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Navigation in ever-changing environments requires e�ective motor behaviors.

Many insects have developed adaptive movement patterns which increase

their success in achieving navigational goals. A conserved brain area in the

insect brain, the Lateral Accessory Lobe, is involved in generating small scale

search movements which increase the e�cacy of sensory sampling. When the

reliability of an essential navigational stimulus is low, searching movements are

initiated whereas if the stimulus reliability is high, a targeted steering response

is elicited. Thus, the network mediates an adaptive switching between motor

patterns. We developed Spiking Neural Network models to explore how an

insect inspired architecture could generate adaptive movements in relation to

changing sensory inputs. The models are able to generate a variety of adaptive

movement patterns, the majority of which are of the zig-zagging kind, as

seen in a variety of insects. Furthermore, these networks are robust to noise.

Because a large spread of network parameters lead to the correct movement

dynamics, we conclude that the investigated network architecture is inherently

well-suited to generating adaptive movement patterns.

KEYWORDS

insect navigation, spiking neural network, central pattern generator, small scale

search behavior, movement control, adaptive control, Lateral Accessory Lobe

1. Introduction

A key component of the adaptive behavior of natural and artificial systems is motor

control. Adaptive behavior often requires agents to produce active movement strategies

to both acquire useful sensory information and then use it to their advantage. For

instance, in visually guided behaviors in insects, we see many examples of movement

strategies that can be described as active vision: saccadic flight structure in bees that

helps extracting visual depth information (Wagner, 1986), peering in locusts (Wallace,

1959), and whole body rotational scanning movements in navigating ants (Wystrach

et al., 2014). Some of these behaviors are examples of a prevalent type of search whereby

individuals are seeking behaviorally relevant sensory information, e.g., zig-zagging in

visually guided landing in bees and wasps (Lehrer and Collett, 1994; Collett et al., 2016)
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and sinuous trajectories during visual homing in ants

(Buehlmann et al., 2018). Such active behaviors can be shown

to increase performance in simulated or robot navigation

(Kodzhabashev and Mangan, 2015; Steinbeck et al., 2020a,b)

and are also seen in insects “searching” for behaviorally relevant

information from other modalities such as moths searching

for pheromones (Kanzaki and Mishima, 1996; Mishima and

Kanzaki, 1999; Pansopha et al., 2014).

One particular area in the insect brain, the Lateral Accessory

Lobe (LAL), has been shown to be a key component in the

generation of search related motor signals (Kanzaki et al., 1992).

It is commonly referred to as a pre-motor area and is the gateway

for signals from higher brain areas on their way to motor

centers (Namiki et al., 2014; Namiki and Kanzaki, 2016). It has

been hypothesized that the LAL transforms navigation-related

sensory signals into turning signals, which then can be realized

by themotor systems downstream (Bidwell andGoodman, 1993;

Zorović and Hedwig, 2013; Bidaye et al., 2020; Rayshubskiy

et al., 2020). However, it also appears to generate intrinsic motor

patterns in the absence of strong sensory input.

If the incoming sensory signals to the LAL are strong

and reliable, these are directly passed on to the motor system

for targeted steering. This has been demonstrated in crickets,

where the LAL is involved in initiating the movements to

steer toward the calls of conspecifics (phonotaxis). The steering

seems to be initiated by a difference of firing rate between

the left and right descending neurons (Zorović and Hedwig,

2013; Rayshubskiy et al., 2020). However, if the incoming

signals are weak and unreliable, the LAL appears to be capable

of intrinsically generating a rhythmic signal, which results in

alternating turning directions as seen in silkmoths, which initiate

a zig-wag walking behavior when losing a pheromone plume

(Kanzaki et al., 1992). Here, the left and right lobes of the

LAL appear to phasically inhibit contralateral output neurons

(“flip-flopping,” Iwano et al., 2010). This actively increases the

sampling of the sensory world and is seen for instance in

the upregulation of scanning in ants that experience visual

uncertainty (Wystrach et al., 2014).

CPGs have been shown to be useful components for

motor systems in bio-inspired robots that mimic well-studied

motor circuits such as the walking CPGs of the stick insect

(Mantziaris et al., 2020) or salamander (Ijspeert, 2008). CPGs

are neural circuits that produce rhythmic outputs in the absence

of rhythmic input. Possibly the simplest CPG to imagine is

the so-called half-center oscillator consisting of two inhibitory,

adapting neurons (Daun et al., 2007; Shpiro et al., 2007). If

one neuron is firing faster, it will inhibit the other neuron.

While firing, it will adapt, its firing rate will decline, the other

neuron is eventually released from inhibition and will resume

firing. This leads to an even faster decline of the firing rate

of the first neuron, and the process commences again with

swapped roles for the neurons. The back and forth between the

two CPG neurons leads to a phasically changing output. The

characteristics of this CPG depend on the intrinsic properties of

the neurons, in particular the spike rate adaptation.

Computational models of the LAL have been developed to

obtain a better understanding of how the LAL network’s “flip-

flop” activity might be generated. One of the first attempts

used genetic algorithms to generate a model that produces a

flip-flop activity and has approximately the same connectivity

as observed in experiments (Chiba et al., 2010). A recently

developed rate-based model (Adden et al., 2020) implements

a suggested LAL-network connectivity from the silkmoth

(Mishima and Kanzaki, 1999). The switch mechanism was

hard-coded and inspired by neurons switching between low-

and high-firing states. In simulations, the model reproduced

aspects of silkmoth behavior as shown by Ando et al. (2013),

where mounted silkmoths on a robot followed pheromone

plume edges. None of these models used a biologically plausible

mechanism to reproduce the flip-flop activity.

