiated hPSCs, iMPCs, and early passaged primary human myoblasts. (*P<0.05 vs. hPSC, #P<0.05 vs. iMPC, Tukey-Kramer HSD test; for hPSCs, n=4 samples from 2 hPSC lines, for iMPCs, n=6 samples from 3 differentiations, for primary human myoblasts, n=4 samples from 2 donors, data are presented as mean ± SEM).

Supplementary Figure 5. Dynamic expression of myogenic markers during 2-week monolayer differentiation of iMPCs. (a-e) Representative immunostaining of MyoD, MyoG, and GFP fluorescence at day (D) 0, 2, 4, 8, and 14 of differentiation. Scale bar, 25µm; (f-h) Relative mRNA expression levels of *MYOD*, *MYOG* and *GFP* during 2-week differentiation (n=4 samples from 2 differentiations, data are presented as mean ± SEM).

Supplementary Figure 6. Monolayer differentiation of iMPCs. Representative immunostaining of SAA, MyoG, and α -bungarotoxin (BTX) after 2 weeks of monolayer differentiation of iMPCs showing high efficiency of fusion and myogenesis (**a**, scale bar, 100µm), formation of acetylcholine receptors (**b**, scale bar, 25µm), and cross-striations (**c**, scale bar, 25µm).

Supplementary Figure 7. Structure of iSKM bundles made from H9 line. (a-c) Representative immunostaining of dense, uniformly distributed, myotubes in bundle cross-section. Scale bars: **a**, 75 μ m; **b**, **c**, 25 μ m. Col 1, collagen I. (d) Representative longitudinal section of 2-week bundles showing aligned, cross-striated myotubes with BTX labeled acetylcholine receptors. Scale bars, 25 μ m.

Supplementary Figure 8. Quantification of sarcomeric structures in 4-week differentiated iSKM bundles. (a) Percentage of cells with I/A-band, M-line, Z-line and H-zone (n=50 cells). (b) Percentage of sarcomeres containing I/A bands that also contain M-line, Z-line, and H-zone (n=1367 sarcomeres). (c) Distribution of sarcomere lengths (n=1848 sarcomeres).

Supplementary Figure 9. Examples of T-SR structures observed in myotubes from 4-week differentiated iSKM bundles. (a,b) Inverted triads. (c) Diads. (d) multi-junction structure. Z: Z-line; T: T-tubule; SR: sarcoplasmic reticulum. Scale bars, 500nm.

Supplementary Figure 10. Passive mechanical properties and twitch kinetics of iSKM bundles. (a) Passive tension of H9 and TRiPS bundles during 4-week culture. (b, c) Twitch kinetics of H9 (b) and TRiPS (c) derived iSKM bundles during 4-week culture (n=6-8 bundles per group at each time point, data are presented as mean \pm SEM).

Supplementary Figure 11. iSKM bundles derived from GM25256 and Fucci hPSCs. (a) Representative cross-sections of 2-week differentiated iSKM bundles showing dense F-actin⁺ myofibers surrounded by Laminin (Lam). Scale bar, 100 μ m. (b) Amplitudes of twitch and tetanus (at 40 Hz) and passive tension at 10% elongation generated by GM25256 and Fucci derived iSKM bundles at 2 weeks of differentiation (n=8 bundles for each line). (c) Specific forces and tetanus-to-twitch ratios of 2-week differentiated GM25256 and Fucci derived bundles (n=8 bundles for each line). (d) Twitch kinetics of 2-week differentiated GM25256 and Fucci derived bundles (n=8 bundles for each line). Data are presented as mean \pm SEM.

Supplementary Figure 12. Relative mRNA expression levels of different myosin isoforms and calcium handling related genes in 2-week differentiated iSKM bundles, primary human myobundles, and native human muscle. (*P<0.05 vs. 2wk myobundle group, #P<0.05 vs. native human muscle, Tukey-Kramer HSD test; for iSKM bundles, n=8 bundles from 3 differentiations, for primary human myobundles, n=6 bundles from 3 differentiations, for native human muscle, n=3 samples from 3 donors with 4 technical replicates each, data are presented as mean ± SEM).

Supplementary Figure 13. Contractile properties of primary human myobundles differentiated for 2 weeks in serum-free iSKM differentiation media. (a) Contractile force, passive tension at 10% elongation and tetanus-to-twitch ratio of 2-week differentiated primary human myobundles. (b) Specific force of 2-week primary human myobundles. (c) Twitch kinetics of 2-week primary human myobundles (n=6 bundles from 2 differentiations). Data are presented as mean ± SEM.

Day 15

Supplementary Figure 14. Processing and quantification of blood vessel density in iSKM bundles implanted in dorsal skin-fold window chambers in immunocompromised mice. Representative raw (left), cropped/contrast enhanced (middle), and thresholded (right) intravital images used for quantification of blood vessel density in bundle area 6 and 15 days post-implantation. Note increased transparency of the bundle area with time PI. Scale bar, 1mm.

