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Abstract: Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture
techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of
promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying
the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural
tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a
reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D)
cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically
accurate and low cost cancer models for preclinical screening and testing of new drug candidates
before moving to expensive and time-consuming animal models. Here, we provide a comprehensive
overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation
tools of targeted therapies, focusing on their applicability in cancer research. Examples of the
applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.

Keywords: 3D cultures; tumor microenvironment; tumor spheroids; efficacy analysis; drug resistance;
cancer therapy

1. Introduction

Significant investments are made in cancer research for drug discovery and development. Yet,
the approval rate (≤5%) of drugs that reach the clinic remains very low [1,2]. Typically, anticancer
compounds are tested in two dimensional (2D) cell culture models, that involve a panel of cancer
cell lines, such as those used by the US National Cancer Institute [3]. Drugs that show promising
cytotoxicity in 2D in vitro system progress to animal models of human cancers (mainly mice) for
anti-tumor efficacy testing [4]. Unfortunately, most of the promising preclinical drugs have no
or weak efficacy in real patients with tumors, resulting in a significant delay of anticancer drug
development [5]. One of the main factors underlying this poor success is the inadequacy of the
preclinical 2D cultures and animal models to recapitulate the human tumor microenvironment (TME).
TME is a complex and heterogeneous structure made of cellular (e.g., transformed epithelial cells,
fibroblasts, infiltrating lymphocytes, mesenchymal stem cells, endothelial cells) and non-cellular (e.g.,
extracellular matrix—ECM, growth factors, cytokines and chemokines) components, with a critical role
in cancer development and progression [6,7]. The 2D culture systems lack the structural architecture
and the microenvironment of the tumor, and display altered gene expression and activation of cell
signaling pathways, compared to the in vivo tumor tissues (Table 1) [8–10]. Besides the associated
higher cost and ethical issues, animal models also display significant limitations and poorly reflect the
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proprieties of human tumors. For instance, the stromal component of the xenograft is not of human
origin, the rate of growth is higher in xenografts (doubling time of a few days) than in primary human
tumors (doubling time of a few months), and, thus, they often tend to respond better to anticancer
drugs [11].

Table 1. Differences between conventional 2D monolayer and 3D spheroid cultures.

Cell Culture System Advantages Disadvantages

2D cultures

• Fast replication;
• Low cost;
• Easy to manipulate;
• Establish long-term cultures.

• Homogeneity in oxygen and
nutrients perfusion;

• Decreased cell–cell and
cell–ECM interactions;

• More susceptible to pharmacological action;
• Poor cell differentiation;
• Faster proliferation than in vivo tumors.
• Modified genetic profile when compared to

in vivo tissue.

3D cultures

• Heterogeneity in oxygen and
nutrients perfusion;

• 3 different layers (proliferation, quiescence and
necrosis zones) resembling the in vivo tumors;

• Increased cell–cell and cell–ECM interactions;
• Mimic drug penetration in the tumor.
• Recapitulate the genetic in vivo profile.

• High cost;
• Greater difficulty in carrying out

methodological techniques.

Therefore, the development of preclinical models that better recapitulate patient tumor and
microenvironment represents a promising challenge to improve the success rates in anticancer drug
development. Since the discovery of the importance of the extracellular matrix (ECM) in cell behavior,
it became clear that three-dimensional (3D) cell culture systems offer an excellent opportunity to
recapitulate the real avascular tumor, by allowing cancer cells to be cultured, either alone or in
co-culture with other cell types, in a spatial manner reminiscent of the structural architecture of
the tumor that provides cell–cell and cell–ECM interactions, thereby mimicking the native tumor
microenvironment (Table 1) [12–15]. Hopefully, besides circumventing the barriers and limitations
imposed by 2D monolayer cultures, 3D cell culture models could reduce or, ideally, replace the use
of animal models, thereby resolving the associated ethical and cost issues [16,17]. Here, common
3D cell culture methods are highlighted, the characterization tools for the evaluation of the targeted
effect are reviewed, with focus on multicellular tumor spheroids (MCTS) and their applicability in
cancer research.

2. Tumor Microenvironment as Pathophysiologic Barrier to Anticancer Therapy

The TME comprises the heterogeneous population of malignant cells, the ECM, and various
tumor-associated cells such as cancer-associated fibroblasts (CAF), endothelial cells, adipocytes, and
immune cells (Figure 1). Tumor-associated macrophages (TAMs) are monocyte-derived macrophages
that can be categorized as inflammatory M1 macrophages, with roles in phagocytosis and cell killing,
and immunosuppressive M2 macrophages, with roles in tissue repair [18]. The TME, mainly through
hypoxia and secreted cytokines, promotes the M2 phenotype which favors, amongst others, tissue
repair and tumor invasion and progression [19,20]. TAMs can constitute up to 50% of the tumor mass,
and are associated with poor prognosis in many cancer types. CAFs are also a major component of the
TME, characterized by a high interaction with tumor cells and the TME. In this context, CAFs contribute
to tumor cell invasion, as well as to changes in tumor growth and immune microenvironment, through
ECM remodeling and production of soluble factors [21,22].
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Figure 1. Schematic representation of the tumor microenvironment. The tumor ecosystem consists of a
heterogeneous population formed by cancer and infiltrating immune cells, including tumor-associated
fibroblasts, myeloid-derived suppressor cells and immune cells. The cross-talk between all these tumor
microenvironment components play an essential role in tumor growth, development and metastasis,
under hostile conditions. Soluble factors are constantly produced, triggering immunosuppressive
responses and tumor survival. Created with BioRender.com.

The ECM provides structural support for cells in the extracellular space, and is composed
of structural fibrous proteins (e.g., collagens and elastin), multiadhesive proteins (e.g., fibronectin
and laminin), glycosaminoglycans (e.g., heparan sulfate, hyaluronan), proteoglycans (e.g., perlecan,
syndecan), and sequestered growth factors, as well as secreted proteins [23–25]. The cross-talk between
the different TME cells and components plays an essential role in tumor growth, progression and
metastasis [26].

Many factors present in the TME, including transforming growth factor beta (TGF-β), cytokines
(IL-10 and IL-1β), members of the VEGF, plateled-derived growth factor (PDGF), FGF, angiopoietin
families, Bv8/PROK2, and hypoxia-inducible factor (HIF)-1α, provide molecular support to tumor
growth and progression [27–30]. Additionally, cancer cells are experts in modifying their surrounding
environments. For instance, cancer cells can co-opt fibroblasts to obtain growth factors, such as basic
fibroblast growth factor (bFGF), necessary to sustain their growth and proliferation. additionally,
tumor cells can interact with the surrounding endothelial cells, promoting the release of soluble
factors, like vascular endothelial growth factor (VEGF), to trigger the angiogenic process. Tumor cells
can also evade the immune-mediated cellular destruction through different strategies. For instance,
loss of tumor antigen expression precludes their recognition by the immune system, production of
immunosuppressive cytokines protects them from the cytotoxic lysis by immune cells, and development
of immunosuppressive forces leads to local immunosuppression in the TME that shifts the phenotype
and function of normal immune cells from an anti-tumor state to a pro-tumor state [31–36].

