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Abstract

Trace quantities of contaminating DNA are widespread in the laboratory environment, but their presence has received little
attention in the context of high throughput sequencing. This issue is highlighted by recent works that have rested
controversial claims upon sequencing data that appear to support the presence of unexpected exogenous species. I used
reads that preferentially aligned to alternate genomes to infer the distribution of potential contaminant species in a set of
independent sequencing experiments. I confirmed that dilute samples are more exposed to contaminating DNA, and,
focusing on four single-cell sequencing experiments, found that these contaminants appear to originate from a wide
diversity of clades. Although negative control libraries prepared from ‘blank’ samples recovered the highest-frequency
contaminants, low-frequency contaminants, which appeared to make heterogeneous contributions to samples prepared in
parallel within a single experiment, were not well controlled for. I used these results to show that, despite heavy replication
and plausible controls, contamination can explain all of the observations used to support a recent claim that complete
genes pass from food to human blood. Contamination must be considered a potential source of signals of exogenous
species in sequencing data, even if these signals are replicated in independent experiments, vary across conditions, or
indicate a species which seems a priori unlikely to contaminate. Negative control libraries processed in parallel are essential
to control for contaminant DNAs, but their limited ability to recover low-frequency contaminants must be recognized.
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Introduction

While contamination by foreign DNA is a concern for many

experiments, it requires particular attention for those that rely on

sensitive methods to describe samples that are themselves dilute or

degraded. Low quality samples poorly compete with contaminant

DNAs over the course of an experiment, and methods to

characterize and eliminate contaminants have been rigorously

evaluated in fields where such samples are common. These studies

have found that free DNA at trace but detectable levels is

widespread, often being found in ‘‘clean’’ new PCR tubes [1],

dNTPs [2], and a variety of other sources [3-8]. Even extreme

precautions, such as UV-treatment of reagents, the use of positive

pressure laboratory ventilation systems, etc., appear sufficient only

to reduce, rather than eliminate, the abundance of contaminant

DNAs [9-11].

These results were established using PCR, but they have

received surprisingly little attention in the context of high

throughput sequencing, which shares with PCR the ability to

potentially detect single DNA molecules. Moreover, sequencing

samples are processed through a longer and more complex

experimental pipeline, which typically includes a PCR amplifica-

tion step, increasing their exposure to contaminants. The power of

sequencing to recover, but not necessarily to identify, contaminant

DNAs should grow as read depths increase and as library

preparation methods require progressively smaller amounts of

input material. Nevertheless, the presentation of contaminants in

sequencing data is poorly understood. Although sequences from

humans and a handful of other species have been found to

contaminate sequencing samples and databases [12-17], the roster

of potential contaminant species is unknown, as is their

distribution within and between experiments, making it difficult

to infer whether or not any given read originated from the

intended sample.

To help create a framework for this inference, I sought to

describe the diversity of contaminant reads in four independent

sequencing experiments and how these reads are replicated across

samples and negative controls. I used this information to evaluate

whether contaminants may have evaded the heavy replication and

plausible controls described in a recent paper to provide an

alternative explanation for its claim that complete genes pass from

food to human blood.

Materials and Methods

Inference of human contaminants in E. coli sequencing
data

I downloaded data from Parkinson et al [18] from the European

Nucleotide Archive. Run accession numbers are listed in
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Additional File 1, Table S1. Splitting apart the paired-end reads, I

used bowtie version 1.0.0 [19] to attempt to map each end to the

E. coli K12 reference genome, allowing up to three mismatches in

the seed region (‘-n 3’) but otherwise using default parameters.

Unmapped reads were then aligned to the human hg18 reference

genome [20] with no mismatches permitted in the seed (‘-n 0’).

Reads were considered a ‘hit’ if both ends from each pair mapped

to within one kilobase of each other. The fraction of human reads

was considered the total number of paired end reads meeting these

criteria over the total number of pair-end reads. A generalized

linear model was used to describe the relationship between the log

of the sample DNA concentration and the frequency, modeled

with the binomial distribution, of human-matching reads within

the total library. This analysis was performed using the GLM2

package in R [21,22].

Inference of contaminant reads and species composition
in four sequencing experiments

I downloaded data from the short read archive corresponding to

study accession numbers SRP002535 (referred to in the main text

as the ‘‘Tumor’’ dataset [23]), SRP014866 (‘‘Strandseq’’ [24]),

SRP006834 (‘‘RNAseq’’ [25]), and SRP017186 (‘‘Sperm’’ [26]).

