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SUPPLEMENTARY MATERIALS 

The supplementary methods provide a detailed description of the analytic strategy under 

DataSHIELD for the study-level meta-analysis (SLMA) of peripheral systolic blood pressure (SBP) data 

(scenario 1, Figure 4), and for the individual-level meta-analysis (ILMA) of acute myocardial 

infarction data (scenario 2, Figure 5).   
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S1.  SCENARIO 1. Using DataSHIELD to enhance the flexibility and efficiency 

of study level meta-analysis (SLMA) 

Simulation 
Six hypothetical studies were simulated. They were set up to investigate the influence of age (AGE) 

and a single nucleotide polymorphism (SNP) on peripheral systolic blood pressure (SBP).  The six 

studies consisted of 1,000, 2,000, 3,000, 4,000, 2,500 and 2,500 participants, respectively. Recruits 

were aged between 50 and 70 years.  For the jth
 individual (j = 1,…,4,000) in the ith study (i = 1,…,6), 

AGEij was generated from a uniform distribution with bounding parameters 50 and 70, and 

centralized by subtracting the mean (60 years).  SNPij was generated as the sum of two calls from a 

Bernoulli distribution with p = 0.2, corresponding to a minor-allele frequency of 0.2. The three 

genotypes were coded 0 (= no copies of the minor-allele), 1 (= one copy of the minor-allele) or 2 (= 

two copies of the minor-allele). Given the coding of the SNP variable, the data simulated reflect an 

additive genetic model. 

 

Having generated the simulated values for AGEij and SNPij, the linear predictor for each individual, 

LPij, was generated as: 

 

where , , and .  SBPij was then generated from a normal 

distribution with mean = LPij, and sd = 11. 

R code for simulating the data (cut and paste to use directly in R): 

############## 
#  SIMULATION  # 
############## 
 
#set up data structure 
set.seed(18984) 
numsubs.study<-c(1000,2000,3000,4000,2500,2500) 
numsubs<-sum(numsubs.study) 
numstudies<-length(numsubs.study) 
study.id<-rep(1:numstudies,numsubs.study) 
 
#set up model structure and parameters 
numpara<-3 
beta0<-125 
betaAGE<-0.25 
betaSNP<-0.5 
MAF<-0.2 
 
#simulate data 
AGE<-runif(numsubs,50,70) - 60 
SNP.1<-rbinom(numsubs,1,MAF) 
SNP.2<-rbinom(numsubs,1,MAF) 
SNP<-SNP.1+SNP.2 
lp<-beta0+betaAGE*AGE+betaSNP*SNP 
SBP<-rnorm(numsubs,lp,11) 
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Analysis 
Analysis was based on the multiple linear regression model:  

        

 

R code for overall regression analysis (all individual level data combined into one data set) 

##################### 
#   OVERALL ANALYSIS     # 
##################### 
 
#All studies together 
model.overall<-lm(SBP~AGE+SNP) 
cat("\n\nOVERALL ANALYSIS","\n") 
summary(model.overall) 
 

Abbreviated output from overall regression analysis 

OVERALL ANALYSIS  

Call: 

lm(formula = SBP ~ AGE + SNP) 

 

Coefficients: 

             Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 125.15770    0.10943 1143.724   <2e-16 

AGE           0.25937    0.01549   16.745   <2e-16 

SNP           0.44796    0.15806    2.834   0.0046  

--- 

 

R code for study-specific analyses 

######################### 
# STUDY SPECIFIC ANALYSES # 
######################### 
 
#create empty results matrices 
beta.s<-matrix(NA,nrow=numpara,ncol=numstudies) 
se.s<-matrix(NA,nrow=numpara,ncol=numstudies) 
 
#work with each study one at a time 
for(k in 1:numstudies) 
{ 
SBP.s<-SBP[study.id==k] 
AGE.s<-AGE[study.id==k] 
SNP.s<-SNP[study.id==k] 
 
model.study.specific<-lm(SBP.s~AGE.s+SNP.s) 
cat("\n\nSTUDY",k,"\n") 
print(summary(model.study.specific)) 
beta.s[,k]<-summary(model.study.specific)$coefficients[,1] 
se.s[,k]<-summary(model.study.specific)$coefficients[,2] 
} 
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Abbreviated output from study-specific analyses 

STUDY 1  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 124.95070    0.43910 284.560  < 2e-16 

AGE.s         0.31155    0.06315   4.933 9.47e-07 

SNP.s         1.66853    0.67835   2.460   0.0141 

--- 

 

STUDY 2  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.29081    0.29894 419.119  < 2e-16 

AGE.s         0.22046    0.04265   5.169 2.59e-07 

SNP.s        -0.28092    0.42458  -0.662    0.508     

--- 

 

STUDY 3  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.1460     0.2467 507.308   <2e-16 

AGE.s         0.2990     0.0349   8.566   <2e-16 

SNP.s         0.8101     0.3483   2.326   0.0201   

--- 

 

STUDY 4  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.10805    0.21473 582.633   <2e-16 

AGE.s         0.27995    0.03003   9.321   <2e-16 

SNP.s         0.44297    0.30450   1.455    0.146     

--- 

 

STUDY 5  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.23344    0.26195 478.086  < 2e-16 

AGE.s         0.24625    0.03726   6.609  4.7e-11 

SNP.s         0.37170    0.38534   0.965    0.335 

---  
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STUDY 6***  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.12993    0.26289 475.974  < 2e-16 

AGE.s         0.20305    0.03727   5.448 5.59e-08 

SNP.s         0.25418    0.39068   0.651    0.515     

--- 

 

 

Meta-analysis 
Meta-analysis involved calculating the weighted mean of each regression coefficient. Weighting was 

based on the number of subjects in each study. 