Currently, treatment options against cancer include surgery, chemotherapy, radiation therapy,
hormonal therapy, and targeted therapy [37]. Basically, anticancer therapies aim to target tumor
cells either directly, through DNA damage by cytotoxic drugs or local radiation causing apoptosis,
or indirectly, through the destruction of TME so as to deprive cancer cells of the machinery
that fuel their growth and progression. However, these therapies induce new biological tumor
responses, mainly through immunological and angiogenic modulation, contributing to drug resistance,
which remains a serious consequence of most anticancer treatments, impacting the patient’s prognosis
and quality of life [31,38].
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The TME imposes many biological barriers that greatly hinder drug delivery to tumors [39,40].
These barriers include malformed vasculature, rigid extracellular matrix, hypoxia, acidic pH, abnormal
enzyme level, altered metabolism pathway, and immunosuppressive environment. Uncontrolled cell
growth and proliferation result in insufficient blood supply to cancer cells in the inner core and in the
intermediate layer of the tumor mass, causing cellular hypoxia [39]. Hypoxia, one of the hallmarks
of cancer, plays a fundamental role in tumor development and malignancy. This condition is able
to modify the tumor endothelial cells morphology, reducing oxygen diffusion to cancer tissue [41].
While hypoxia is harmful to non-tumor cells, unfortunately, cancer cells readily switch from oxidative
phosphorylation to aerobic glycolysis, a condition known as Warburg effect, orchestrated by the
transcription factor HIF-1α through which cancer cells acquire many malignant properties [42,43].
Moreover, the tumor vessels exhibit a disordered structure, which leads to a decrease in the blood
perfusion homogeneity [44]. This tumor vascular deficiency makes difficult drug distribution to
all cancer cells, impacting therapy effectiveness [43]. TME pH also contributes to anticancer drug
resistance. The increase in anaerobic metabolism leads to greater lactic acid production, reducing
the extracellular pH, that ranges from 6.2 to 7.2 [45]. As pH levels decrease, metalloproteinases
become activated, destroying cell interactions which facilitates tumor migration and invasion [46].
Acidic microenvironment causes the “ion trapping” phenomenon, process in which basic anticancer
drugs are transformed into a cation substance, reducing their transmembrane permeability and,
consequently, their effectiveness [47]. Immune cells such as macrophages, neutrophils, mast cells,
myeloid-derived suppressor cells, and natural killer cells, secret many soluble factors that promote
immunosuppression, angiogenesis, chronic inflammation, and drug resistance [43,48–50]. Additionally,
the mechanisms associated with immune escape during tumor progression can promote resistance to
anticancer drugs [31,43]. Tumor cells themselves can alter the organization and protein deposition of
the ECM, forming a physical barrier that prevents drug penetration into tumor cells [51,52].

Therefore, new therapeutic strategies have been developed to target the tumor-promoting
microenvironmental factors in a goal to block the interaction between tumor cells and the TME [53].
Such strategies include, for example, inhibition of the extracellular ligand-receptor interactions and
downstream pathways, re-programming the immune response, and co-targeting of tumor cells and the
microenvironment [43].

As outlined above, the tumors and their microenvironment provide multiple biological barriers
against drug penetration, accumulation, and efficacy, leading to tumor resistance to therapy [54].
Thus, discovery and delivery testing of new anticancer drug candidates require preclinical models that
are more physiological than conventional 2D cultures, capable of recapitulating these TME barriers.
In this sense, the spheroids provide the appropriate model of the pathophysiologic parameters present
in the real tumor, because they recapitulate the complex multicellular architecture, the barriers to mass
transport, and extracellular matrix deposition, which explain their growing use as models for better
prediction of drug effects and delivery in the last decades [55].

3. Common Characteristics of Spheroids and Tumors

Various cancer cells can spontaneously assemble into spheroids in culture environment that
privileges cell–cell and cell–ECM interactions over cell–substrate interactions [14]. These predominant
cell–cell and cell–ECM interactions result in the formation of a 3D structure that closely reproduces
mimics the native spatial organization and environment of avascular tumors, where cells can proliferate,
aggregate and differentiate (Figure 2) [56]. Common methods for spheroid generation are described
in the next section. Spheroids have a diameter of 200 micrometers or more, generally with a
spherical shape, and display three concentric zones of heterogeneous cell populations: an external
zone of highly proliferating and migrating cells; a middle zone of quiescent cells, and an internal
zone of necrotic cells [57,58]. These cell layers are so defined due to the nutrients and oxygen
gradients that are established, as a result of limited diffusion, from the outside to the center of the
spheroids. Thus, cells of the peripheral layer of the spheroids are exposed to sufficient oxygen and



Pharmaceutics 2020, 12, 1186 5 of 38

growth factors from the medium, which stimulate their proliferation. At the middle layer, limited
diffusion of growth factors forces cell entry into quiescent state of the cell cycle. In large spheroids
(>500 micrometers), oxygen deficiency (hypoxia) in the innermost zone induces altered gene expression,
through stabilization of the transcription factor HIF-1α, and, consequently, triggers the Warburg effect,
promoting aerobic glycolysis and lactic acid production, thereby lowering pH of the inner layer of
spheroids [59]. Nutrient and oxygen deprivation, together with the accumulation of metabolic waste,
triggers the necrotic death of cells at the innermost layer.
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Figure 2. Typical structure of a multicellular tumor spheroid. The geometric rearrangement of the
cells within the spheroid forms three concentric zones of heterogeneous cell populations: an external
proliferating zone (Proliferative zone); a middle zone of quiescent cells (Quiescent zone), and an internal
zone of necrotic cells (Necrotic zone). These cell layers are caused by the gradients of nutrients, oxygen,
and pH (yellow), from the outside to the center of the spheroid, and by the gradients of CO2, waste,
and lactate, from the center to the outside. Created with BioRender.com.

Therefore, 3D culture systems recapitulate many characteristics of in vivo tumors, such as cell–cell
and cell–ECM interactions, nutrient and oxygen gradients, and distinct layers of cell populations.
Besides, the morphology and polarity of the cells, as well as gene expression and activation of cell
signaling pathways, are also close to those of real tumors [8,9,60,61]. These features make spheroids a
promising model for the study of cancer biology, cancer initiation, invasion and metastatic processes,
as well as drug testing.

4. Methods for Spheroid Generation

Cells grown in culture environment of low binding or absence of adhesive surface can assemble
into 3D spheroids, as these conditions favor cell–cell and cell–ECM interactions over cell–substrate
interactions. Spheroids can be obtained after 1 to 7 days of culture, with various morphologies,
depending on the cell line and the approach used. Examples of studies that performed spheroid
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generation techniques are shown in Table 2, providing information on cell lines, density and the time
required to obtain the spheroids. According to the literature, spheroids of 300–500 µm of size are those
that best mimic in vivo tumors in terms of hypoxia and proliferation gradients. Typically, spheroids
are constructed from tumor cells, using scaffold-free or scaffold-based techniques [62].

4.1. Scaffold-Free Techniques

In scaffold-free techniques, different factors (e.g., low-adhesion substrates, gravity force and
magnetic action) contribute to cellular aggregate formation and spheroid generation. During this
process, the ECM is originated through continuous deposit of proteins produced by spheroid cells [63].
The most common scaffold-free techniques currently used are ultra-low attachment plates, hanging
drop, magnetic levitation and magnetic 3D printing. The advantages and disadvantages of each
method are summarized in Table 3.