In other modeling work the function of the LAL has been

considered within larger models of the Central Complex of

the insect brain, which is a brain area involved in control or

orientation and heading (Pfeiffer and Homberg, 2014). The

central complex is involved in path integration (PI) and recent

models of PI use a simple representation of the LAL, which

consists of a left and a right turning neuron (Stone et al., 2017;

Sun et al., 2020) to integrate outputs of the PI network.Modeling

of another Central Complex brain area called the ellipsoid body

explored motor control learning. It provided a comprehensive

account of the pre-motor role of the LAL by simply assigning

the individual neurons of the LAL to different actions like

forward, left and right turning commands (Fiore et al., 2017).

Furthermore, amechanistically similarmodel showed how using

a CPG may explain continuous lateral oscillations as a core

mechanism for taxis in Drosphila larvae (Wystrach et al., 2016).

Thus, across a range of models the functionality of the LAL and

its connection to behavior has been explored. Here, we build on

this work to produce a biologically plausiblemodel, that captures

the general behavioral utility of the LAL pre-motor circuit.

We have recently developed a general steering framework

(see Figure 1, Steinbeck et al., 2020a), in which we showed

how the conserved circuitry of the LAL and its connections

is an excellent candidate for producing both targeted steering

and oscillating search behaviors across a wide ranges of insect

behaviors utilizing multiple sensory modalities. Based on this

framework we here present spiking neural network models

inspired by the LAL. We have constructed a Comprehensive

model to explore the implications of diverse neurophysiological

and neuroanatomical data on the LAL region and its descending

neurons, to which we will refer to as the Comprehensive

Network. We then further distilled a Core network with a focus

on extracting the core mechanism underlying the principles

of the steering framework, to which we will refer to as the

Core Network. The exact network connectivity within the

LAL is currently unknown. Therefore, we based our models’
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FIGURE 1

A general purpose steering framework based on the LAL. (A) The two LAL compartments receive inputs from many sensory modalities from the

ipsilateral hemisphere, both low level sensory information (like optic flow, haptic, or olfactory signals) and highly processed information (path

integration, place recognition). These inputs are di�erently weighted (w) and contain approach/aversion commands (±). If the receiving

information is reliable (filled brackets), the turning signal will be directly gated through to the motor centers (C). (B) If it is not reliable (empty

brackets), a central pattern generator phasically flips the activity of the left and right output neurons. This leads to a search motif (D) and

therefore to a higher sampling of the environment. While contralaterally descending neurons (Type I, orange) are mostly involved in steering,

ipsilaterally descending neurons (Type II, green) and contralaterally inhibitory neurons (Type III, blue) are involved in the switching. LAL, lateral

accessory lobe; VPC, ventral protocerebrum. Schematic based on Steinbeck et al. (2020a,b).

connectivity on both the known global anatomy and our

hypothesis about how the observed output and correlated

behaviors arise in the LAL. We explore how lateralized sensory

input and lateralized motor circuits can integrate with a

sensory modulated CPG to generate: (1) targeted steering for

approaching a goal in response to clear sensory information; and

(2) the generation of rhythmic output that can drive small scale

searching patterns in the absence of reliable sensory information.

Our aim is to demonstrate that the models can drive both these

distinct behavioral modes solely from the interaction of sensory

input with intrinsic network dynamics.

We explore the properties of our networks by situating

them in a simple simulated animat. The Comprehensive model

demonstrates that the adaptive output can be created from a

network with specific neuron roles that are hypothesized to be

close to their biological functions (Ibbotson, 1991; Bidwell and

Goodman, 1993; Goodman et al., 2002; Schnell et al., 2017;

Namiki et al., 2018; Bidaye et al., 2020; Rayshubskiy et al., 2020).

In the Core network we explore a wide range of parameter

combinations and show how this network can robustly generate

an adaptive range of movement behaviors.

2. Models and methods

2.1. Implementation

Modeling and analysis were performed with MatLab 2017

& 2019 (The MathWorks, Inc., Natick, Massachusetts, USA).

In addition to the core Matlab software we also used the

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.948973
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Steinbeck et al. 10.3389/fncom.2022.948973

TABLE 1 Core network.

wEI , wEO,

wII , wIO

gadapt[S] 1A [unitless] p [unitless] τadapt[s]

0.5 0.25 · 10−7 0.01 1 0.05

1 0.5 · 10−7 0.05 1.5 0.1

2 1 · 10−7 0.1 2 0.2

3 2 · 10−7 0.2 3 0.3

4 4 · 10−7 0.5 4 0.5

Parameter values used in parameter space exploration.

TABLE 2 Core network.

E[A] I[A] O[A]

0 0 3.7698 · 10−10

Constant current offset values for different neuron types.

TABLE 3 Comprehensive network.

wAI gadapt[S] p [unitless] 1A [unitless] τadapt[s]

−7 0.25 · 10−7 0.01 1 0.05

−8 0.5 · 10−7 0.05 2 0.1

−9 1 · 10−7 0.1 3 0.2

−10 2 · 10−7 0.2 4 0.3

−11 4 · 10−7 0.5 5 0.5

−12

Parameter values used in parameter space exploration.

TABLE 4 Comprehensive network.

E[A] V[A] IL[A] CL[A] A[A] I[A]

0 1.22510 · 10−10 5.5125 · 10−11 1.05 · 10−10 0 0

Constant current offset values for different neuron types.