The specific SRA accessions for each dataset are listed in

Additional File 2, Table S2. Due to differences in scope and

sequencing technology, the numbers of reads sequenced by these

studies differed over orders of magnitude, and so samples from the

RNAseq and Strandseq datasets were pooled to provide a more

comparable number of total reads, whereas samples having close

to the median number of reads in the Sperm and Tumor datasets

were analyzed individually. Given the unusual library preparation

of the RNAseq dataset [25], in which each read contains a

barcode and an uncertain number of guanines, I determined the

information content of each position in the library (Additional File

3, Figure S1) and, based upon these data, removed the first fifteen

base pairs of each read. The Strandseq and Sperm studies used

paired-end libraries; I split paired ends and processed each end

independently.

For each dataset, I used bowtie as described above to screen out

reads that aligned to the appropriate mouse or human reference

genome (hg18 [20] for Sperm and Tumor; mm9 [27] for RNAseq

and Strandseq), allowing three mismatches in the seed region.

Using the Amazon EC2 image ami-ef42d586, which contains

snapshots of the NCBI nucleotide databases from 02/04/2013, I

used BLAST to search for hits to each unaligned read to the NR

database, using flags –task megablast, -outfmt 6, and –num_align-

ments 5 (500 for the comparison of positive and blank samples

from the Strandseq and RNAseq experiments).

Each experiment having different read lengths and qualities, I

considered hits of 100% identity over 48, 75, 40, and 101 base

pairs for the Tumor, Strandseq, RNAseq, and Sperm datasets,

respectively, to be a perfect match. Due to its large size, the

number of reads used for the Strandseq dataset was capped at 7.5

million.

For each BLAST match, I used the GI sequence identification

number to locate the corresponding taxID from the NCBI

taxonomy database, discarding reads that did not cross-reference.

For each taxID, I ascended the tree to the fourth-lowest node and

assigned the BLAST hit to that taxonomic category. Reads were

discarded if they had BLAST hits to more than one of these

categories, if they matched sequences from the species of the

reference genome, or if they only matched sequences in the

database that were taxonomically unclassifiable (e.g. taxID

155900, ‘‘uncultured organism’’). Reads matching these criteria

were also used for the comparison of positive and blank samples

from the Strandseq and RNAseq experiments, where the

taxonomy tree was ascended to the ‘‘genus’’ level and reads that

matched to more than one genus were discarded.

Diversity of chloroplast DNAs in individual libraries
Using the sequencing data described in Additional File 2, Table

S2 and the methods described above, I screened out reads in each

of these 100 samples that matched the human hg18 genome. I

then used bowtie to attempt to match each unmapped read to a

database of chloroplast genomes (Additional Table S4, Table S3),

allowing no mismatches in the seed region (‘-n 0’). These settings

were specified to closely follow those used by Spisak et al [28]. As a

further precaution against incorrect assignment, reads that

matched chloroplasts using the above criteria were screened using

BLAST against the NR database, removing those that had higher

similarity to non-chloroplast sequences.

Other contaminant species detected in cell-free DNA
sequencing samples

Downloading the data generated by Spisak et al [28] (European

Nucleotide Archive accession number ERP002472), I created a

representative subsample by combining one million reads from

each sequencing sample. I screened these data against the

Escherichia coli, Malassezia globusa and Propionibacterium acnes
genomes and the Solanum lycopersicum chloroplast genome using

bowtie as described above and in Spisak et al. To more closely

follow the methods used by Spisak et al, matching reads were not

subsequently screened against the NR database.

Results and Discussion

Contaminant read count is inversely related to sample
concentration

High throughput sequencing quantifies the relative, not

absolute, quantities of different DNAs in a library. If we assume

that the amount of contaminant DNA contributed to each of a set

of identically-prepared libraries is constant, we should expect that

the number of reads matching contaminant genomes will increase

as the concentration of the sample decreases. To illustrate this

relationship, I reanalyzed data from a study that sequenced

different dilutions of a single sample of E. coli DNA [18],

examining how changes in the concentration of E. coli DNA

affected the number of reads matching sequences in the human

genome, a common laboratory contaminant [12,14].

The authors of this study sought to demonstrate the efficacy of a

novel low-concentration library preparation protocol. To this end,

they used it to create libraries from 1ng, 100pg, and 10pg of a

shared E. coli DNA sample; they also used 1 mg of this DNA to

prepare a sequencing library using the standard Illumina protocol.