4.1.1. Ultra-Low Attachment Plates

The surfaces of the plates are coated with a substrate to prevent cell adhesion, promoting
cell aggregation and spheroid formation. Besides presenting low adhesion, the wells of these
plates have a defined shape (round bottom, V-shaped or conical), allowing the positioning of a
single spheroid [64,65]. Generally, the main substrates used to coat the plate are agar/agarose
or poly(2-hydroxyethyl methacrylate), by adding 50 µL of solution in each well of 96-well plates,
at concentrations of 15 mg/mL and 5 mg/mL, respectively [66–68]. With this technique, a large number of
spheroids can be generated simultaneously on the same plate, facilitating experimental reproducibility,
in addition to enable the monitoring of spheroid formation and growth. As disadvantages, some tumor
cell lines do not form tight spheroids in ultra-low attachment plates [69].

4.1.2. Hanging Drop

In this method, approximately 25 µL of cell suspension is positioned inside of a petri dish lid,
which contains phosphate-buffered saline (PBS) to avoid dehydration of the cellular solution. Then,
the lid is inverted and due to surface tension, the droplets remain suspended. Owing to the force of
gravity, the cells within the droplets spontaneously form cellular aggregates, giving rise to a single
spheroid [70,71]. This method allows large production of spheroids and an easy control of their
size. However, it is labor intensive due to its multistep process, and there is a risk of cell damage in
case of media evaporation, requiring constant monitoring of the culture medium [71–74]. Moreover,
the hanging drop method can originate spheroids with heterogeneous sizes and morphologies,
impacting the spheroid standardization, which is essential for new drug screening. Recently, studies
have developed different tools to minimize these limitations and facilitated the realization of this
method [75–77]. For instance, the pressure-assisted network for droplet accumulation (PANDA) system
consists of a pressure chip capable to create homogeneous and compact hanging drop array, enabling
the fast and economical production of spheroids [75]. Another way to circumvent these barriers is
through the use of 3D printed hanging-drop dripper array that allows in situ analysis of drug screening,
tumor metastasis and tumor transendothelial migration, besides promoting heterotypic spheroid
interaction [77].

4.1.3. Magnetic Levitation and Magnetic 3D Printing

Through a mixture of magnetic particles/nanoparticles, the cells are magnetized and incubated
under magnetic forces to overcome the gravitational force, allowing their levitation and, consequently,
formation of cellular aggregate [78]. In this method, after the cells absorb the magnetic particles,
a magnet is positioned above (magnetic levitation) or below (magnetic 3D printing) the plate, promoting
cells aggregation and spheroid generation [70]. Spheroids are usually formed in less than 16 h,
being considered a fast-acting technique [72]. However, prior preparation of magnetic nanoparticles is
necessary, and limited number of spheroids are generated [78].
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4.2. Scaffold-Based Techniques

In scaffold-based techniques, external cell anchoring systems are used to mimic the ECM
structure, allowing greater cell–cell and cell–matrix interaction. These systems can consist of porous
microcarriers of natural, synthetic, and semisynthetic hydrogels made of cross-linked polymers.
Porous scaffolds are widely used in the bioengineering sector, and have gained prominence in 3D
cell culture implementation [63,72,79]. Due to their interconnected pores, these structures allow
greater diffusion of nutrients, oxygen and metabolic debris, in addition to mimicking the ECM
architecture, providing cellular support, attachment and proliferation [80–82]. 3D porous scaffolds also
promote the formation of bigger spheroids, compared to non-porous scaffolds, and enhance tumor
cell invasion and therapeutic resistance [83,84]. Although they are synthesized mainly by polymers
such as poly(ε-caprolactone), porous microparticles can consist of different substances, including
natural (e.g., chitosan, hyaluronic acid, alginate, collagen, gelatin, silk fibroin), and synthetic (e.g.,
poly(lactide-co-glycolide)) materials [85–90]. The porosity and pore size of the scaffold are essential for
the establishment of effective 3D models, as they can affect the transport of oxygen, metabolites and
nutrients, as well as cell adhesion and cell growth [91]. While porous 3D scaffold methods are useful to
control the spheroid size, effective collecting and separation of spheroids from 3D scaffolds may be
difficult [92]. Common scaffold-based methodologies include spinner flasks, micropatterned plates,
matrix encapsulation, matrix on top, matrix embedded, microcarriers beads, and microfluidic devices.

4.2.1. Spinner Flasks

Continuous rotating agitation inhibits cell adhesion to the surface, leading to spheroid formation.
The main means of rotation used are through spinner flasks and rotating flasks. In spinner flasks,
a magnetic stirrer is positioned inside the flask, allowing homogeneous distribution of oxygen and
nutrients. However, the cells are subjected to direct shearing force, which increases the risk of their
damage. In the rotating flasks, the flask itself is rotated, allowing the dispersion of oxygen and nutrients,
and the reduction of the shear forces on the cells [70]. As an advantage, this method allows large scale
generation of spheroids. However, the continuous rotation prevents the visualization of the aggregates,
can damage the cells, and is hard to monitor [71]. Yet, this method is considered as one of the most
efficient systems for obtaining large amounts of spheroids under controlled nutritional conditions [72].

4.2.2. Micropatterned Plates

The plates are modified to create micrometer sized compartments with a low adhesion surface
within each microspace, providing a micropattern or microwells which induce cells to grow as
clusters. First, a layer of 3-trimethoxysilyl polymethacrylate is added to the glass plate, to ensure
fixation of the hydrogel microwells to the plate, followed by a uniform layer of hydrogel. Soon after,
using photolithography techniques, polydimethylsiloxane is added to the hydrogel for microwell
formation [70]. The cell suspension is then seeded into hydrogel microwells, which can vary in size
from 150–600 µm [93]. This method allows large scale production of spheroids. However, bubbles
often form during the culture, and pipetting can damage micropatterned surfaces due to pipetting [64].

4.2.3. Matrix Encapsulation

Suspended cells are surrounded by hydrogel and placed in calcium free solution, forming cellular
microcapsules. In these microcapsules, cells aggregate to form matrix encapsulated spheroids [70].
Generally, microcapsules have a size between 100 and 500 µm, are capable of generating monotypic or
heterotypic spheroids, and allow cell–cell and cell–ECM interaction [94]. In these systems, the transport
of nutrients and metabolic residues occurs by simple diffusion and, as the microcapsule increases,
the nutrient transport becomes limited, which can cause cellular necrosis. Due to their viscoelastic
capabilities, alginate hydrogels has been widely used to generate microcapsules [95]. An important
advantage is that this method yields homogeneous sized spheroids.
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4.2.4. Matrix on Top and Matrix Embedded

The matrix on top and matrix embedded methods are quite similar. In the matrix-on-top method,
the cells are seeded and trapped on the top of the solid matrix, and spheroids are formed through
cellular aggregation. In the matrix embedded method, cells suspended in the liquefied matrix are only
incorporated into the matrix after the gelation process [70]. Several compounds have been used as
a matrix, including agarose, matrigel, collagen, and synthetic polymers [96]. Matrix-on-top method
facilitates post-culture processing and imaging of the generated spheroids.