Psychophysics Toolbox and the Statistics and Machine Learning

Toolbox. Simulations were run on a Dell Latitude 5480 with

Windows 10. The code to run the simulations and analysis as

described in the methods can be found online at https://github.

com/FabianSteinbeck/SNN-LAL-CPG.

2.2. Central pattern generator
computational model

We have formulated the model as a spiking neural network

consisting of leaky integrate-and-fire neurons with adaptation,

dV

dt
=

1

Cm

(

gleak(Vleak − V)+ gadaptA
P(Vadapt − V)

+I0 + Isyn
)

(1+ η) (1)

where Cm = 0.5 · 10−9F is the membrane capacitance, gleak =
5 · 10−9S the leak conductance and Vleak = −60 mV the

leak reversal potential. Once the voltage surpasses a threshold

Vth = −50 mV, a spike is emitted, the membrane potential

clamped to Vspike = 20 mV for the one timestep, and then

to Vreset = −65 mV for a refractory period trefract =
1 ms. The adaptation current is activated by spikes, A(t +
1t) = A + 1A (see Tables 1, 2 for values of 1 A), and

decays exponentially,

dA

dt
= −

A

τadapt
. (2)

The adaptation current has conductance gadapt, time

scale τadapt, activation exponent p (see Tables 1, 2), and

reversal potential Vadapt = −70 mV. The term 1 + η

implements multiplicative noise, where η is a uniformly

distributed random variable, η = 3 · 10−6rand(1)/
√
dt.

I0 is a constant current offset that sets the spontaneous

activity levels of the neurons (see Tables 3, 4). The

synaptic current Isyn is modeled with conductance

based synapses,

Isyn = gsynS(Vrev − V) (3)

where gsyn is the maximal synaptic conductance and Vrev =
0mV the reversal potential for excitatory and Vrev = −80mV

for inhibitory synapses. The activation variable is incremented

S(t + t) = S(t) + 0.1 for every presynaptic spike and decays

according to

dS

dt
= −

S

τsyn
(4)

with timescale τsyn_ex = 20 ms and τsyn_in = 30

ms. The model was integrated with a forward Euler

algorithm with constant time step 1t = 1ms.

The sensory inputs were generated with the same

time resolution.

2.3. Design logic of the comprehensive
network

The overall level of input to the networks is coding for the

reliability of a not further specified sensory signal and enters

into the input neurons (Figures 2A,C) through static input

currents in the range (0, 1.75 · 10−9A). High overall input

current means a highly reliable signal and vice versa, similar

as in basis function network modeling (Deneve et al., 2001).

The balance of input on the left and right carries information

about whether to go left or right, regardless of the overall

signal strength. The networks here are designed so that the left

hemisphere controls left turns and the right hemisphere controls

right turns, as information has been shown to be processed

unilaterally (Paulk et al., 2015), similarly to a Braitenberg
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FIGURE 2

The LAL-inspired SNNs. (A,B) Comprehensive network. (A) Top: Motor control split into velocity and turning. L, left turn; R, right turn; F, forward.

Bottom: This network explores connectivity and neuron functions as described in the text with dedicated velocity and rotation neurons, leading

to Ackerman steering. Neuron Abbreviations: E, excitatory input; V, velocity; IL, ipsilateral turning; CL, contralateral turning; A, adaptation; I,

inhibition. (B) Network activity plotted as Spike Density Functions (SDFs). Visual representation of the animat (not the actual actuator

dimensions), and the trajectory generated with the activity depicted in (B). (C,D) Each letter shows the same as in (A,B), but for the Core network.

Both the CPG circuit neurons and descending neurons have been unified. Neuron Abbreviations: E, excitatory input; I, adaptory inhibition; O,

Output; F, force integrators. Colors for neurons: Gray, input; Orange, velocity/output; Yellow, ipsilateral turning; Red, contralateral turning; Cyan,

adaptation; Blue, inhibition/adaptory inhibition; Purple, velocity actuator. Brighter colors, left hemisphere; darker colors, right hemisphere.

vehicle (Braitenberg, 1984). Therefore, when receiving unilateral

input, the SNNs are intended to generate a proportional

unilateral output.

When the inputs are bilateral, the circuits should generate

a flip-flopping output. Furthermore, weak sensory input should

result in slow flip-flopping (leading to large exploratory turns),
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whereas strong activation of the CPG results in faster flip-

flopping (leading to straight movements with small undulation).

The outputs can then be used to directly generate movement (see

Figure 2C).

The Comprehensive network explores neurophysiological

and neuroanatomical aspects in more detail. The two aspects

explored here are: (1) the motor control is split into velocity

(“V”-neurons) and rotation neurons (“IL”-neurons and “CL”-

neurons, Figure 2A), and (2) the CPG is created by adapting

(“A”-neurons) and inhibitory neurons (“I”-neurons, Figure 2A).

Unilaterally descending velocity neurons (V) are connecting to

motor centers on both sides for velocity control and connect

to the ipsilateral adapting neurons (A). The adapting neurons

connect to the ipsilateral inhibitory neurons (I), which in

turn connect to the contralateral velocity (V) and rotation

neurons (IL, CL). This leads to a CPG with a few extra steps

(see Supplementary Figure 1). Ipsilaterally descending rotation

neurons (IL) connect to the ipsilateral motor center initiating

ipsilateral turns, i.e., neurons located on the left side descend

to the left side of the motor centers and induce left-ward

turns. Contralaterally descending rotation neurons (CL) connect

to the contralateral motor center initiating ipsilateral turns,

i.e., neurons originating in the left-hemisphere descend to the

right side of the motor centers and induce left-ward turns.