Standard errors were converted into precisions (inverse variances) by squaring and inverting the 

standard errors for each coefficient in each study. The precisions for each coefficient were then 

summed across the six studies to obtain the overall precision for each coefficient, and the overall 

precisions were converted back to standard errors by inverting and taking the square root. 

################# 
#  META-ANALYSIS   # 
################# 
#set up analysis weights 

analysis.wt<-numsubs.study/numsubs 

 

#set up a vector of 1s to use in summing precisions 

simple.sum<-rep(1,numstudies) 

 

#calculate mean of regression coefficients weighted for study sample sizes 

# “%*%” denotes vector multiplication  

beta.overall<-beta.s%*%analysis.wt 

 

#convert standard errors into precisions 

precision.s <-1/(se.s)^2 

 

#sum precisions across studies 

precision.overall<-precision.s%*%simple.sum 

 

#convert precisions back to standard errors 

se.overall <-1/(precision.overall)^0.5  

 

#round outputs 

beta.overall<-round(beta.overall,digits=4) 

se.overall<-round(se.overall,digits=4) 
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#create output results matrix 

meta.analysis.results<-cbind(beta.overall,se.overall) 

dimnames(meta.analysis.results)<-list(c("Intercept","AGE","SNP"),c("Coefficients","SE")) 

 

#print output 

print(analysis.wt) 

print(meta.analysis.results) 

 

Output from meta-analysis 

print(analysis.wt) 

[1] 0.06667 0.13333 0.20000 0.26667 0.16667 0.16667 

 

print(meta.analysis.results) 

> print(meta.analysis.results) 

          Coefficients     SE 

Intercept     125.1541 0.1094 

AGE             0.2595 0.0155 

SNP             0.4582 0.1580 

 

 

Comment 
Although it is not really germane to the validity of the DataSHIELD, the similarity of the estimates 

and standard errors from the overall regression analysis (above) and the results of this meta-analysis 

confirm that in this particular simulated scenario, the chosen approach to meta-analysis (i.e. overall 

parameter estimates obtained as the mean of study specific coefficients weighted by study size) was 

appropriate.  

 

The matrix of summary statistics in Figure 4 in the main text, corresponds to the study-specific 

results of study 6 (see *** above). 
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S2. The IRLS Algorithm 
The Iteratively Reweighted Least Squares (IRLS) algorithm is an iterative method of maximum 

likelihood estimation for generalised linear models(1) (GLMs).  It is closely related to the Newton-

Raphson procedure, but uses the expected information matrix to iteratively update the regression 

parameters at each iteration while the usual Newton-Raphson procedure uses the observed 

information matrix.  The general form of the IRLS algorithm for the rth iteration is: 

                                 Equation 1 

where  is the vector of estimated regression coefficients at the start of the current iteration,  

is the estimated expected information matrix,  is the score vector and  is the updated 

vector of regression coefficients at the end of iteration r that provides the coefficient values to be 

used in the next iteration (r+1).  The inverse of the expected information matrix is the variance-

covariance matrix of parameter estimates.   

In the practical example described in Figure 5 in the main text, the data are consistent with fitting a 

conventional (unconditional) logistic regression model (Bernoulli error, logistic link)(2).  For a GLM of 

this particular type, each component of the IRLS algorithm is derived as follows: 

In the first iteration, and for the ith subject, the linear predictor LPi is derived by multiplying out the 

model equation:  

 

where X is the design matrix, i.e. the matrix of covariates (see Figure 2 main text), and is the 

vector of initial (‘guessed’) regression coefficients. 

Fitted probabilities  are then obtained using the inverse logistic transformation, sometimes known 

as the expit transformation: 

. 

The expected information matrix  is now estimated: 

 

where Wr (here W1) is a weight matrix (X is again the design matrix), and the superscript ‘T’ indicates 

matrix transposition.  The weight matrix is a diagonal matrix with diagonal elements wi, each equal 

to 

 

where g‘(µi) indicates the first differential of the link function - here the logistic function - and Vi is 

the variance function for the ith  subject. For a logistic regression model: ;  ; 

and . At the rth iteration Wr is derived from the particular parameter values 

that pertain at that iteration, and W1 is therefore based on the parameter values that apply in the 

first iteration. 
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Finally, the score function  is derived: 

, 

where X and W are as before, and u1
 is a vector of subject-specific terms (ui), where 

:   if subject i is a case;  if subject i is a control. 

At the end of the first iteration,  is derived from  using  and .  

The next iteration, r = 2, is then performed taking   as the vector of regression coefficients, 

generating   and  and using these via Equation 1 to update  to obtain . This whole 

process is repeated successively until convergence is achieved. 

Critically, in the context of DataSHIELD when data are partitioned into N different studies,  and 

 at iteration r can each be obtained by summing their study-specific components across all 

studies. Thus if  is the component of the information matrix calculated as above, but using 

solely the data from study k,   the overall information matrix at iteration r can simply be 

obtained as  , and , the overall score function, as . This means that 

the update in the regression coefficients from   to   can be obtained knowing only the 

information matrix and score function from each study at each iteration – these are sufficient 

statistics - and there is therefore no requirement for the analysis centre to have access to any of the 

individual level data from the studies: the derivation of the study specific information matrices and 

score functions can be carried out entirely on the local computers at each study. 