4.2.5. Microcarrier Beads

This system has been used for more than 25 years for to generate 3D cell culture [97]. In this method,
cells adhere to natural (e.g., collagen, cellulose) or synthetic (e.g., dextran, poly(d,l-lactide-co-glycolide))
matrix-coated beads, forming spheroidal structures [98,99]. The microcarrier beads provide a cell
attachment surface, allowing the aggregation, especially of cells unable to aggregate spontaneously.
This method is considered a fast, easy, and reproducible spheroid generation system, and allows the
adhesion of different cell types to form heterogeneous spheroids. However, the presence of microcarrier
beads in spheroids does not mimic the tumor physiological conditions in vivo [100].

4.2.6. Microfluidic Devices

The cells are placed in microchannels with a free perfusion system, allowing the distribution
of oxygen and nutrients, and the elimination of metabolic waste. As an advantage, this system can
mimic tumor microvasculature in vivo. However, this method requires specialized laboratories and
equipment [101–103]. Due to its ability to guarantee gases permeability, polydimethylsiloxane (PDMS)
is the most used material for making microfluidic devices [104]. In addition, PDMS are biocompatible,
easy to make, and are low cost. However, under high pressure, PDMS microchannels can be deformed,
causing changes in fluid speeds. Depending on the type of sealing, reversible or irreversible, the PDMS
microfluidic devices can withstand pressure up to 0.3 or 2 bar, respectively. Moreover, when exposed
to some fluids, PDMS microfluidic can swell, which impacts in device function [105–107]. Other
microfluidic device polymers, such as thermoset polyester, polyurethane methacrylate and Norland
Adhesive 81, also undergo structural changes when exposed to pressures above 10, 8 and 5 bar,
respectively [108].
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Table 2. Examples of tumors and respective cell lines, densities and time required for 3D cell culture formation by different spheroid generation methods.

Spheroid
Techniques

Spheroid Generation
Methods Tumor/Cell Lines Cell Seeding Densities Period to Spheroid

Formation/Observations References
Sc

aff
ol

d-
fr

ee
te

ch
ni

qu
es 1. Ultra-low attachment

plates

• Head and neck squamous cell
carcinoma lines (HNSCC): Cal33, Cal27,
FaDu, UM-22B, BICR56, OSC-19,
PCI-13, PCI52, Detroit-562, UM-SCC-1,
and SCC-9.

• 625, 1250, 2500, 5 × 103, 1 × 104,
or 2 × 104 cells/well.

• Although some HNSCC cell lines
formed MCTSs within 24 h of seeding
into 384-well ULA-plates, others
required 2–3 days to self-assemble.

[109]

• HNSCC cell lines: Cal33 and FaDu. • 5 × 103 cells/well. • Typically, the spheroids were formed 24
h after seeding. [110]

• Hepatocellular carcinoma cells: Huh-7;
Hpatic stellate cells: LX-2.

• Monospheroids: 750 cells/well
of Huh-7 or 2250 cells/well
of LX-2;

• Mixed-cell spheroids: Huh-7
and LX-2 cells/well at a 1:3 ratio
(750:2250).

• Spheroids were formed on day 1. [111]

• Human bone marrow mesenchymal
stem cells (hBM-MSCs).

• 1.4 × 104, 3.5 × 104, 1.4 × 104,
and 3.5 × 104 cells/well.

• Spheroids were observed 1 day
after seeding;

• 96-well plates were pre-coated with 20
mg/mL of poly(2-hydroxyethyl
methacrylate).

[112]

2. Hanging drop

• Human hepatoma cell line: HepG2. • 1 × 104, 2 × 104, 4 × 104 and 5 ×
104 cells/well.

• Spheroid formation was observed 1 day
after seeding. [113]

• Human bone marrow mesenchymal
stem cells: (hBM-MSCs).

• 1 × 104, 2.5 × 104, 1 × 105, 2.5 ×
105 cells/droplet.

• Spheroid formation was observed 1 day
after seeding. [112]



Pharmaceutics 2020, 12, 1186 10 of 38

Table 2. Cont.

Spheroid
Techniques

Spheroid Generation
Methods Tumor/Cell Lines Cell Seeding Densities Period to Spheroid

Formation/Observations References

• Non-tumorigenic mammary cells:
MCF10A; breast cancer cells:
MDA-MB-231; and co-culture with
MCF10A and mesenchymal
stem/stromal cells (MSC).

• MCF10A (3000 cells/droplet);
MDA-MB-231(2000
cells/droplet); co-culture with
MCF10A and MSC (cells were
seeded at 1:1 with 2000 total
cells/droplet).

• Spheroid formation was observed 1 day
after seeding. [114]

• Murine colon carcinoma: CT26. • 5000 cells/droplet. • Spheroid formation was observed 1 day
after seeding. [115]
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3. Magnetic levitation
and Magnetic 3D

printing

• Human breast cancer cell line: MCF-7. • 1000 cells/well.

• Singular and concentrated 3D
spheroids were observed 1 day
after seeding;

• Cells suspended in a
diethylenetriaminepentaacetic acid
gadolinium (III) dihydrogen salt
hydrate (Gd-DTPA) medium.

[116]

• Murine colon carcinoma: CT26 and
human glioblastoma cells: U-87 MG. • 1 × 106 cells/µL/mold.

• Spheroid formation was observed 1 day
after seeding;

• Magnetic spheroids of sizes of 0.4, 0.5,
1, and 1.6 mm were used.

[115]

• Human pancreatic β-cell line
(EndoCbH3) and human umbilical vein
endothelial cells (HUVECs).

• 5000 cells/50 mL in
corresponding cell culture
media per well;

• Cell ratio: 5000 cells to
5000 HUVECs.

• The exact beginning of spheroid
formation was not described; spheroid
formation was observed from day 5;

• β-cells and HUVECs were previously
treated with NanoShuttle™-PL at a
concentration of 40µL/mL in
media culture.

[117]

• Mesenchymal stem cells (MSCs).
• 1 × 104 cells/well (before

incubation with
magnetic nanoparticles.

• Spheroid formation was observed 1 day
after seeding. [118]
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Table 2. Cont.

Spheroid
Techniques

Spheroid Generation
Methods Tumor/Cell Lines Cell Seeding Densities Period to Spheroid

Formation/Observations References

4. Spinner flasks

• Human hepatoma cell line: SK-Hep-1.

• 1 × 106 cells were inoculated
into a siliconized Cellspin flask
containing 250 mL of
growth medium.

• Cell aggregation was observed between
24–48 h after cell seeding. Spheroids
were formed from 7–10 days, being
well defined on day 10.

[119]

• Human adenocarcinoma cells: HT29.

• 5 × 104 HT29 cells per 75
cm2 flask;

• Aggregates were transferred to
250 mL spinner flasks
containing 150 mL of
culture medium.

• Cell aggregation was observed from
day 3 and spheroids were observed in
day 15.

[120]

5. Micropatterned plates
• Sprague Dawley rats’ hepatocytes

and MSC. • 4 × 105 cells/well. • Spheroids formed gradually within
2 days. [121]

6. Matrix encapsulation

• Mouse colon carcinoma cells: CT26. • 3 × 106 cells/mL.
• The exact beginning of spheroid

formation was not described; spheroid
formation was observed from day 5.

[122]

• Human umbilical vein endothelial cells
(HUVECs) and mesenchymal stem cells
(MSCs).