The CL neurons additionally connect to contralaterally located

IL neurons.

The actuators of the animat work by directional force

generation. As real legs can generate forces independently

into all directions, our representation here aims for the same,

excluding backward motion. While the forward facing actuators

only control the forward movement velocity, the sideward

facing actuators generate movements laterally. Each actuator

group, the left and the right, ultimately generate a single force

vector, which is the result of each independent vector added

onto each other. Since the V-neurons connect to both forward

movement actuators, the forward force will be the same for both

actuators. Activating the same sideward actuators with the same

strength, i.e., the left-facing actuators by exciting the ILL and

CLL neurons, this would result in a leftward translation. In order

to be able to rotate toward the left, the leftward force on both

actuator sides should be different in strength. This is achieved

with the CL neurons additionally connecting to the IL neurons

contralaterally, in the leftward rotation case with theCLL neuron

additionally connecting to the ILR neuron. This leads to a

lesser leftward turning command of the outside actuators (the

right group) than the inside actuators (the left group), because

the leftward command is lessened by the additional rightward

command - the outside turning radius becomes lesser than

the inside turning radius, similarly to Ackermann steering.

Ackermann steering is a geometric arrangement of linkages in

steering such that the actuators on the outside follow a wider

radius than the inside actuators. An example would be steering

a car, where, if the wheels would be statically linked, both

the inside and outside wheels would follow the same radius

of turning, which leads to inefficiencies. Instead, by adding

dynamic linkages, the wheels can follow slightly different radii,

adapting them to the actual turn.

Putting this all together should lead to a desired behavior:

when the network receives differently strong inputs from

left and right, it should generate a steering response, e.g.,

if the left input is stronger than the right input, it should

steer leftwards. When it receives similarly strong inputs, it

should generate a zig-zagging behavior. Furthermore, when the

strength of the similar inputs are relatively weak, the zig-zagging

response should be more exploratory, and when the inputs are

strong, the zig-zagging response should be less exploratory and

overall forward.

Weak and strong in this context are relative terms, but

also can be grounded in terms of frequency ranges, as neurons

display lower ranges and higher ranges of activity; many neurons

within this brain region fire around 15–25 Hz when not active,

and between 50–100 Hz when active. Therefore we stayed within

these boundaries (Steinbeck et al., 2020a).

2.4. Design logic of the core network

The base layout of the Core network builds on the

key aspects of the Comprehensive network, namely the

hemispheric division and the usage of a CPG. However, we

combined and simplified the CPG circuit and the motor

control (see Figure 2D). The computational algorithm is the

same. Here, input neurons (“E”-neurons) make ipsilateral,

excitatory connections to the CPG neurons (“I”-neurons), and

output neurons (“O”-neurons). Each of the two CPG neurons

provides inhibitory input to the contralateral CPG neuron

and output neuron. Additionally, the inhibitory neurons are

themselves adapting. The excitatory output neurons, which

have been parameterized to produce a spontaneous spike rate

of circa 30 Hz (corresponding to the mean of rates reported

in the literature; Iwano et al., 2010; Zorović and Hedwig,

2013; Namiki and Kanzaki, 2016) connect to the contralateral

force integrators.

The desired behavior is the same for the Core-Network as

for the Comprehensive network.

2.5. Embodiment

The actuators are modeled as non-spiking integrators.

The maximum value they can achieve with prolonged

excitation (spike trains) represents the maximum velocity each

actuator can generate. Non-spiking integrators approximate

computational models of muscles (Wexler et al., 1997).

The actuator dimensions and movement values

used are inspired by movements of Melophorus bagoti
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(Wystrach et al., 2014) and the actuators are arranged as in a

Braitenberg vehicle (Figures 2B,D). Each actuator generates

forward velocity independently of the other. In the Core

network, if the right actuator generates a higher velocity, the

agent will turn left by rotating around the body center point,

and vice versa.

In the Comprehensive network, the forward motion

and rotation are calculated independently from each other

(Figure 2A, top); both actuator sides generate leftward and

rightward turning values, which are averaged for each actuator

side first, then averaged over both actuators. The forward

motion is the same for both actuators. As described in the

previous section, due to the connectivity, this will produce

Ackermann steering.

2.6. Parameter space exploration

The values chosen for the networks were in the typical

range of parameters within which neurons operate. Within

these ranges, we first ran simulations to find combinations that

would generate flip-flopping. Then to find further combinations,

we expand the parameter space outwards from previously

successful values.

2.6.1. Comprehensive network

The parameter exploration focused on finding suitable

parameters to generate the desired behavior in order to validate

that the model can produce the two adaptive motor patterns

that the LAL is known to produce. Thus we explored a focused

region of the model’s parameter space, related to CPG dynamics,

namely the parameters of the adaptation current (the five

parameters as shown in Table 2). This resulted in 54 · 6 =

3,750 simulations.