 In determining whether convergence has been achieved, R, the glm function has a convergence 

criterion that is a function of the residual deviance for the current model, Dr, and the residual 

deviance for the previous model, Dr -1.  For instance, the default convergence criterion for glm in R 

satisfies the following condition: 

 

where ε = 1e-8 

The residual deviance is calculated at each iteration: 

, 

where log LF is the log-likelihood for the full (‘saturated’) model and log LC is the log-likelihood for 

the current model.  For a logistic regression model with binary (1,0) outcomes, as used in the current 

example, the log-likelihood for the current model is 

 

where C is a constant, , and all other parameters are as before.  
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S3. SCENARIO 2. Using DataSHIELD to undertake a true individual level meta-

analysis (ILMA) using a generalized linear model (GLM) 

Simulation 
Data were simulated for six hypothetical case-control studies set up to investigate the relationship 

between the risk of acute myocardial infarction, body mass index (BMI), and a single nucleotide 

polymorphism (SNP).  For each individual, j, in each study, i, BMI was generated from a normal 

distribution with mean 23 kg/m2 and standard deviation 4 kg/m2.  BMI was then centralised by 

subtracting the mean, 23 kg/m2, from each measurement.  A genotype for the SNP of interest was 

generated for each individual in a manner equivalent to the sum of two calls to a Bernoulli 

distribution with p = 0.3(2).  The minor-allele frequency was thus 0.3, and each genotype was either 

0 (= no copies of the minor-allele), 1 (= one copy of the minor-allele) or 2 (= two copies of the minor-

allele). Given the coding of the SNP variable, the data simulated reflect an additive genetic model. 

In addition to the regression coefficients for the intercept (bintercept) and two simulated covariates, 

 and ,  the model also incorporated an interaction term, , to allow for between-

study heterogeneity in the magnitude of the effect of the BMI covariate on the log-odds of MI. The 

interaction covariate took the value zero for individuals in studies 1, 2, and 3, and the BMI value for 

individuals in studies 4, 5, and 6, while the interaction coefficient  implied that a one unit 

change in BMI in a subject in studies 4, 5 or 6 increased the log-odds of MI by an amount  

higher than an equivalent change in a subject in studies 1, 2 or 3. 

 

The following model was thus used to generate the linear predictor: 

 

where , , , and .   

Probabilities for developing acute myocardial infarction, pij, were derived by taking the inverse 

logistic (expit) transformation of the linear-predictor: 

 

Case-control status, yij, was then generated for each individual by taking a random draw from a 

Bernoulli distribution with p = pij : 

 

If the sampled value of yij was 1, the subject was designated to be a case, if yij was 0 the subject was 

designated a control. 
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The case-control composition of the six simulated studies are summarised in the table below: 

Study Cases Controls Total 

1 962 1038 2000 

2 1486 1514 3000 

3 761 739 1500 

4 142 158 300 

5 1036 964 2000 

6 360 340 700 

 

 

R code for simulating the data: 

In order to use the following R code, cut at the top and bottom of the block, paste into a new “script 
file” in R and then run the script file 
 
#>>>>>>>>>>>>>>>>>>>>>>>START OF FIRST BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 
#In order to provide a clear illustration of the use of a pooled GLM analysis 
#based on the partitioned IRLS algorithm, this first block of code simulates data for six studies, 
#writes the data out to six separate data files in different folders on the local computer that is 
#being used to simulate them. These six folders are called: 
#C:\DataSHIELD.Example\DC1 
#C:\DataSHIELD.Example\DC2 
#C:\DataSHIELD.Example\DC3 
#C:\DataSHIELD.Example\DC4 
#C:\DataSHIELD.Example\DC5 
#C:\DataSHIELD.Example\DC6 
 
#These folders correspond to what would be folders on the local data computers 
#that would hold the real data files in a real example pooling data from multiple sites  
#Readers wishing to run this R code in order to fully explore this example will need to 
# create a top level directory (C:\DataSHIELD.Example) with the six study specific directories 
# beneath it. Alternative folder and file names can of course be used but the relevant names and 
# locations will then have to be changed in the R code. 
 
#For convenience, a copy of the full data set (all six studies combined) is also sent to the root level 
#folder C:\DataSHIELD.Example\  
 
#An additional folder (C:\DataSHIELD.Example\AC) is also required in order to represent the folder 
#where output from the individual data computers is sent to the analysis centre (AC) at the 
#end of each iteration and where the data computers can obtain the current beta vector. 
 
#We have deliberately written this code in a way that to experienced R users will look 
#very inefficient. For example, rather than writing a loop that will apply the same code 
#with appropriate modifications to each study sequentially, we have written the code for 
#each study in full and have stacked this code one on top of another. We believe that this 
#inefficiency makes the code far easier to follow for novice R users. 
 
#In addition, we have deliberately chosen to save objects on hard disk and then recall them into 
#R, rather than just leaving them in the active memory of R. This again makes things clearer. Users 
#can stop after one iteration and see what model components have been constructed. It is 
#also realistic, because when DataSHIELD is used in a real analysis 
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#the objects created from the R analysis at a remote data computer will 
#not magically appear in the active memory of the local R program running at the analysis centre. 
 