• 6 × 105 cells/mL (75% MSCs and
25% HUVECs).

• Spheroid formation was observed 1 day
after seeding. [123]

7. Matrix-on top and
Matrix embedded

• Neuroblastoma cells: SK-N-BE(2); lung
cancer cells: H460; and glioblastoma
cells: U87vIII.

• 4750 cells/ droplet. • Spheroids began to form 1 day
after seeding. [124]

• Human adenocarcinoma cell line
derived from a metastatic site:
MDA-MB 231 and murine Abelson
leukemia transformed
macrophage/monocyte line: RAW
264.7.

• 500 to 5000 of RAW 264.7 cells
with 10,000 of MDA-MB
231 cells.

• Spheroids began to form 1 day
after seeding. [125]
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Table 2. Cont.

Spheroid
Techniques

Spheroid Generation
Methods Tumor/Cell Lines Cell Seeding Densities Period to Spheroid

Formation/Observations References

8. Microcarriers beads

• Human hepatocarcinoma cell
line: BEL7402. • 1 × 104 cells/well.

• The exact beginning of spheroid
formation was not described; on day 4
spheroids were already formed;

• It was added 200 microcarrier
beads/well (Cytodex-3);

• The plate was coated with 10%
poly(2-hydroxythyl methacrylate).

[126]

• Human melanoma cell line: BLM. • 5 × 105 cells. • Spheroid formation was described on
the first day. [127]

9. Microfluidic devices

• Human cancer cell lines derived from
ovarian solid tumor (TOV112D) or
ascites (OV90).

• 12,000 cells/mL.

• The exact beginning of spheroid
formation was not described; spheroid
formation was observed from day 3;

• Cell were seeded in single inlet
multi-size spheroid synthesis
(SIMSS) chips.

[128]

• Human colorectal cancer cell line:
HT-29, and human normal fibroblast
cell line: CCD-18Co.

• 5 × 106 /mL of HT-29 and 3 ×
106 /mL of CCD-18Co.

• Spheroid formation was observed 1 day
after seeding;

• Microfluidic chips were made
using PDMS.

[129]
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Table 3. Advantages and disadvantages of the main methods used for spheroid generation.

Spheroid
Techniques Spheroids Generation Methods Advantages Disadvantages References
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(b) (a) 

• Easy development of
heterotypic spheroids;

• Fast spheroid formation.

• Require the preparation of
magnetic particles;

• Limited
spheroid formation.

[70,72,78,134]
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• Large-scale
spheroid production.

• Slow agitation speed
generates cell dispersion;

• High agitation speed
generates shear force,
damaging the cells;

• Constant agitation
prevents cell visualization;

• Formation of spheroids
with
heterogeneous diameters;

• Requires
specialized equipment.

[70–72,135,136]
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• Large-scale
spheroid production;

• Few well-to-well and
plate-to-plate variation.

• Formation of spheroids
with
heterogeneous diameters;

• Bubble formation during
the culture;

• Pipetting can damage
micropattern surfaces.

[64,70,93,137,138]
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5. Tools to Evaluate Targeting Effect

Several techniques are available to characterize spheroids, either in viable, fixed, or dissociated
state, before and after anticancer drug treatment. These techniques were described in details in a
number of excellent review papers [63,140,141], and allow the characterization of the organization, size,
shape, gene and protein expression, metabolic status, migration and invasion of anticancer drug-treated
spheroids. In general, standard biological assays used for 2D culture can be applied to spheroids,
with some drawbacks as outlined below (Table 4).

5.1. Optical Microscopy

Morphologic changes such as size and shape can be monitored over time by optical microscopy and
analyzed by appropriate software [142,143]. For instance, with a standard phase-contrast microscope,
the difference in the size or volume between treated and untreated spheroids at a defined endpoint,
or even during treatment, can be used to evaluate the efficacy of an anticancer drug.

Fluorescence microscopy can provide information on ECM deposition in spheroids immunostained
with antibodies against fibronectin, laminin, and collagen IV [144], while relevant information such as
cytoskeletal arrangement, proliferation, and apoptosis in the spheroids can be obtained by Hoechst
or DAPI, phalloidin, Ki-67, caspases, Annexin V, Propidium iodide, and TUNEL staining [63,145].
Confocal laser microscopy is required to obtain higher spatial resolution, needed to analyze spheroid
architecture. However, this analysis is restricted to small spheroids due to limited light penetration
and to light scattering in thick tissues [143].

To overcome these issues, spheroids can be processed for histological sectioning. Then, staining
methods such as hematoxylin and eosin staining allow distinction of pyknotic nuclei and eosinophilic
cytoplasm in spheroid sections. For proliferating and quiescent cell populations, the use of specific
antibodies in immunohistological staining is required. However, spheroid fixation used in the
histological procedure precludes the study of dynamic alterations in the spheroids over time.
Additionally, sample fracture and morphology deformation can occur during spheroid sectioning.
Due to the delicate nature and small size of spheroids, the fixation time may need to be reduced,
comparatively to biopsies or organ fragments. Further spheroid processing has also presented some
challenges. For example, the inclusion of several spheroids in a unique paraffin block may involve
a more arduous and costly sectioning process, since the spheroids will localize in different section
planes. The development of microwell-containing apparatuses facilitated this process, allowing the
simultaneous analysis of multiple spheroids in a more organized and cheaper manner [146].

To overcome these drawbacks of spheroid fixation and sectioning, faster and noninvasive
microscopy approaches have been developed in the last years to image the innermost layer of
live and fixed spheroids, such as light sheet fluorescence microscopy (LSFM), single or selective
plane illumination microscopy (SPIM), and multi-photon microscopy (MPM) [147–149]. These new
microscopic approaches allow deep tissue imaging study without the need of physical sectioning,
while allowing dynamic processes to be studied in live 3D cultures at high resolution, under reduced
light exposure and phototoxicity.

5.2. Electron Microscopy

Electron microscopy techniques are widely used to characterize spheroids because they provide
high resolution, at nanoscale levels. High-resolution images of the internal structures can be generated
by transmission electron microscopy (TEM) while high-resolution images of the surface of spheroids
can be achieved by scanning electron microscopy (SEM) [56].

The TEM technique provides information on cell–cell interaction in the spheroids, such as cell
junctions, and ECM deposition, as well as information on treatment outcomes such as apoptosis,
cell shrinkage and organelle swelling [150]. Importantly, TEM is mostly used to analyze the distribution
of drugs or nanoparticles in the spheroid [151].
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The SEM technique provides high-resolution images and is used to analyze, for instance, cellular
protrusions, integrity of cell–cell interactions, integrity of cellular membrane after anticancer drug
treatment [56,152,153].

Both TEM and SEM are very informative although specimen collapse and morphological alterations
can be associated with the steps involved in the procedures [154].