In the second phase we focused on demonstrating that a

parameter combination existed that could additionally generate

reasonable steering behavior, in addition to the desired zig-

zagging behavior. From the explored phenotypes of the first

phase we used the 34 phenotypes (within this paper we define

the genotype as the combination of the possible parameters,

and the phenotype as the resulting movement pattern, which a

particular parameter combination generates), which produced

the most desirable CPG behaviors in the first phase, which is the

increase of the speed of flip-flops with increased symmetrically

strong inputs. Therefore, ultimately, in the Comprehensive

network we only explored different weights from the inhibitory

neurons to the contralateral descending turning neurons (wIIL,

wICL), tuning for the desired rotation behavior. The 10 weights

explored were −1, −2.6, −4.1, −5.7, −7.2, −8.8, −10.3, −11.9,

−13.4,−15, leading to 100 simulations per phenotype, resulting

in 10 · 100 · 34 = 3,400 simulations.

2.6.2. Core network

We simulated the model for 2,000 timesteps modifying four

adaptation related neuron parameters and four weights, wEI ,

wEO, wII , and wIO, each with five values (see Table 1). Each

genotype was run five times, where the input strengths were

given at a constant 25, 50, 75, and 100% from both inputs, and

an asymmetrical combination of 25% left input and 100% right

input (which should result in a right turn), resulting in 58 =

390,625 simulations.

Unsuccessful simulations, as defined by the following rules,

were excluded:

1. The CPG layer produced <2 spikes (no flip-

flopping with symmetric input) in both the Core and

Comprehensive version

2. The maximal spike rate of output neurons was >60 spikes/s

(Core) or 120 spikes/s (Comprehensive)

If, according to these rules, any of the 5 simulations for a given

genotype were unsuccessful, the whole genotype was excluded.

2.7. Trajectory analysis

We were mostly interested in the behavioral outcome of the

CPG dynamics and focussed the analysis on the zig-zag quality

(frequent and evenly spaced changes of steering direction) of the

agents’ trajectories. We subdivided the trajectory into segments

by identifying the transition points from left turns to right turns

and vice versa (the points where the angular velocity changed

sign, Figures 3A,B). We defined an “underlying trajectory” by

connecting these points with straight line segments. Turns

where the angular velocity was smaller than 1 ·10−3rad/ms were

regarded as low-level noise and excluded from this analysis.

The segmentation and definition of the underlying trajectory

then enabled us to analyse the stability and sinuosity of the

trajectory (Figures 3C,D). As a measure of sinuosity we used

the length difference between the actual trajectory and the

underlying trajectory. The bigger the difference, the curvier the

actual trajectory is between transitions. Additionally, we used

the number of transitions per trial, as well as the length of the

segments (Figure 3C). We defined trajectories as stable when

they did not change in heading over time as judged by the angle

between the first and last segment of the underlying trajectory

(Figure 3D). Additionally, we analyzed the inter-segment angles

and the origin to final position angle as a measure of consistency

of movement direction.

2.7.1. Comprehensive network

In the first phase we focused solely on the zig-zagging

dynamics, in this case on the increase of the number of

switches with the input amplitude. In the second phase we
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FIGURE 3

Trajectory-analysis. (A) Top: A simulated trajectory. Bottom: The trajectory’s angular velocity profile. (B) An underlying path, where each segment

connects to the positions of left and right turning transitions. (C) Measures of sinuosity: the length di�erence between the path and the

underlying path in each segment, the number of segments, and the length of each segment. (D) Measures of stability: Overall movement

direction and intersegment angle.

focused on the steering dynamics, where we explored inhibitory

neurons to rotation neuron weights, we analyzed all 3,400

phenotypes visually.

2.7.2. Core network

We are interested in a phenotype where small inputs lead to

exploratory behavior and large inputs to goal directed behavior.

We therefore restricted the search by the following conditions,

which we deemed to increase the chances of identifying models

with sensible phenotypes we are searching for:

1. Sinuosity should decrease with input amplitude: The number

of transitions should increase and the length of the segments

should decrease; or transitions should disappear altogether.

2. Trajectories should be stable: The median intersegment angle

should be within ±0.1 rad, the first to last segment angle

within±0.25 rad and the trajectory angle within±0.25 rad.

3. Results

We implemented two models of the LAL network, a

Comprehensive model that includes all of the known cell types

and anatomical connections and a Core model where neuron

types are combined into functional groups. For both models

we investigated how the CPG dynamics lead to specific types of

movement trajectories, depending on the parameters of neurons

and synapses in the model. We then asked, what kind of

parameter combinations led to movement trajectories where

small sensory inputs lead to exploration and large inputs to goal

directed movement.

3.1. Comprehensive network

Our initial aim was to develop a SNN model that

incorporates current knowledge of LAL neuron types and

putative functions (Steinbeck et al., 2020a). The resultant

Comprehensive model (see Figure 2A) contains 12 neurons and

35 parameters, out of which we investigated seven parameters.

The model consists of two functional groups, motor control

neurons, and CPG neurons.

The input neurons (E) feed into the motor control neurons,

which in turn feed into the ipsilateral actuator (IL for

turning, V for velocity) and the contralateral actuator (CL for

turning). The velocity neurons furthermore feed into the CPG

neuron pathway; Supplementary Figure 1 illustrates the CPG

components, which lead to the rythmic inhibition and therefore

motif generation.