############## 
#  SIMULATION  # 
############## 
 
#Start R code preparation 
#First maximise memory allocation to ensure that you do not run out of space in R 
memory.limit(4095) 
 
#For convenience, start by setting up file names ahead of time 
#Note that by convention slashes in path statements in R are forward not backward 
DC1.data.file<-"C:/DataSHIELD.Example/DC1/Study.1.csv" 
DC2.data.file<-"C:/DataSHIELD.Example/DC2/Study.2.csv" 
DC3.data.file<-"C:/DataSHIELD.Example/DC3/Study.3.csv" 
DC4.data.file<-"C:/DataSHIELD.Example/DC4/Study.4.csv" 
DC5.data.file<-"C:/DataSHIELD.Example/DC5/Study.5.csv" 
DC6.data.file<-"C:/DataSHIELD.Example/DC6/Study.6.csv" 
AC.beta.vector<-"C:/DataSHIELD.Example/AC/beta.vector.csv" 
ALL.data.file<-"C:/DataSHIELD.Example/Study.ALL.csv" 
 
#SET UP DATA STRUCTURE 

#Random number seed so others can precisely repeat analysis on their own implementation of R 

set.seed(1028) 

#Specify study sizes and generate IDs for studies and individuals 

numsubs.study<-c(2000,3000,1500,300,2000,700) 

numsubs<-sum(numsubs.study) 

numstudies<-length(numsubs.study) 

study.id<-rep(1:numstudies,numsubs.study) 

id<-c(1:numsubs.study[1], 1:numsubs.study[2], 1:numsubs.study[3], 

           1:numsubs.study[4], 1:numsubs.study[5], 1:numsubs.study[6]) 

 

#SET UP MODEL STRUCTURE AND PARAMETERS 

#Number of and values of regression coefficients 

numpara<-4 

beta0<--0.3 

beta.bmi<-0.02 

beta.bmi456<-0.04 

beta.snp<-0.5 

#Minor allele frequency 

MAF<-0.3 

 

#SIMULATE DATA 

#Generate covariates 

bmi<- rnorm(numsubs,mean=23,sd=4)-23 

bmi456<-c(rep(0,6500),bmi[6501:9500]) 

snp<-rbinom(numsubs,2,MAF) 
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#Generate linear predictor and equivalent probabilities of response 

lp<-beta0 + beta.bmi*bmi  +beta.bmi456*bmi456 + beta.snp*snp 

probresp<-exp(lp)/(1+exp(lp)) 

#Randomly sample case control status 

CC<-rbinom(numsubs,1,probresp) 

 

#ASSEMBLE AND WRITE OUT COMPLETE DATA SET 

all.data<-data.frame(study.id,id,CC,bmi,snp,bmi456) 

write.csv(all.data,file=ALL.data.file,row.names=FALSE) 

 

#PREPARE AND WRITE OUT DATA FILES FOR EACH STUDY INDIVIDUALLY 

Study<-list() 

Study[[1]]<-all.data[study.id==1,] 

write.csv(Study[[1]],file=DC1.data.file,row.names=FALSE) 

Study[[2]]<-all.data[study.id==2,] 

write.csv(Study[[2]],file=DC2.data.file,row.names=FALSE) 

Study[[3]]<-all.data[study.id==3,] 

write.csv(Study[[3]],file=DC3.data.file,row.names=FALSE) 

Study[[4]]<-all.data[study.id==4,] 

write.csv(Study[[4]],file=DC4.data.file,row.names=FALSE) 

Study[[5]]<-all.data[study.id==5,] 

write.csv(Study[[5]],file=DC5.data.file,row.names=FALSE) 

Study[[6]]<-all.data[study.id==6,] 

write.csv(Study[[6]],file=DC6.data.file,row.names=FALSE) 

#>>>>>>>>>>>>>>>>>>>>>>>END OF FIRST BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 

For the convenience of readers who do not have access to R, the six data files and the complete data 

data file can be obtained directly from our web site: 

http://www2.le.ac.uk/departments/health-sciences/extranet/BGE/genetic-epidemiology/softw-
progs 
  

http://www2.le.ac.uk/departments/health-sciences/extranet/BGE/genetic-epidemiology/softw-progs
http://www2.le.ac.uk/departments/health-sciences/extranet/BGE/genetic-epidemiology/softw-progs
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S4. Full output from the pooled logistic regression model fitted using 

DataSHIELD in Figure 5 in the main text 

1st Iteration: 

 

All data computers use this coefficient vector for iteration 1 

___ 

Data Computer 1: 

 

 

 

  

 

___ 

 

Data Computer 2: 

 

 

 

  

 

___ 

 

Data Computer 3: 

 

 

 

  

 

___ 

500 -11.61089 0 294.75 
-11.61089 7972.37088 0 -25.55092 

0 0 0 0 
294.75 -25.55092 0 387.75 

-38 203.1316 0 87.5 

750 -8.417491 0 443 
-8.417491 12492.689094 0 -11.777043 

0 0 0 0 
443 -11.777043 0 578.5 

-14 370.8722 0 162 

375 34.88511 0 226.75 
34.88511 6407.52995 0 -26.82820 

0 0 0 0 
226.75 -26.82820 0 293.75 

11 -14.2244 0 70.5 
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Data Computer 4: 

 

 

 

  

 

___ 

 

 

Data Computer 5: 

 

 

 

  

 

___ 

 

Data Computer 6: 

 

 

 

  

 

___ 

 

Information matrices and score vectors generated by each study are transmitted to AC. 

75 16.13902 16.13902 47 
16.13902 1265.49746 1265.49746 -12.16424 
16.13902 1265.49746 1265.49746 -12.16424 

47 -12.16424 -12.16424 61.5 

-8 68.06208 68.06208 12 

500 70.56657 70.56657 297 
70.56657 7646.29164 7646.29164 65.39412 
70.56657 7646.29164 7646.29164 65.39412 

297 65.39412 65.39412 382 

36 487.2951 487.2951 149 

175 11.5221 11.5221 102.25 
11.5221 2864.847 2864.847 -28.50817 
11.5221 2864.847 2864.847 -28.50817 
102.25 -28.50817 -28.50817 132.25 

10 149.3701 149.3701 47.5 
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Central Summation at AC: 

 

 

 

 

 

Convergence criterion tested: Not met. 