5.3. Flow Cytometry

Quantitative measurements such as cell viability, proliferation kinetics, cell cycle, apoptosis,
and uptake of anticancer drugs and nanomedicines in spheroids can be performed using flow
cytometry. Mechanical or enzymatic disaggregation of spheroids by trypsin or less toxic enzyme
cocktail (Accutase®) is needed to obtain single cell suspension that can be stained and manipulated
similarly to 2D cultures, and analyzed by flow cytometry [155]. For instance, single cells can be stained
with calcein and ethidium to evaluate live cells and dead cells, respectively [56]. Other fluorescent
dyes are used to analyze proliferating or quiescent cells (e.g., Propidium iodide), entry intro S phase
of the cell cycle (e.g., 5-bromo-2′-deoxyuridine (BrdU) detected by a fluorescently labeled secondary
antibody), or the expression of specific cellular proteins with fluorescently labelled antibodies. Flow
cytometry analysis does not enable evaluation of penetration of anticancer drugs due to spheroid
disaggregation and cell dissociation. However, it was reported that Hoechst 33342 (a fluorescent DNA
dye) forms a marked diffusion gradient into the inner space of spheroids, therefore enabling cells of the
different layers to be sorted on the basis of Hoechst staining intensity [156,157]. One major limitation
of flow cytometry analysis is the need of a large amount of spheroids due to loss of cells during the
process of cell dissociation [140].

5.4. Colorimetric Methods

Cell viability in the spheroids can be evaluated without the need of cell dissociation. For this
purpose, are used colorimetric, fluorometric and luminescent methods that include acid phosphatase
assay, Alamar blue, MTT assay, and lactate dehydrogenase quantification [140,158,159]. Nowadays,
specialized kits for cytotoxicity assessment in spheroids are made available from many manufacturers.
For instance, commercially available cell viability assays such as CellTiter-Glo 3D with better penetration
of the reagents into the spheroids are easy to implement, and enable more accurate cytotoxicity
determination [142,160]

5.5. Molecular Biology Tools

Standard molecular biology assays such as Western blot and qRT-PCR are useful to evaluate
differential protein and gene expression, respectively, between 2D and 3D systems and/or before and
after drug treatment. These techniques involve the use of cell lysis during the procedures of cellular
protein and RNA extraction from the spheroids [59,161].
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Table 4. Methods currently used to characterize spheroids and to evaluate drug effect.

Method Description Staining Methods/Markers Feature Evaluated Advantages (↑) and Limitations (↓) References

Phase contrast microscopy
Monitorization of

morphology and general
state of spheroids.

- Size/volume and
shape.

↑ Low cost and easy method to observe
the general data on spheroids size and
shape.
↑ Noninvasive.
↓ Does not provide enough quality in
focus to obtain detailed data from
complex 3D spheroid structures.

[140,142,162]

Fluorescence microscopy

Uses fluorescent dyes to
analyze specific structures in

the sample;
Monitorization of

stained/immunostained
spheroids or spheroid

sections.

DNA staining by Hoechst or
DAPI. DNA, nucleus.

↑ Allows easy monitoring of a wide
range of features.
↓ For larger spheroids, processing for
histological sectioning is
required—spheroid fixation used in the
histological procedure precludes the
study of dynamic alterations in the
spheroids over time.

[144,145,158,163–167]

Fibronectin, laminin, and
collagen IV staining. ECM deposition.

Phalloidin staining. cytoskeletal
arrangement.

Ki-67 staining. Cell proliferation.
Caspase staining.

Annexin V + propidium iodide
(PI), and TUNEL staining

methods.

Cell death, apoptosis.

Calcein + ethidium
homodimer-1 (EthD-1). Live/cell death assays.

Bright field microscopy

Light is transmitted through
the sample, and denser areas
attenuate light transmission,

originating contrast.

e.g., hematoxylin and eosin
staining.

Distinction of nuclei
and cytoplasmic

structures.

↑ Low-cost method that offers a general
overview of the sample structure (of a
section).
↓ Requires spheroid processing for
histological sectioning.

[143,168–170]

Confocal laser microscopy

The use of a focused laser
spot with the removal of the
out-of-focus light allows to

acquire higher spatial
resolution images.

Same markers described for
fluorescence microscopy.

Spheroid architecture. ↑ High resolution data.
↑ 3D reconstruction.
↓ Restricted to small spheroids due to
limited light penetration and to light
scattering in thick tissues.

[143,171,172]
The features
described for
fluorescence

microscopy can also
be evaluated.

[173–175]
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Table 4. Cont.

Method Description Staining Methods/Markers Feature Evaluated Advantages (↑) and Limitations (↓) References

Light sheet fluorescence
microscopy (LSFM) and
single or selective plane
illumination microscopy

(SPIM)

High resolution data from
thick experiments through

the use of planar illumination
incident orthogonally to the

direction of observation.

Same markers described for
fluorescence microscopy.

The innermost layer
of live and fixed

spheroids.

↑ High spatial resolution.
↑ 3D reconstruction.
↑ Noninvasive.
↑ Does not require physical sectioning.
↑ Reduced light exposure and
phototoxicity.
↓ LSFM may imply high processing time
and memory in order to produce
high-resolution 3D images; scattering
and absorption of light may limit the
penetration into specimens, although
some efforts have been recently made to
improve those issues.
↓ The upgrading of conventional
microscopes to LSFM and/or SPIM
technology may be complex and, in
some cases, the optical sectioning
capability may be limited.
↓ Some MPM limitations have been
reported, such as weak endogenous
signal strength, limited imaging
materials, insufficient imaging depth.

[147–149,175–180]

_
[181–184]

Multi-photon microscopy
(MPM)

MPM pulsed long
wavelength is used to excite
fluorophores—two photon

absorption-based
fluorescence.
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Table 4. Cont.

Method Description Staining Methods/Markers Feature Evaluated Advantages (↑) and Limitations (↓) References

Electron
microscopy

Scanning
electron

microscopy
(SEM)

The surface of the structures
in the sample are scanned
with a beam of electrons.

The emitted signals provide
high-resolution images of the

surface of spheroids.

-

Cellular protrusions;
Integrity of cell–cell

interactions;
Integrity of cellular

membrane after
anticancer drug

treatment.

↑ High resolution.
↓ In some cases, specimen collapse and
morphological alterations can be
associated with the steps involved in the
procedures.

[56,152–154,185–188]

Transmission
electron

microscopy
(TEM)

A beam of electrons hits the
sample; part of the beam is

transmitted through the
specimen and used to

generate high resolution
images; information on
cell–cell interactions is

provided

-

Cell junctions and
ECM deposition;
Drug treatment

outcomes such as
apoptosis, cell
shrinkage and

organelle swelling;
Distribution of drugs

or nanoparticles in
the spheroid.

Flow cytometry

Analysis of physical and
chemical properties of single

cells.
Mechanical or enzymatic

disaggregation of spheroids
is required

AnnexinV/PI Cell death, apoptosis. ↑ Quantitative analysis.
↑ After disaggregation, samples can be
manipulated similarly to 2D cultures.
↓ A large amount of spheroids are
required due to loss of cells during the
process of cell dissociation.

[189–191]
PI/ribonuclease Cell cycle analysis. [56,192,193]

5-bromo-2′-deoxyuridine
(BrdU) + PI (or analog).

Cell cycle analysis,
quiescent cells. [194,195]

Calcein + ethidium
homodimer-1 (EthD-1) (PI

analog).

Live/dead cell
analysis, detection of

quiescent cells.
[56]

Hoechst 33342

DNA staining
intensity dependent
on the depth of cells

in the spheroid.

[156,157,196]

Fluorescent staining of specific
cellular proteins. [197,198]
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Table 4. Cont.