As expected, there is an inverse relationship between the

concentration of the sample and the frequency of contaminant

reads (Figure 1A). For the four libraries prepared from the highest

concentration of DNA (1ng), I found only three reads in total that

mapped to the human but not to the E. coli genome. However, the

frequency of these reads increased with decreasing sample

concentration, to approximately 175 and 2,500 reads per million

in the 100 and 10pg samples, respectively (z = -108.4, p,2e-16,

see Methods). The protocol used to prepare the libraries can

influence the amount of contamination, however: the protocol

described above used a single tube to fragment input DNA, ligate

adapters, and amplify fragments, potentially reducing the sample’s

exposure to contaminants. I found an intermediate frequency of

contaminating reads in the library prepared from the standard
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Illumina protocol, despite its higher concentration of sample DNA

(Figure 1B).

This relationship between the concentration of the sample and

the frequency of contaminant reads may differ in magnitude

within and between experiments due to, for instance, differing

preparation protocols, laboratory environments, and human error.

Nevertheless, we can expect in general that libraries prepared from

dilute samples will be more vulnerable to contaminating DNAs

than will libraries prepared from more concentrated samples.

Unmapped reads from independent experiments match
a wide range of species

Although contamination by DNA from humans [12,14], plants

[17], and a handful of bacterial species [13,15,16] has been

described in sequencing data, there has been to my knowledge no

systematic effort to describe the diversity of contaminants evident

in sequencing data, making it difficult to gauge the likelihood that

any given species inferred to be present from sequencing data

originated from contamination. To address this issue, I performed

a metagenomic analysis of potential contaminants in a set of four

independent sequencing experiments [23-26].

In order to recover the greatest possible yield of contaminant

DNAs, I chose experiments that worked with low quantities of

input material. All of these experiments prepared libraries from

individual cells, but they otherwise had different goals and used

different species and experimental techniques (Table 1). I took

several precautions to limit the impact of sequencing errors and to

ensure that inferences of contaminant species were as conservative

as possible. For each of these experiments I used permissive

settings to screen out reads that could potentially map to the

appropriate reference genome, and I then used BLAST to search

for perfect matches to the remaining reads in the NR database

across the entire or, depending on the dataset, close to the entire

length of each read (see Methods). The use of BLAST for

phylogenetic assignment, although once standard [29], has

important shortcomings, including loss of information from non-

global alignment, ignorance of population genetic and phyloge-

netic issues, and the use of sequence-level rather than clade-level

confidence metrics [30]. However, alternative methods that take

these issues into account, e.g. SAP [30] and EcoTag [31], are not

computationally feasible at this scale. As highly conserved regions

are less informative for taxonomic classification, I further screened

out reads with reported BLAST hits to more than one broad

taxonomic category.

In all of these experiments I found reads matching sequences

belonging to a wide diversity of groups (Figure 2), and the

observed abundance of each group was broadly correlated across

experiments. These groups include some which might seem

unlikely contributors to contamination, such as Streptophyta, a

phylum encompassing the land plants and some green algaes.

There are several potential sources for reads such as these that

preferentially map to alternate genomes in sequencing experi-

ments. In some cases, they may truly be evidence for an alternate

organism in the sample, e.g. the serendipitous sequencing of new

genomes of the bacterial endosymbiont Wolbachia in several

Drosophila genome sequencing projects [32]. This seems unlikely

for the reads described in Figure 2, because all of these

experiments sequenced individual cells. Many of these reads

map to organisms that seem likely to contaminate samples, such as

Propionibacterium acnes, a pervasive skin bacterium, and the

simplest explanation for the diversity detected may be that traces

of many species are widespread in the laboratory environment. It

is also possible for multiplexed libraries to cross-contaminate each

other during sequencing [33], although this would not explain the

diversity of species observed here.

Many reads observed here appear to map to alternate genomes

due to sequencing errors. While most reads containing errors will

presumably not perfectly match any species’ genome, the large

number of reads analyzed here ensures that many will coinciden-

tally match genomes of species only related to those actually

present in the sample. For instance, many reads in each

experiment matched the chimpanzee genome, even though the

sample organism was either mouse or human. Whether a given

match to an exogenous species originated from a true contaminant

or from a sequencing error can be difficult to distinguish. Indeed,

some of the matches to the chimpanzee genome, particularly those

from the mouse experiments, may be due to errors made during

sequencing of contaminant human DNA. The choice of aligner

may also play a role in species assignment. Here I have used an

ungapped aligner, bowtie v.1.0, and so a missed base in the

reference sequence would prevent mapping to the correct

sequence and would preferentially match homologous sequences

from related species. Similarly, incomplete reference genomes may

lead to false inference of contamination, and differences in

completeness of alternate genomes may bias the inference of the

origins of contamination. However, these issues, driven by close

homology, would be unlikely to shift the distribution of broad

taxonomic categories shown in Figure 3.