Derive update vector: 

 

Add update vector to original coefficient vector to produce coefficient vector for second iteration: 

 =     

                            

2nd Iteration: 

 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector for iteration 2 

For clarity, the information matrix, score vector, and deviance contributions from the individual data 

computers are omitted from the presentation of this iteration. 

Information matrices and score vectors are generated by each study and are transmitted to AC 

Central Summation at AC: 

 

 

 

 

 

2375 113.08442 98.22769 1410.75 
113.08442 38649.22602 11776.63610 39.43446 
98.22769 11776.63610 11776.63610 24.72170 
1410.75 -39.43446 24.72170 1835.75 

-3 1264.5067 704.7273 528.5 

-0.32183281 0.02228647 0.03911561 0.53516954 

-0.32183281 0.02228647 0.03911561 0.53516954 

-0.32183281 0.02228647 0.03911561 0.53516954 

2295.0536 115.0395 92.74410 1338.4 
115.0395 37006.6888 11006.04639 -160.8173 
92.7441 11006.0464 11006.04639 -48.61056 
1338.4 -160.8173 -48.61056 1707.81381 

4.679958 46.098158 29.761157 17.657043 
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Convergence Criterion: Not met. 

Derive update vector: 

 

Add update vector to original coefficient vector to produce coefficient vector for third iteration: 

 =     

                           

3rd Iteration: 

 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector for iteration 3 

For clarity, the information matrix, score vector, and deviance contributions from the individual data 

computers are omitted from the presentation of this iteration. 

 

Information matrices and score vectors are generated by each study and are transmitted to AC 

Central Summation at AC: 

 

 

 

 

 

 

Convergence Criterion:   Not met. 

Derive update vector: 

 

Add update vector to original coefficient vector to produce coefficient vector for third iteration: 

 =     

                         

-0.0077096093 0.0007061835 0.0021357681 0.0165082231 

-0.32954242 0.02299265 0.04125137 0.55167776 

-0.32954242 0.02299265 0.04125137 0.55167776 

2290.07166 114.04663 91.77508 1333.57918 
114.04663 36898.8956 10949.7004 -169.08819 
91.77508 10949.7004 10949.7004 -53.88901 

1333.57918 -169.0882 -53.88901 1699.55867 

0.02188718 0.16208605 0.11946433 0.05791435 

-2.089082e-10 1.660537e-11 1.390907e-10 5.496857e-10 

-0.32956275  0.02299454 0.04126082 0.55172828 
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4th Iteration: 

 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector for iteration 3 

For clarity, the information matrix, score vector, and deviance contributions from the individual data 

computers are omitted from the presentation of this iteration. 

 

Information matrices and score vectors are generated by each study and are transmitted to AC 

Central Summation at AC: 

 

 

 

 

 

Convergence Criterion:   Met. 

 

Variance-covariance matrix now obtained by taking the inverse of the summed information matrix 

 

 

and standard errors are obtained by taking the square-root of the diagonal elements of this matrix. 

Final Results: 

Coefficient Estimate Std Error 

Intercept -0.32960 0.02838 
BMI 0.02300 0.00621 

BMI.456 0.04126 0.01140 
SNP 0.55170 0.03295 

Residual deviance:   12824.7   on   9496   degrees of freedom 

  

 

-0.32956275  0.02299454 0.04126082 0.55172828 

2290.05551 114.04125 91.77065 1333.56304 
114.04125 36898.5281 10949.48836 -169.11693 
91.77065 10949.48836 10949.48836 -53.90879 

1333.56304 -169.11693 -53.90879 1699.53140 

2.692875e-07 2.018901e-06 1.655988e-06 6.453095e-07 

8.054620e-04 -3.499749e-06 -6.365439e-06 -6.325681e-04 
-3.499749e-06 3.856388e-05 -3.850815e-05   5.362074e-06 
-6.365439e-06 -3.850815e-05   1.299160e-04   5.283779e-06 
-6.325681e-04 5.362074e-06 5.283779e-06 1.085453e-03 
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S5.  R Code used to undertake the partitioned IRLS analysis (i.e. the R code 

that generates the output in S4) 

In order to use the following R code, cut at the top and bottom of the block, paste into a new “script 
file” in R and then run the script file 
 
#>>>>>>>>>>>>>>>>>>>>>>>START OF SECOND BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 
########################## 
#  R CODE TO SET UP ANALYSIS  # 
########################### 

 

#Specify folder for storing objects on the coordinating computer at the AC 
AC.Directory<-"C:/DataSHIELD.Example/AC/" 

 

#Create initial vector of regression coefficients for first iteration 
beta.vect.next<-c(0,0,0,0) 
 
#Save to the folder where data computers can find it 
save(beta.vect.next,file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 
#Iterations need to be counted. Start off with the count at 0 
#and increment by 1 at each new iteration 
iteration.count<-0 
 
#Provide arbitrary starting value for deviance to enable subsequent calculation of the 
#change in deviance between iterations 
dev.old<-9.99e+99 
 
#Convergence state needs to be monitored. Start by allocating 
#a “convergence not met” status 
converge.state<-"NOT MET" 
 
#Define a convergence criterion. This value of epsilon corresponds to that used 
#by default for GLMs in R (see section S3 for details) 
epsilon<-1.0e-08 
 
#>>>>>>>>>>>>>>>>>>>>>>>END OF SECOND BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 
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In order to use the following R code, cut at the top and bottom of the block, paste into a new “script 
file” in R and then run the script file. This block needs to be run in full repeatedly. Each time it is run, 
R carries out a single extra iteration of the partitioned IRLS algorithm 
  