Characterization of the final 3,400 genotypes showed the

following phenotype distributions: zig-zag (86.47%), straight

(11.44%), curve (1.12%), and chaos (0.88%). Within zig-

zagging, we further divided seven sub-phenotypes (Figure 4B,

percentages scale to 2,761 zig-zag phenotypes): curvier with

low input to straighter with high input zig-zagging (34.63%),

straighter to curvier zig-zagging (4.69%), curvaceous zig-

zagging (19.52%), curve to zig-zagging (0.68%), just zig-zagging
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FIGURE 4

Trajectory phenotypes. (A) We found six common phenotypes. I. Zig-zag, II. Curve, III. Straight, IV. Loop, V. Chaos, and VI. Stopping. (B) The

zig-zag phenotype we further divided into seven subcategories. a: The change in trajectory from low input to high input is reflected in less

pronounced zig-zagging (desired), b: the reverse, c: where the agent loops with low input but zig-zags with high input, d: asymmetrical

zig-zagging (which behaves as a) otherwise, e: curvaceous zig-zagging, f: just zig-zagging, and g: noisy zig-zagging.

(7.24%), and randomly occurring zig-zagging (33.23%). The

simulations with asymmetric input (see Section Materials and

methods) always resulted in a deterministic rotation which

reflects the difference in inputs on the two sides.

Figure 5 shows the adaptive motor patterns that are

produced by one parameter combination for a range of sensory

inputs. It was selected because it looks like the behavior

we desire. The combination: wAI = -2.5, wIIL = -12, wICL

= -8.8, gadapt = 4 · 10−7S,p = 0.05, 1A = 4, τadapt =

0.5s, produces oscillatory behavior with weak inputs (see

Figures 5A,D) and strong sensory signals produce turning

when asymmetrical (Figure 5B) or fast straight movement

when balanced (see Figure 5C). Thus we have a proof

of concept that the Comprehensive network can function

adaptively (in the sense of dynamic motor control) as

a steering network and as a CPG generating oscillatory

search behavior.

3.2. Core network

We then tested the Core model network (Figure 2C), which

contains six neurons and 30 parameters, out of which we

investigated eight parameters. This network generates a variety

of movement patterns depending on the parameters. Figure 2

shows the network producing the desired behavior, with a

parameter combination of: wEI = 0.5, wEO = 0.5, wII = −3,

wIO = −5, gadapt = 2 · 10−7S, 1A = 0.1, p = 3, τadapt = 0.5 s.

Out of the 390,625 tested phenotypes, 249,624 did not meet

the selection criteria (the CPG did not spike in each simulation

or the output activity was too high, see Section Materials and

methods). From the remaining 141,001 phenotypes, 1,580 met

at least four out of six sinuosity and stability conditions, 200

met at least five out of six and 38 met at six out of six. We used

these exclusion criteria with the logic, that if a trajectory with the

desired properties is not generated when simulating once, it will

not occur consistently and the phenotype can hence be excluded.

We visually inspected the generated trajectories in the two

groups of selected phenotypes. From the six typical trajectory

phenotypes that can generally be identified (Figure 4A), we

encountered four within the inspected phenotypes (percentages

are with respect to the 1,580 inspected phenotypes): “zig-

zagging” (66.39%), “straight” (33.16%), and “curved” (0.003%).

Within zig-zagging, we further divided seven sub-phenotypes

(Figure 4B), percentages are relative to the 1,049 zig-zag

phenotypes: curvier to straighter (for low to high input) zig-

zagging (60.91%), straighter to curvier zig-zagging (0.16%),

asymmetric zig-zagging (5.81%), just zig-zagging (27.55%),

and randomly occurring zig-zagging (4.1%). The asymmetrical

input simulations always resulted in a deterministic rotation.

Thus, we have shown that the network can generate a variety

of movement patterns by the use of different parameters;

specifically, many parameter combinations lead to the desired

zig-zagging behavior.
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FIGURE 5

Behavior of the Comprehensive network in response to di�erent sensory inputs. (A–D) Shows the network activity as a Spike Density Function

(SDF) during a simulation run with the resulting trajectory below (for neuron types see Figure 2). (A) Low symmetrical input leading to strong

zig-zagging. (B) Asymmetrical input leading to circling. (C) High symmetrical input leading to minimal zig-zagging with forward motion. (D)

Changing input from medium to high symmetrical input (asterisk * indicating the time point of input change in both the neural trace and in the

motion trace) leading to firstly zig-zagging to forward motion. The SDF used a Gaussian Kernel with µ = 0 and σ = 0.05 over 500 ms.
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FIGURE 6

Reproducibility of the desired behavior (stronger zig-zagging with weak input, weaker zig-zagging with stronger input) of the Core network with

di�erent levels of noise. We chose 25 parameter combinations which showed great approximations of the desired behavior (see Figure 4Ba) and

changed the noise component η of the voltage computations (see Equation 1). Each behavior was simulated 100 times. The top row shows the

number of switches per simulation, the bottom row the mean trajectory angle (the overall trajectory direction from start to end) with di�erent

symmetric input strengths (gray lines and blue dots) over 100 simulations. The overall behavior (mean of all means in red) stayed the same with

increased switching from increased input strength, while the variability increased with increased noise level as expected.

3.3. The network is robust to parameter
changes

We ran a principal component analysis (PCA) on the

successful genotypes, specifically on the systematically explored

parameters. By this we investigated whether there was

a lower dimensional subspace of parameter combination

that led to successful phenotypes and, in particular which

parameter combinations mostly contribute to the zig-zagging

phenotype. We used Min-Max scaling or standardization to

preprocess the parameters. We ran PCAs on the set of all

parameter combinations that 1. produced trajectories at all

(∼140,000), 2. produced “sensible” trajectories (∼1,600, which

are the ones which the trajectory analysis narrowed down

for inspection), 3. produced interesting zig-zagging trajectories

(∼1,500, which are including the phenotypes I [a, d, f],

II, III and are a subset of the sensible trajectories), and 4.

produced the best zig-zagging trajectories (∼1,000, which are

including the phenotypes I [a, d, f] and are a subset of the

interesting trajectories).