It is possible that examination of error patterns and rates with

different sequencing technologies would allow probabilistic attri-

bution of each potential contaminant read to either experimental

or sequencing errors, but for the purposes of this study the precise

origins of each read will remain ambiguous. To reflect this

ambiguity, I will refer to reads that match exogenous genomes as

‘‘contaminant matching reads.’’

Figure 1. Reads matching the human genome are more
prevalent in libraries prepared from dilute samples. (a) The
fraction of paired-end reads which preferentially map to the
contaminant human genome instead of the E. coli K-12 genome,
measured against the total number of reads in the library, is plotted
against the amount of E. coli K-12 DNA used per tagmentation
procedure as described by Parkinson et al [18]. Shading is used to
highlight closely overlapping points (n = 4, 3, and 3 for the 1ng, 100pg,
and 10pg libraries, respectively). Libraries listed at each concentration
were not identically prepared, each using a different restriction enzyme
or set of restriction enzymes at an intermediate step in the protocol
(Additional File 1, Table S1), but the number and composition of
enzymes used did not appreciably change the number of contaminant
reads recovered. (b) The same fraction is plotted for a library prepared
in the same experiment using a standard Illumina library preparation
protocol. Despite a higher concentration of input DNA, an intermediate
number of contaminant reads was detected.
doi:10.1371/journal.pone.0110808.g001
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‘Blank’ negative controls effectively describe the
distribution of contaminants per sample

The ‘‘RNAseq’’ and ‘‘Strandseq’’ (Table 1) experiments

prepared negative control libraries from ‘‘blank’’ buffer samples

into which no sample cell had been deposited. However, only a

small number of such libraries were prepared, and each produced

a relatively small number of reads, having in total 0.56% and

0.21% of the corresponding total number of reads in the positive

samples from the RNAseq and Strandseq studies, respectively. It is

possible that this low yield compromised their ability to represent

the spectrum of contaminants found in the positive samples.

To address this possibility, I compared the frequency distribu-

tion of genera represented by contaminant matching reads in the

positive and blank samples, discarding reads that promiscuously

matched more than one genus. I found that the frequency

distribution of recovered genera correlated well between positive

and blank samples from the same experiment, suggesting that,

despite their low yield, blank samples can serve as effective

negative controls (Figure 3). Furthermore, the correlation is poorer

between mismatched positive and blank samples taken from

different experiments, consistent with the spectrum of contami-

nants being experiment-specific. For instance, reads matching the

skin bacterium Propionibacterium acnes are more than 100-fold

more frequent in the genomic DNA sample than they are in the

RNA-seq dataset, perhaps reflecting the stricter guidelines for

handling RNA.

Despite the strong correlation between the positive and blank

libraries, the low yield of the blank libraries limited their ability to

control for low frequency genera in the positive libraries, many of

which were not represented in the blanks. As the lack of input

DNA pushes the boundaries of preparation protocols, this low

yield may be inevitable in true blanks. To increase overall yield

and thereby lower the detection threshold for potential contam-

inants, it may be sufficient to increase the number of blank samples

or to use a distinguishable carrier DNA (e.g. [34]). Sequencing

data generated from libraries prepared in the same laboratory and

with the same equipment may also be informative [17]. In cases

where exclusion of contaminants is paramount, the use of

techniques from ancient DNA sequencing may be considered

(e.g. [9]).

Libraries prepared from a single tissue appear
contaminated by different species

If a reagent or piece of equipment is heavily contaminated by a

given species, then all exposed samples should share evidence of

being contaminated by that species. In this scenario, one way to

control for contamination would be to examine how exogenous

species are distributed, considering as contaminants species that

are recovered from most or all samples. However, while this

assumption is reasonable if the contaminant concentration is high,

we should expect a weaker correlation between exogenous species

if the contaminant concentration is low. Indeed, at the lower limit,

where each contaminant species contributes one DNA molecule,

samples will necessarily be contaminated by different species. To

examine whether these low-frequency contaminants are detectable

and to what extent they differ between samples, I reanalyzed data

from the ‘‘Tumor’’ experiment in which independent sequencing

samples were prepared from the same tissue rather than from

independent individuals. In this case, all differences between

samples outside changes to the target genome can be attributed to

contamination.