#>>>>>>>>>>>>>>>>>>>>>>>START OF THIRD BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 
################################################################# 
#  R CODE TO CARRY OUT A PARTITIONED IRLS FIT ONE ITERATION AT A TIME # 
#  RUN THIS WHOLE BLOCK OF CODE ONE ITERATION AT A TIME UNTIL THE     # 
# MODEL OUTPUT INDICATES THAT CONVERGENCE HAS BEEN ACHIEVED 
################################################################# 
 
#Increment count of iterations 
iteration.count<-iteration.count+1 
 
 
#R CODE THAT WOULD RUN LOCALLY ON EACH OF THE REMOTE DATA COMPUTERS 
 
############# 
#START STUDY 1 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC1.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
 
#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 

#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
 
# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
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# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
 
#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
#Calculate log likelihood and deviance contribution for current study 
 
#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.1<-info.matrix 
score.vect.1<-score.vect 
dev.1<-dev 
nsubs.1<-nsubs 
 
#Send all of the key model components from the current study to the AC  
save(info.matrix.1,file=paste(AC.Directory,"info.matrix.1.RData",sep="")) 
save(score.vect.1,file=paste(AC.Directory,"score.vect.1.RData",sep="")) 
save(dev.1,file=paste(AC.Directory,"dev.1.RData",sep="")) 
save(nsubs.1,file=paste(AC.Directory,"nsubs.1.RData",sep="")) 
 
#END STUDY 1 
########### 
 
 
 
############# 
#START STUDY 2 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC2.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
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#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 

#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
 
# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
 
# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
 
#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
  
#Calculate log likelihood and deviance contribution for current study 
 
#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.2<-info.matrix 
score.vect.2<-score.vect 
dev.2<-dev 
nsubs.2<-nsubs 
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#Send all of the key model components from the current study to the AC  
save(info.matrix.2,file=paste(AC.Directory,"info.matrix.2.RData",sep="")) 
save(score.vect.2,file=paste(AC.Directory,"score.vect.2.RData",sep="")) 
save(dev.2,file=paste(AC.Directory,"dev.2.RData",sep="")) 
save(nsubs.2,file=paste(AC.Directory,"nsubs.2.RData",sep="")) 
 
#END STUDY 2 
########### 
 
 
############# 
#START STUDY 3 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC3.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
 
#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 
#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
 
# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
 
# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
 
# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
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#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
  
#Calculate log likelihood and deviance contribution for current study 
 
#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.3<-info.matrix 
score.vect.3<-score.vect 
dev.3<-dev 
nsubs.3<-nsubs 
 
#Send all of the key model components from the current study to the AC  
save(info.matrix.3,file=paste(AC.Directory,"info.matrix.3.RData",sep="")) 
save(score.vect.3,file=paste(AC.Directory,"score.vect.3.RData",sep="")) 
save(dev.3,file=paste(AC.Directory,"dev.3.RData",sep="")) 
save(nsubs.3,file=paste(AC.Directory,"nsubs.3.RData",sep="")) 
 
#END STUDY 3 
########### 
 
 
############# 
#START STUDY 4 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC4.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
 
#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 
#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
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# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
 
# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
 
# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
 
#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
  
#Calculate log likelihood and deviance contribution for current study 
 
#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.4<-info.matrix 
score.vect.4<-score.vect 
dev.4<-dev 
nsubs.4<-nsubs 
 
#Send all of the key model components from the current study to the AC  
save(info.matrix.4,file=paste(AC.Directory,"info.matrix.4.RData",sep="")) 
save(score.vect.4,file=paste(AC.Directory,"score.vect.4.RData",sep="")) 
save(dev.4,file=paste(AC.Directory,"dev.4.RData",sep="")) 
save(nsubs.4,file=paste(AC.Directory,"nsubs.4.RData",sep="")) 
 
#END STUDY 4 
###########  
 
 
 
 
 
 



25 
 

############# 
#START STUDY 5 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC5.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
 
#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 
#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
 
# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
 
# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
 
# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
 
#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
  
#Calculate log likelihood and deviance contribution for current study 
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#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.5<-info.matrix 
score.vect.5<-score.vect 
dev.5<-dev 
nsubs.5<-nsubs 
 
#Send all of the key model components from the current study to the AC  
save(info.matrix.5,file=paste(AC.Directory,"info.matrix.5.RData",sep="")) 
save(score.vect.5,file=paste(AC.Directory,"score.vect.5.RData",sep="")) 
save(dev.5,file=paste(AC.Directory,"dev.5.RData",sep="")) 
save(nsubs.5,file=paste(AC.Directory,"nsubs.5.RData",sep="")) 
 
#END STUDY 5 
########### 
 
 
 
############# 
#START STUDY 6 
#Load full local data from the specified local data file (in THIS particular simulated 
#example, the file names and locations are specified in the simulation code 
#in subsection S2) 
 
#Read in full data 
data.DC<-read.table(file=DC6.data.file, sep=",",header=T) 
 
#Strip out header row 
data.DC<-data.DC[,-1] 
 
#Calculate number of subjects available in the current study 
#(by enumerating length of ID column) 
nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 
#interaction covariate and add a column of 1s at the start for the regression constant 
X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
 
#Load the current value of the beta vector (vector of regression coefficients) from its 
#location on the AC computer (stored during activation of block 2 of R code) 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
 
# Use this current value of the beta vector to calculate elements from the current study 
beta.vect<-beta.vect.next 

 
# Calculate linear predictors from observed covariate values and elements of 
# current beta vector 
lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ beta.vect[4]*X.mat[,4] 
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# Apply inverse logistic transformation 
mu.current<-exp(lp.current)/(1+exp(lp.current))      
 