In all cases the variance explained by the first principal

components was low. In particular, the first principal component

(PC1) for the best trajectories, PC1 explained only 17% of the

variance, for all other trajectories even less. The leads us to

believe, that the zig-zagging phenotype can occur with many

different genotypes of network parameters. We compared

different parameter combinations to investigate how big the

spread of the best zig-zagging is (Supplementary Figure 2).

Most combinations yield a big spread, but some

parameter combinations are more likely to produce the

desired behavior.

We then investigated the reproducibility of the generated

trajectories, since the simulations were performed only once per

parameter combination. We selected visually the phenotypes

which produced the desired behavior best. We repeated each

of these 100 times and compared the resulting behavior. The

only term influencing the outcome of each single parameter

combination simulation is the additional noise component

during the neuronal computation (η in Equation 1). This would

result in a slightly different trajectory with each simulation.

To further investigate the influence of the noise component,

we changed the noise amplitude to 5-fold higher and 10-fold

lower than the original value and compared the generated

trajectories, see Figure 6. We found that the noise component

largely determines the overall outcome of the variability of

trajectories, which seems to be determined by the phase building

up to the flip-flopping behavior (see Figure 2D). Yet, the overall

zig-zagging behavior typically stays the same, meaning that

zig-zags continue to get faster with higher input and the

overall forward motion remains similar. Thus, we have shown

that the generated behavior is robustly generated with the

Core network.
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4. Discussion

4.1. Takehome message

We set out to explore how a neural network could produce

adaptive behavior in a navigation setting. We built the spiking

neural networks based on the overarching layout of the LAL

and the behaviors it should produce (Steinbeck et al., 2020a).

We chose the networks to keep a hemispheric layout, while

simultaneously containing a CPG. A non-symmetric input

resulted in a non-symmetric output, while symmetric input

generated searching behavior for lower input strength and

forward movement for higher input strength. Therefore, if a

reliable stimulus appeared toward one side, the agent would

steer toward it, whereas if it appeared ahead, the agent would

approach it directly, similarly to as phonotaxis in crickets

(Gryllus bimaculatus, Zorović and Hedwig, 2013). If the sought

desired stimulus could not be perceived though, the agent would

generate small scale search motifs, similarly to the zig-zagging in

silkmoths (Bombyx mori, Kanzaki et al., 1992).

There are many different combinations of neuron

parameters and connection weights leading to the desired

behavior, even with varying amounts of noise, indicating that

the network’s setup may be well suited to generate this kind

of behavior. The network was capable of generating a range

of other natural seeming movement patterns for example the

familiarity dependent zig-zagging trajectories of ants pursuing

visual stimuli (Wystrach et al., 2014) or the pheromone plume

pursuit of silkmoths (Iwano et al., 2010). This indicates that this

network architecture can be easily adapted to generate different

adaptive behaviors.

4.2. Flip-flop mechanisms

How do the inhibitory neurons switch between higher

and lower firing rates? We choose the flip-flop mechanism

to be an intrinsic adaptation, which is only driven by the

reliability of a navigation relevant stimulus. This way, themutual

inhibition will lead to a CPG behavior and the flip-flopping will

only occur if the neurons are activated simultaneously with a

similar strength.

The bilaterally similar input strengths leading to a flip-

flop behavior emerged in the network as described by Adden

et al. (2020) as well. Their rate based model has morphological

similarities to our model. However, the flip-flop driving

mechanism is a hardcoded inhibition of spike rate, if the

opposite population of neurons enters a high spike rate.

This type of switching is inspired by bi-stable neurons which

have low-firing states and high-firing states they can switch

between (Gruber et al., 2003). Set into a navigation task,

this model reproduces olfactory tracking behaviors and path

integration behaviors.

In our Comprehensive network we investigate the

interaction between the Ventral Protocerebrum (VPC) and LAL

(Iwano et al., 2010). This bidirectional connection seems to be

established by unilaterally descending and ascending neurons.

The flip-flopping of Type I neurons may be a result of preceding

network activity, and not being the neuron type which produces

the flip-flopping by itself. This would make sense as Type I

neurons directly project toward the motor centers. If Type

I neurons were responsible for both initiating steering and

flip-flopping, the species of insects (moths) which use a kind

of zig-zagging, would zig-zag continuously to a stronger or

lesser degree. While some species of ants seem to continuously

zig-zag while navigating (Möel and Wystrach, 2020), silkmoths

only flip-flop when tracking pheromone plumes. Therefore, we

chose the adaptation neuron to be the ascending Type II neuron

coming from the VPC, which innervates the inhibitory Type III

neurons in the LAL, which in turn inhibit the contralateral Type

I neurons.

In our Core network, flip-flopping occurs as a result

of integrating the input neurons’ activity and simultaneous

mutual inhibition by Type III neurons, which are intrinsically

adaptative. The build-up of the adaptation should be slow

enough for the agent to actually be able to steer around for weak

inputs, but fast enough to not steer much when receiving strong

inputs. The power term AP therefore may lead to fast build up,

which is why mostly this behavior occurs with a low power term

when compared with any τadapt.

Other pathways may influence the flip-flopping mechanism

in moths, one of them being optic flow (Pansopha et al., 2014).