In this experiment, Navin et al [23] used FACS to isolate 100

individual nuclei from a section of a single tumor, and, processing
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them similarly through 96-well plates, used whole genome

amplification to accumulate sufficient DNA for library preparation

and sequencing. For each of these libraries, I first screened out

loose matches to the human genome before searching for strong

matches to a database of chloroplast genomes. Reads that matched

chloroplast genomes were further screened against the NR

database using BLAST, and chloroplast genomes with uneven

read coverage, presumably caused by matches to low-complexity

sequences, were screened out as well (Additional File 5, Figure S2).

I found reads matching chloroplast DNAs in all samples, and

different samples had different rosters of inferred contaminants

(Figure 4; Additional File 6, Table S4), suggesting that contam-

inants can contribute unevenly to samples within a single

experiment. Many of the species recovered are edible and

commonly eaten, such as tomato and lettuce, although a slight

majority (53%) of the reads from Figure 4 matched to oak and

chestnut. Many reads also matched to Heliconia, but these could

be due to Heliconia’s close relation to the banana, which was not

represented in the chloroplast database.

Contaminants provide an alternative explanation for
observations of plant DNAs in human blood

Highlighting the potential impact of contaminants in high

throughput sequencing data is a controversial paper that claimed

that complete genes pass from food to human blood [28]. The

authors of this study based their claim on their observations of

chloroplast sequences from edible plants in sequencing data from

samples of blood plasma. They were able to replicate this

observation in independent datasets, and, contrary to what might

be expected from a single contamination event, found that the

plant species recovered differed from sample to sample within a

single experiment. Furthermore, while these reads could not be

detected in a negative control sample of fetal blood, which

circulates independently, they found many in the corresponding

maternal plasma sample, which is presumably more exposed to the

digestive system.

On the basis of their observation’s heavy replication, heteroge-

neity among samples, absence from a plausible negative control,

and, finally, their assumption that plant DNA would be unlikely to

infiltrate stringent laboratory practices, the authors dismissed the

possibility of contamination. However, as I have shown above, all

of these assumptions about the nature of contamination are

Figure 2. Reads that do not map to the reference genome match a diverse array of clades. For each experiment (‘‘Tumor’’ [23], ‘‘RNAseq’’
[25], ‘‘Sperm’’ [26], and ‘‘Strandseq’’ [24]), all reads were individually mapped to the appropriate reference genome using permissive parameters
before being used to query the NR database using BLAST. BLAST hits were considered ‘‘perfect’’ if they matched with 100% identity over a dataset-
specific length threshold (see Methods). A read was assigned to one of the depicted phylogenetic categories if it did not map or have a perfect BLAST
hit to the reference genome, had a perfect BLAST hit to a species in that category, and had no BLAST hits to species outside that category. For each
category and experiment, the fraction of reads meeting this criteria against the total number of reads in the experiment is depicted.
doi:10.1371/journal.pone.0110808.g002

Figure 3. Experiment-specific correlation between distribu-
tions of genera recovered from ‘blank’ and positive samples.
The ‘‘RNAseq’’ [25] and ‘‘Strandseq’’ [24] experiments sequenced
libraries prepared from blank samples into which no cells had been
introduced. Reads from these blank samples and from all other samples
were separately pooled, screened against the mouse reference genome,
and queried against the BLAST NR database. Reads were screened using
the same criteria as described for Figure 2, but adjusted to the genus
taxonomic level. The number of reads matching each genus in each
dataset was counted, incremented by one, and log transformed. Values
for the pooled positive samples (StrandSeq and RNAseq in rows A-B and
C-D, respectively) are plotted with their Pearson correlation against
values for the pooled negative samples (Strandseq and RNAseq in
columns A-C and B-D, respectively). Matched positive and negative
samples in (B) and (C) exhibit more correlated read counts than do
mismatched positive and negative samples in (A) and (D).
doi:10.1371/journal.pone.0110808.g003

Diverse and Widespread Contamination in NGS Data

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110808



incorrect. DNA from plants is a common contaminant, and it

should be expected to appear to replicate across independent

experiments (Figure 2). Furthermore, the particular species

inferred can vary considerably from sample to sample within an

experiment (Figure 4). Finally, although the authors did find

hundreds of reads matching plants in a maternal plasma sample,

and none in a matched sample of whole fetal blood, the

concentration of DNA in whole blood is tens-of-thousands-fold

higher than that in blood plasma (approximately 60 mg/ml vs.