# Derive variance function and diagonal elements for weight matrix (using squared 
# first differential of link function) 
var.i<-(mu.current*(1-mu.current)) 
g2.i<-(1/(mu.current*(1-mu.current)))^2 
W.mat<-diag(1/(var.i*g2.i)) 
 
#Calculate information matrix 
info.matrix<-t(X.mat)%*%W.mat%*%X.mat 
 
#Derive u terms for score vector  
u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 
  
#Calculate score vector 
score.vect<-t(X.mat)%*%W.mat%*%u.i 
  
#Calculate log likelihood and deviance contribution for current study 
 
#For convenience, ignore the element of deviance that relates to the full saturated 
# model, because that will cancel out in calculating the change in deviance from one 
# iteration to the next (Dev.total – Dev.old [see below]) because the element relating 
# to the saturated model will be the same at every iteration).  
log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 
dev<- -2*log.L 
 
#Create study specific versions of all key model components 
info.matrix.6<-info.matrix 
score.vect.6<-score.vect 
dev.6<-dev 
nsubs.6<-nsubs 
 
#Send all of the key model components from the current study to the AC  
save(info.matrix.6,file=paste(AC.Directory,"info.matrix.6.RData",sep="")) 
save(score.vect.6,file=paste(AC.Directory,"score.vect.6.RData",sep="")) 
save(dev.6,file=paste(AC.Directory,"dev.6.RData",sep="")) 
save(nsubs.6,file=paste(AC.Directory,"nsubs.6.RData",sep="")) 
 
#END STUDY 6 
########### 
 
 
 
########## 
#ITERATION ON ALL LOCAL COMPUTERS NOW COMPLETED 
# KEY MODEL ELEMENTS HAVE BEEN TRANSMITTED TO AC 
 
#AC WILL NOW USE THESE ELEMENTS TO GENERATE UPDATE TERMS 
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#Read back into R, the key elements generated by the local data computers and 
#sent to the AC 
load(file=paste(AC.Directory,"info.matrix.1.RData",sep="")) 
load(file=paste(AC.Directory,"info.matrix.2.RData",sep="")) 
load(file=paste(AC.Directory,"info.matrix.3.RData",sep="")) 
load(file=paste(AC.Directory,"info.matrix.4.RData",sep="")) 
load(file=paste(AC.Directory,"info.matrix.5.RData",sep="")) 
load(file=paste(AC.Directory,"info.matrix.6.RData",sep="")) 
 
load(file=paste(AC.Directory,"score.vect.1.RData",sep="")) 
load(file=paste(AC.Directory,"score.vect.2.RData",sep="")) 
load(file=paste(AC.Directory,"score.vect.3.RData",sep="")) 
load(file=paste(AC.Directory,"score.vect.4.RData",sep="")) 
load(file=paste(AC.Directory,"score.vect.5.RData",sep="")) 
load(file=paste(AC.Directory,"score.vect.6.RData",sep="")) 
 
load(file=paste(AC.Directory,"dev.1.RData",sep="")) 
load(file=paste(AC.Directory,"dev.2.RData",sep="")) 
load(file=paste(AC.Directory,"dev.3.RData",sep="")) 
load(file=paste(AC.Directory,"dev.4.RData",sep="")) 
load(file=paste(AC.Directory,"dev.5.RData",sep="")) 
load(file=paste(AC.Directory,"dev.6.RData",sep="")) 
 
load(file=paste(AC.Directory,"nsubs.1.RData",sep="")) 
load(file=paste(AC.Directory,"nsubs.2.RData",sep="")) 
load(file=paste(AC.Directory,"nsubs.3.RData",sep="")) 
load(file=paste(AC.Directory,"nsubs.4.RData",sep="")) 
load(file=paste(AC.Directory,"nsubs.5.RData",sep="")) 
load(file=paste(AC.Directory,"nsubs.6.RData",sep="")) 
 
#Read in the current beta vector 
load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
 
 
#Sum the key elements across all studies 
info.matrix.total<-info.matrix.1+info.matrix.2+info.matrix.3+ 
                                   info.matrix.4+info.matrix.5+info.matrix.6 
 
score.vect.total<-score.vect.1+score.vect.2+score.vect.3+ 
                                 score.vect.4+score.vect.5+score.vect.6 
 
dev.total<-dev.1+dev.2+dev.3+dev.4+dev.5+dev.6 
 
nsubs.total<-nsubs.1+nsubs.2+nsubs.3+nsubs.4+nsubs.5+nsubs.6 
 
#Create variance covariance matrix as inverse of information matrix 
#(solve() denotes matrix inversion in R ) 
variance.covariance.matrix.total<-solve(info.matrix.total) 
 
#Create beta vector update terms (see subsection S2) 
beta.update.vect<-variance.covariance.matrix.total %*% score.vect.total 
 
#Add update terms to current beta vector to obtain new beta vector for next iteration 
beta.vect.next<-beta.vect.next+beta.update.vect 
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#Calculate value of convergence statistic and test whether meets convergence criterion 
#(see subsection S2) 
converge.value<-abs(dev.total-dev.old)/(abs(dev.total)+0.1) 
if(converge.value<=epsilon)converge.state<-"MET" 
if(converge.value>epsilon)dev.old<-dev.total 
 