Moths alter their behavior, if the optic flow direction matches

the expected direction, but the extent of perceived optic flow

increases or decreases their turns. If the optic flow does not

match, the moths perform a stereotyped pattern. Therefore, we

suggest the adaptation mechanism to be partly be driven by

external stimulus like optic flow. Incorporating optic flow to

directly control the adaptation mechanism may increase spatial

reliability of the CPG mechanism as it would be linked to

external orientation stimuli. Furthermore, modulatory inputs to

the LAL may alter the LAL’s function depending on the agent’s

motivational state (Manjila et al., 2019). This could function as

a “switch” to activate/deactivate specific functions within this

network (maybe the CPG subnetwork) or deactivate the LAL as

a whole.

4.3. What do the output neurons encode
for?

Which kind of information is actually sent to the motor

centers? In the Core network we simulated the outputs

to the motor system to act similarly as a Braitenberg-

vehicle, where we pick up on the observation that steering
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is initiated due to an imbalance of neuron activity between

hemispheres (Iwano et al., 2010; Zorović and Hedwig, 2013).

With this set-up, the actuation difference between left and

right achieved should be high, so that the force generation

difference is big enough to steer. Therefore, the connection

from the inhibitory neurons to the output neurons (wIO) should

be strong.

In the Comprehensive network we suggest a split into

turning and velocity neurons due to optic flow integration

in descending neurons in bees and the latest discoveries in

the descending neurons of Drosphila. Descending neurons

have been shown to innervate different groups of muscles:

while some groups target muscle groups which are more

involved in power generation, others target muscle groups

which are more involved in steering (Namiki et al., 2018).

Unilaterally descending neurons in Drosphila have been shown

to code for velocity (Bidaye et al., 2020). Some of unilaterally

descending neurons show bilateral innervation of the motor

centers (Bidwell and Goodman, 1993). Functionally, this could

control walking velocity across both sides of the motor centers.

Other Type II neurons have been shown to be involved mostly

in steering (Schnell et al., 2017; Rayshubskiy et al., 2020).

Also, Type I neurons are involved in steering (Iwano et al.,

2010; Zorović and Hedwig, 2013; Namiki and Kanzaki, 2016).

Animals (insects) steer their bodies while walking by pushing

the outward actuators away from the body while pulling in

the actuators on the inside (Mantziaris et al., 2020). Both

actuator centers therefore can produce both left and right

turns individually. Fiore et al. (2017) suggested a similar pre-

motor command structure (walking forward, left, and right in

both LALs), yet more abstract than our Comprehensive model.

The biggest difference to our models is the assumption that

the LAL neurons are inhibited by CX neurons (Fiore et al.,

2015).

However, evidence suggests that the meta-motor commands

could be more nuanced than this. In cockroaches, recording

of CX neurons show how different units encode for different

walking directions and velocity (horizontal representation)

(Martin et al., 2015). In flying insects like bees, different

descending neurons are activated by different directions and

velocities of optic flow, therefore coding for pitch, roll

and yaw (vertical representation) (Ibbotson, 1991; Bidwell

and Goodman, 1993; Goodman et al., 2002). This could

mean that motor commands are encoded in a three-

dimensional vector space, where a neuron encodes for a

specific movement direction in an idiosyncratic manner, as

well as the velocity into that direction. Therefore, motor

command encoding could possibly be representing walking

movements and flying movements separately, or when in either

state, only a subset of all possible motor commands could

be active.

Another question is how both the left and right descending

commands are coordinated. While for a rotation an imbalance

of activity between left and right may be sufficient to

initiate rotational movements (steering), how are translational

movements coordinated? We know from both walking and

flying insects that these movements are used (Ravi et al.,

2019). This would point toward an identical motor command

representation in both pairs of the LAL, where both hemispheres

encode omnidirectional movements and velocities, and the

consequent motor group innervations are mirror symmetrical.

5. Conclusion

We have investigated the network dynamics of a spiking

neural network model inspired by the Lateral Accessory Lobe

of the insect brain. The network dynamics produce a stimulus

reliability dependent small scale search behavior. That behavior

can be produced over a variety of parameter combinations and

noise levels, speaking of a robust network. Furthermore, other

generated behaviors resemble naturally occurring behaviors of

navigating animals.

In preliminary simulations we investigated the network in

a simple navigation setting (Steinbeck et al., 2020b). We found

that the generation of small scale search movements, which

are directly modulated by the reliability of sensory signals, can

improve the success of approaching a target. In future studies we

want to incorporate this model withmore complex visual stimuli

(Risse et al., 2018), and additional modalities like optic flow

(for the CPG adaptation mechanism Pansopha et al., 2014 or

optomotor response Bidwell and Goodman, 1993) or olfaction

(Ando et al., 2013) and navigation models (Möel and Wystrach,

2020; Sun et al., 2020).
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SUPPLEMENTARY FIGURE 1

Comprehensive network: Central Pattern Generator pathway. (A) The

left-hand pathway (the colorful neurons and connections). The velocity

neuron V drives the adapting neuron A, which in turn drives the

inhibitory neuron I. I’s output then inhibits the contra-lateral descending

neurons. (B) The right-hand pathway.

SUPPLEMENTARY FIGURE 2

Parameter combination relationships producing the desired behaviors in

the Core network. Desired behavior: With low symmetric input the

trajectory is strongly zig-zagging, with high input barely zig-zagging (see

Figure 4Ba). The heatmaps show the network parameters plotted against

each other in pairs. Some of the parameter pairs show clusters of

combinations that are more likely to lead to the desired behavior. Many

pairs show no clustering.
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