21ng/ml [35,36]). Given the inverse relationship between sample

DNA concentration and contaminant frequency (Figure 1), we

should expect plasma samples to exhibit more evidence of

contamination than full blood samples. Indeed, the corresponding

maternal whole blood sample contained only one plant-matching

read, a number statistically indistinguishable from zero, suggesting

that using fetal whole blood as a negative control in this case was

inappropriate. Contamination thus provides an alternative expla-

nation for all of the observations originally used to support the

authors’ claim.

To further investigate this possibility, I used the same criteria

used by Spisak et al [28] to assign reads to the tomato genome,

their most frequent inferred contaminant, to search for reads

matching three other potential contaminants in a representative

sample of the same datasets (see Methods): E. coli, P. acnes and M.
globosa. P. acnes and M. globosa are widely associated with the

human skin flora [37,38], although both have been detected in

stool samples as well [39,40]. Reads matching the genomes of each

of these species were more frequent than reads matching the

tomato chloroplast genome (Figure 5). While it cannot be proven

that these reads did not originate from genes passing through the

epithelium of the gastrointestinal tract, contamination appears to

be their more likely source.

Conclusions

Contaminants can in some cases effectively mimic behavior

intuitively expected from true signals, including replication across

independent experiments and variation between samples, and can

include species that are not typically considered potential

contaminants. This calls into question several controversial works

that have rested their claims on observations of rare matches to

exogenous species in sequencing data [28,41-43], and suggests that

blank negative controls, prepared in parallel with experimental

samples, are essential. Nevertheless, the rarest contaminants, being

difficult to recover in these controls, may be intrinsically difficult to

control for.

Supporting Information

Figure S1 Information per position in RNAseq dataset.
The entropy of each position in each of 460 libraries was

calculated, and the distribution of these among datasets is depicted

for each position. Due to the protocol used to generate these data,

each read began with a six base pair barcode, followed by at least

Figure 4. Heterogeneous species appear to contaminant samples from the same tissue and experiment. The ‘‘Tumor’’ [23] experiment
dissociated 100 individual cells from a sample of a single tumor and sequenced libraries from each. Following the analysis pipeline of a study that
claimed to find different plant species in different blood plasma samples from a single experiment, I used bowtie to screen each read in each library
against the human reference genome before using it to query a database of chloroplast genomes. The number of such hits to each genome is
depicted here, each count incremented by one and log-transformed. Only chloroplast genomes with at least 200 hits are shown. Rows and columns
were clustered using a neighbor-joining algorithm.
doi:10.1371/journal.pone.0110808.g004

Figure 5. Reads matching the tomato chloroplast genome are
less frequent than other contaminant matching reads in
samples of cell-free DNA. Spisak et al [28] used the frequency of
reads matching chloroplast genomes as evidence that genes pass intact
from food to the bloodstream, and found S. lycopersicum (tomato) to be
the most common contaminant. Evenly sampling from all of the
sequencing samples generated by Spisak et al, I used identical criteria
to investigate potential matches to three other contaminant species, E.
coli, P. acnes and M. globosa. P. acnes and M. globosa are associated with
the human skin flora. The frequency of reads matching each of these
contaminant reads, per million reads in the pooled samples, is depicted.
doi:10.1371/journal.pone.0110808.g005
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three guanines. On the basis of this analysis, the first fifteen bases,

highlighted in gray, were trimmed from each read.

(PDF)

Figure S2 Coverage of chloroplast genomes. Reads from

the ‘‘Tumor’’ experiment were mapped to a database of

chloroplast genomes, and the coverage of genomes with more

than 200 matches is depicted here. The B. hypnoides genome was

removed from further analysis due to the observed uneven

coverage.

(PDF)

Table S1 The European Nucleotide Archive accession
numbers associated with each sample analyzed in
Figure 1.
(CSV)

Table S2 The SRA accession numbers associated with
the samples analyzed in Figures 3 and 4.
(CSV)

Table S3 The chloroplast genomes which made up the
database used in Figure 4.

(CSV)

Table S4 The total number of hits to each chloroplast
genome in each library from the Tumor dataset.

(CSV)
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