MHCK7-R-GECO

Supplementary Figure 15. Representative images of *ex vivo* recorded R-GECO signals in iSKM bundles implanted for 1 week in mouse TA muscle, shown without stimulation (Non-stim) or during 1Hz and 20Hz stimulation. Scale bar, 50µm.

Media and solutions	Formulation
Neutralizing media	Low glucose DMEM (Thermo) supplemented with DNasel (20µg/mL, Sigma) and 50% FBS (Hyclone)
Flow buffer	PBS supplemented with 1% FBS (Hyclone) and 0.1% Sodium Azide (Sigma)
Blocking solution	PBS supplemented with 5% chicken serum (Sigma), 0.2%Triton X 100 (Sigma)
Sorting solution	E6 media supplemented with Y27632 (10μM, Tocris), Dox (1μg/mL, Sigma), DNasel (20μg/mL, Sigma), penicillin G (100 unit/mL, Thermo) and strepomycin (50 μg/mL, Thermo)
Collecting solution	FBS (Hyclone) supplemented with Y27632 (10μM, Tocris), Dox (1μg/mL, Sigma) , penicillin G (100 unit/mL, Thermo) and strepomycin (50 μg/mL, Thermo)
Expansion media (EM)	Low glucose DMEM (Thermo) supplemented with 10% FBS (Hyclone), Fetuin (500x), hEGF (1000x) and Dexamethasone (1000x) from SkGM SingleQuots Kit (Lonza), penicillin G (100 unit/mL, Thermo) and strepomycin (50 µg/mL, Thermo)
Differentiation media (DM)	Low glucose DMEM (Thermo) supplemented with N2 supplement (100x, Thermo), penicillin G (100 unit/mL, Thermo)
Cell/hydrogel mixture	12.5 million cells/mL in expansion media, bovine fibrinogen (4 mg/mL, Sigma), growth factor reduced matrigel (20% v/v, Corning), thrombin (0.2 unit/mg, Sigma)

Supplementary Table 1. Cell culture media and solutions

G3PD F	AGGTCGGAGTCAACGGATTTGG
G3PD R	AGGCTGTTGTCATACTTCTCATGG
TF	CCCGTCTCCTTCAGCAAAGTC
TR	TAAGAGCTGTGATCTCCTCGTTCTG
Tbx6 F	CTCCGTGACAGCCTACCAGA
Tbx6 R	GGTGTGTCTCCGCTCCCATA
Msgn1 F	AGGATGTCTGTCCAGCGGAG
Msgn1 R	AGGAGGTCTGTGAGTTCCCC
Myf5 F	CGCCTGAAGAAGGTCAACCA
Myf5 R	ACATTCGGGCATGCCATCAG
Pax3 F	CCTCAGGTAATGGGACTCCTG
Pax3 R	CCCCCTAAAAAGTCCAAGGCT
Pax7 F	GGAAGCGATTTTTGCCGACT
Pax7 R	TTGTGGCGGATGTGGTTAGG
MyoD F	CGACGGCATGATGGACTACA
MyoD R	TATATCGGGTTGGGGTTCGC
MyoG F	GCCAACCCAGGGGATCAT
MyoG R	CCCGGCTTGGAAGACAATCT
MYH1 F	ATCTAACTGCTGAAAGGTGACC
MYH1 R	TAAGTAAATGGAGTGACAAAG
MYH2 F	GCCGAGTCCCAGGTCAACAAG
MYH2 R	TGAGCAGATCAAGATGTGGCAAAG
MYH3 F	GGAGCAGGACAGAAGATAT
MYH3 R	CCCAGATTGAAACAAAGCA
MYH7 F	CTGTCCAAGTTCCGCAAGGT
MYH7 R	TCATTCAAGCCCTTCGTGCC
MYH8 F	ATTTCCACCAAGAACCCA
MYH8 R	AAAGGATTCTGCCTCTGG
CASQ1 F	ACATTGTGGCCTTCGCAGAG
CASQ1 R	CCATACGCTATCCGCATCAGT
CASQ2 F	TTGCCATCCCCAACAAACCT
CASQ2 R	AGAGTGGGTCTTTGGTGTTCC
RYR1 F	GCAAAGGAGAGACAGGTGCC
RYR1 R	TGGCGATTGATGACAGTGCC
SERCA1 F	GAAGGGAGCACAATGGAGGC
SERCA1 R	CAGGCCAGCACGAAGGAAAT
SERCA2 F	CCAACGTCGGGGAAGTTGTC
SERCA2 R	CGCCGACGTAACAGCCAATA
NCX1 F	AGGCCAACCTGTCTTCAGGA
NCX1 R	AACCACAAGGGCCAGGTTTG
PMCA1 F	AAIGGGAACAIIACICIGGGGC
PMCA1 R	
PLN F	GCIGCCAAGGCTACCTAAAAG
PLN R	GACGTGCTTGTTGAGGCATTT

Supplementary Table 2. Primers used for qRT-PCR.