Method Description Staining Methods/Markers Feature Evaluated Advantages (↑) and Limitations (↓) References

Quantitative
methods for
cell viability

analysis

MTT

Colorimetric
Evaluation of the metabolic
activity through tetrazolium

salt reduction.

↑Well-known methods so far
implemented for 2D culture approaches.
↓ Limited efficacy in 3D spheroids and
microtissues, due to difficulties of
reagents to cross cell–cell junctions
and/or 3D matrices.

[140,158,159,199–201]

Lactate
dehydrogenase
quantification

Colorimetric
Cytotoxicity evaluation

through the quantification of
lactate dehydrogenase (LDH)

release.

Alamar blue

Fluorometric
Evaluation of the metabolic

activity through ATP
measurement by resazurin

reduction.

Acid
phosphatase
assay (ACP)

Colorimetric
Cytotoxicity evaluation

through measurement of
ACP activity.

↑ Highly sensitive.
↑ Does not require spheroid dissociation.
↓ Complete removal of culture medium
is required, which may not be practical
and increases spheroid damage risk.

[201–203]

CellTiter-Glo
3D

Luminescent
Evaluation of the metabolic

activity through ATP
measurement, by luciferin

oxidation.

.

↑ Better penetration of the reagents into
the spheroids.
↑ Enables higher accuracy and
reproducibility in large spheroids.
↑ Does not require removal of culture
medium.
↓ ATP output may be affected by several
factors and is not always proportional to
cell number.

[142,204–207]

Molecular
biology

methods for
quantification

of gene
expression

qRT-PCR Quantification of gene
expression at mRNA level. - ↑ Accurate and well-known methods so

far implemented for 2D culture models.
↑ After disaggregation, samples can be
manipulated similarly to 2D cultures.
↓Mechanical disruption and association
with chemical buffers are required to
extract proteins and RNA from the cells.

[59,161,208–211]Western blot

Quantification of gene
expression at protein level.

-
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6. Application of 3D Cultures in Anti-Cancer Drug Discovery and Delivery

The capacity to reproduce the in vivo 3D tumor environment such as cellular heterogeneity, gene
expression patterns, cell differentiation, generation of hypoxia, activation of cell signaling pathways,
and cell–cell and cell–ECM adhesions, are amongst the many advantages that prompted the use of
spheroids for in vitro evaluation of chemoresistance, migration and invasion, and other aspects of
tumor biology (e.g., cancer stem cells/tumorigenicity, hypoxia and tumor metabolism). We will focus
on chemoresistance and migration/invasion, and provide a brief overview on the use of spheroids to
study drug delivery. Details of the other aspects were reviewed elsewhere [64,70,212,213].

6.1. Chemoresistance

Drug resistance is a major concern responsible for the failure of the current chemotherapeutics
and their ability to fight cancer, especially in aggressive and highly metastatic tumors. It is now well
established that cancer cells, grown in vitro as 3D spheroids, more accurately mimic the drug behavior
in terms of sensibility and resistance than cells grown as 2D monolayers [214]. This difference is
probably due to the TME and the spatial organization of the spheroids [215]. Increased cell–cell and
cell–matrix adhesions may lead to changes in gene expression. Upregulation of cell–adhesion molecules,
such as lumican, SNED1, DARP32, and miR-146a, was reported to increase chemotherapeutic resistance
in pancreatic tumor spheroids as compared to 2D monolayers [59]. Fibronectin protected DU145
prostate cancer cell spheroids against ceramide and docetaxel-induced apoptosis through interaction
with Insulin like growth factor-1 receptor [216]. A variety of apoptotic stimuli, including combinations
of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), ribotoxic stressors, histone
deacetylase, and proteasome inhibitors, were reported to be highly effective against mesothelioma
cells when grown as monolayers than when grown as multicellular spheroids [214].

Increased resistance to chemotherapeutic drugs in spheroids is attributed to many factors
associated with their constitution and organization, such as hypoxia, altered cellular energy metabolism,
the acidic microenvironment, the cellular heterogeneity including the presence of cancer stem cells,
and cell–cell and cell–ECM interactions [215,217–222]. The mechanisms by which these factors confer
chemoresistance to spheroids were nicely reviewed in [223]. While most studies showed that cells in
spheroids are more chemoresistant than cells in 2D monolayers, some studies reported that cells in
MCTS are equally or even more sensitive to anticancer agents than their 2D monolayer counterparts.
For example, the proteasome inhibitor PS-341 was shown to be equally effective in killing ovarian and
prostate tumor cells grown in the form of multicellular spheroids, and tumor cells grown in monolayer
cell culture [224].

A number of studies reported that spheroids are also more radioresistant than 2D monolayers.
For instance, increased cell compaction increased the resistance of human colon adenocarcinoma
spheroids to ionizing radiation [225]. Besides the aforementioned factors, radioresistance may be due
to decreased radiation-induced DNA damage as a consequence of lack of oxygen in the spheroids,
given that oxygen seems to be required to stabilize DNA damage upon radiation [226–228].

6.2. Migration and Invasion

The acquisition of motility and migratory ability is an important hallmark of malignant tumors.
Common characteristics of solid tumors, such as hypoxia and soluble mediators-mediated interactions
with stromal cells, drive tumor cell migration and invasion, through essential steps that involve,
amongst others, actin cytoskeleton remodeling, changes in cell–cell and cell–ECM adhesion, and protein
degradation of the surrounding ECM [229,230]. Therefore, the success of studying the multistep process
of metastasis relies on a 3D microenvironment through which tumor cells can move and disseminate.
In this sense, tumor spheroids are viewed as relevant in vitro models for studying invasion and
migration processes [70,166,231,232]. For instance, 3D spheroids display adhesion and ECM molecule
expression pattern similar to that of the tumor in vivo, and can also induce expression of proteins
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associated with metastasis [70,231,233]. Importantly, non-tumor cells are also present in the TME and
continuously interact, through paracrine signaling, with cancer cells. For instance, fibroblasts were
shown to promote contact-dependent cancer cell motility and invasion of 3D spheroids in co-culture
with colorectal cancer cells, a finding validated in vivo [234]. Therefore, ideal migration/invasion
assays should be performed in 3D co-cultures that also include non-tumor cells, such as macrophages,
dendritic cells, endothelial cells, CAFs and immune cells, in order to better simulate the migration and
invasion process found in tumor tissues. CAFs, through the release of cytokines and growth factors,
together with the other stromal cells, promote the epithelial-mesenchymal transition in heterotypic
3D cell cultures, resulting in tumor development and metastasis [111,234–236]. At the same time,
endothelial cells in 3D co-cultures tend to accumulate in the peripheral layer, facilitating the adhesion
and infiltration of immune cells [28]. In fact, immune cells can secrete interleukin 6 and MMP-9, which
cause inflammation, angiogenesis and ECM degradation, thereby promoting tumor invasion and
metastasis [237].