 
#If this is first iteration print out information matrix, score vector, deviance 
#and number of subjects for each individual study (to reflect 
#content of supplementary materials in subsection S4) 
 
if(iteration.count==1) 
{ 
print("Components from individual studies at first iteration") 
cat("\n\n\nSTUDY 1\n") 
cat("\nInformation matrix\n") 
print(info.matrix.1) 
cat("\nScore vector\n") 
print(score.vect.1) 
cat("\nDeviance\n") 
print(dev.1) 
cat("\nSample size\n") 
print(nsubs.1) 
 
cat("\n\n\nSTUDY 2\n") 
cat("\nInformation matrix\n") 
print(info.matrix.2) 
cat("\nScore vector\n") 
print(score.vect.2) 
cat("\nDeviance\n") 
print(dev.2) 
cat("\nSample size\n") 
print(nsubs.2) 
 
cat("\n\n\nSTUDY 3\n") 
cat("\nInformation matrix\n") 
print(info.matrix.3) 
cat("\nScore vector\n") 
print(score.vect.3) 
cat("\nDeviance\n") 
print(dev.3) 
cat("\nSample size\n") 
print(nsubs.3) 
 
cat("\n\n\nSTUDY 4\n") 
cat("\nInformation matrix\n") 
print(info.matrix.4) 
cat("\nScore vector\n") 
print(score.vect.4) 
cat("\nDeviance\n") 
print(dev.4) 
cat("\nSample size\n") 
print(nsubs.4) 
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cat("\n\n\nSTUDY 5\n") 
cat("\nInformation matrix\n") 
print(info.matrix.5) 
cat("\nScore vector\n") 
print(score.vect.5) 
cat("\nDeviance\n") 
print(dev.5) 
cat("\nSample size\n") 
print(nsubs.5) 
 
cat("\n\n\nSTUDY 6\n") 
cat("\nInformation matrix\n") 
print(info.matrix.6) 
cat("\nScore vector\n") 
print(score.vect.6) 
cat("\nDeviance\n") 
print(dev.6) 
cat("\nSample size\n") 
print(nsubs.6) 
} 
 
#For ALL iterations summarise model state after current iteration 
 
cat("\nSUMMARY OF MODEL STATE after iteration No",iteration.count, 
    "\n\nCurrent deviance",dev.total,"on", 
    (nsubs.total-length(beta.vect.next)), "degrees of freedom", 
    "\nConvergence criterion    ",converge.state,"\n\n") 
 
cat("Information matrix overall\n") 
print(info.matrix.total) 
 
cat("Score vector overall\n") 
print(score.vect.total) 
 
#If convergence has been obtained, declare final (maximum likelihood) beta vector, 
#and calculate the corresponding standard errors, z scores and p values 
#(the latter two to be consistent with the output of a standard GLM analysis) 
#Then print out final model summary 
 
if(converge.value<=epsilon) 
{ 
beta.vect.final<-beta.vect.next 
se.vect.final<-sqrt(diag(variance.covariance.matrix.total)) 
z.vect.final<-beta.vect.final/se.vect.final 
pval.vect.final<-2*pnorm(-abs(z.vect.final)) 
 
model.parameters<-cbind(beta.vect.final,se.vect.final,z.vect.final,pval.vect.final) 
dimnames(model.parameters)<-
list(c("Intercept","BMI","SNP","BMI.456"),c("Coefficient","SE","z-value","p-value")) 
 
model.parameters<-signif(model.parameters,digits=4) 
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#If converged print out final model summary 
cat("\n\nFINAL MODEL\n") 
 
print(model.parameters) 
 
cat("\nCurrent deviance",dev.total,"on",(nsubs.total-length(beta.vect.next)), "degrees of 
freedom","\nAfter iteration No",iteration.count,"\n") 
} 
 
 
#Repeat summary of final model state 
cat("\nSUMMARY OF MODEL STATE after iteration No",iteration.count, 
    "\n\nCurrent deviance",dev.total,"on", 
    (nsubs.total-length(beta.vect.next)), "degrees of freedom", 
    "\nConvergence criterion    ",converge.state,"\n\n") 
 

#Update the stored value of the beta vector to reflect the current estimate – to set 
#up the next iteration 
save(beta.vect.next,file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
 

#>>>>>>>>>>>>>>>>>>>>>>>END OF THIRD BLOCK OF R CODE>>>>>>>>>>>>>>>>>>>>>>> 
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S6.  R code and output for a conventional unconditional logistic regression 

model (glm in R) fitted on a pooled individual level data file generated from 

all six studies combined 

#Fit model on all data sets combined 

ALL.data.file<-"C:/DataSHIELD.Example/Study.ALL.csv" 
        ALL.data<-read.table(file=ALL.data.file, sep=",",header=T) 

 

summary(glm(CC~bmi+ bmi456 + snp,family=binomial(logit),data=ALL.data)) 

Output: 

Coefficients: 
     

 Estimate Std Error Z value Pr(>|z) 

(Intercept) -0.32956 0.02838 -11.612 <2e-16 *** 

BMI 0.02300 0.00621 3.703 0.000213 *** 

BMI.456 0.04126 0.01140 3.620 0.000295 *** 

SNP 0.55173 0.03295 16.746 < 2e-16 *** 

 Residual deviance: 12825 on 9496 degrees of freedom 

 

Output from DataSHIELD analysis (above) for comparison 

 

Final Results: 

Coefficient Estimate Std Error 

Intercept -0.32960 0.02838 
BMI 0.02300 0.00621 

BMI.456 0.04126 0.01140 
SNP 0.55170 0.03295 

Residual deviance:   12824.7   on   9496   degrees of freedom 

  

Comment 
The estimates, standard errors and deviance obtained from the partitioned analysis preformed using 
DataSHIELD are identical (aside from rounding errors)  from those obtained using a conventional 
GLM analysis on a single data set containing the individual level data from all six studies combined.  
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