Several assays are available to determine the invasion and migration potential of cells in
spheroids [70,232]. In the transwell-based or Boyden chamber assays, the spheroids are seeded
on the top of a filter coated with a thick layer of ECM-derived components, usually collagen I, and
invasion, in response to a chemo-attractant such as growth factors, can be measured by determining
the number of cells that move from the top chamber to the lower chamber [70,232,238]. Additionally,
the ability of the cells to invade cellular barriers can be determined by adding a layer of fibroblasts or
endothelial cells on top of the matrix [70]. This latter is particularly relevant to mimic the ability of
cancer cells to cross the blood vessel barrier and to invade deeply the tissues. Alternatively, spheroids
can be completely embedded into different matrices, usually between two layers of ECM gel, where cells
leave the spheroids and invade the surrounding matrix [96,239]. Sophisticated techniques combined
with computerized quantification are now available to reproducibly perform optimized experimental
conditions and to calculate the invasive index of cells [70,239–241]. For instance, the extent and rate
of tumor spheroid invasion, using the 3D spheroid invasion assay, was rapidly and reproducibly
measured using imaging cytometer [238]. Spheroid invasion assays can also be used as a metric
to measure drug efficacy [96]. For example, lower concentrations of the adjuvant gamma-linolenic
acid caused an increase in glioma spheroid invasion, but increased the apoptotic index at higher
concentrations [242]. In sum, spheroids have been widely utilized to study the role of mechanisms
involved in cellular invasion, and represent a valuable tool for preclinical evaluation of therapeutic
agents targeting invasion [96,166,232].

6.3. Spheroids and Nanomedicines

Systemic drug toxicity and poor efficacy remain a major concern in cancer therapy due to the
lack of selective drug delivery to tumor tissues, stressing the need to improve tumor targeting [243].
Nanomedicines have thus emerged as promising approach to (actively) target tumor and improve drug
delivery. These nanostructures are biocompatible, biodegradable, non-toxic, can be prepared on a large
scale, can provide controlled drug release, and enhance tissue/cell-specific targeting, in addition to
reducing side effects [244–248]. However, despite the promising preclinical outcome that was reported
for a significant number of nanotherapeutics, only few nanodrugs reached the clinic and achieved the
expected results in patients [243]. Many barriers influence the efficiency of nanomedicine delivery to
the target tumor, that are not recapitulated by the 2D monolayer cultures.

Tissue penetration of nanoparticles (NPs) relies on their diffusion capacity through the ECM,
which varies in density and size, and is also influenced by cell–cell interactions, necrotic core,
hypoxia, and by the intravascular pressure irregularities due to vessel compressions applied by
growing tumors [249–251]. In this sense, as outlined above, spheroids have gained in popularity
over traditional 2D culture systems because their pathophysiological features are close to those of
the native tumors, being an excellent model to evaluate nanodrugs and to better predict their clinical
outcomes [101,197,212,252]. Consequently, spheroids have been used as valuable tool to study different
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physico-chemical proprieties of nanocarriers such as chemical composition, size, shape and surface
properties, which are crucial for their penetration and antitumor efficacy [197,253,254].

A general observation from studies that used spheroids is that nanoparticles (NPs) penetration
is inversely correlated to the particle size [159,254–256]. NPs with small size (<100 nm) penetrate
deeply and faster in the spheroids and distribute homogeneously, as compared to larger NPs (>100 nm)
which remain confined to the superficial layers [159,257–259]. However, NPs <50 nm were reported to
interact with liver cells, and to be poorly retained in the tumor [260].

The surface charge of NPs also influences their penetration in the spheroids: negatively charged
NPs penetrate deeply while their positive counterparts remain at the outer layers [56,199]. Yet, more
effective drug delivery is warranted by NPs with positive surface charge due to electrostatic interactions
with negatively charged cell membranes. To overcome this issue, it has been proposed the use of
pH-responsive negatively charged NPs that can turn to positively charged ones once in contact
with acidic conditions (e.g., tumor microenvironment), so that negative surface charge ensures deep
penetration in the spheroids, while positive surface charge enables more effective drug delivery [199,
261].

Although little information exists on the influence of NP shape on penetration and accumulation
in the spheroid, the existing literature indicates that nanorods seem to diffuse more rapidly in spheroids
compared to nanospheres, and that short nanorods (400 nm in length) accumulate more rapidly and
are better internalized than long nanorods (<2000 nm in length) [262–264].

Interestingly, NP penetration into spheroids has been enhanced by modification of the surface
coating. For instance, ECM-degrading enzymes such as collagenases have been used to coat NPs of up
to 100 nm in size, which demonstrated superior (4-fold increase) penetration over control NPs [258].
Drug efficacy is the most important endpoint of any formulation, and it depends greatly on the
penetration and accumulation into the spheroids [254]. In general, nanocarrier formulations with high
penetration and accumulation in the spheroids exhibited better antitumor activity [159].

Comparison between NP delivery and efficacy between 3D tumor spheroids and animal models
revealed key similarities between the two systems. For instance, the photosensitizer verteporfin
encapsulated into lipid nanocarriers strongly reduced tumor cell viability of ovarian spheroid cancer
cells, and also inhibited tumor growth in an orthotopic murine ovarian cancer model, when compared
to free drug [265]. Similar to in vivo tissues, HepG2 cells in 3D hydrogels were more resistant
to biotin-conjugated pullulan acetate nanoparticles (Bio-PA NPs) treatments compared to the 2D
system [266]. Moreover, Bio-PA NPs exhibited similar anti-tumor activity in 3D culture cells and
in in vivo xenografted hepatic tumor model [266]. Studies also observed that iRGD-conjugated
nanoparticles with doxorubicin were able to accumulate with more efficacy and penetrate deeply
into tumor in both SH-SY5Y spheroids and H22 tumor-bearing mice, restraining tumor growth in
both systems [267]. Overall, this highlights the predictive power of spheroids for in vivo therapeutic
efficacy, and their potential as promising alternative to animal models for cancer study, hopefully
resolving high cost and ethical issues associated with animal use.

7. Concluding Remarks and Perspectives

It is consensual that 3D tumor models enable evaluation of anticancer drugs and nanomedicines
in a condition closer to the real tumor, owing to their key features such as spatial organization, cell–cell
and cell–ECM, diffusive gradients, complex cell signaling, drug resistance and metabolic adaptation.
As reviewed here, these features are missing in 2D culture systems and, consequently, 3D culture
models in preclinical evaluation are expected to provide more accurate results of the therapeutic
potential of anticancer drug candidates, thereby increasing the predictability of the in vivo efficacy.
Identifying and eliminating those therapeutics that did not show any interesting efficacy in 3D cultures
will reduce animal use and speed up the number of therapeutics that reach the clinic.

It is noteworthy that most of the published works used spheroids made of only cancer cells, and,
thus, do not represent the complexity associated with the diversity of the cellular and non-cellular
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components present in the real tumor. Spheroids that incorporate cell types recapitulating the
vasculature (e.g., endothelial cells), the immune system (e.g., leukocytes) and ECM production (e.g.,
fibroblasts) are, thus, highly recommended. This is important as it would make the geometry of drug
penetration in the spheroids closely similar to that in vivo, therefore providing better prediction of
drug effects and delivery mechanisms and, at the same time, reducing costly investments associated
with the ultimate step of clinical investigations.

Standardized methodologies for generation and characterization of spheroids are urgently needed,
this would avoid variability in size and homogeneity, as well as in biological effect evaluation.
Although considerable progress has been made to adapt existing 2D culture analysis assays to the
spheroid model, many challenges remain to be addressed. Enabling acquisition of high-resolution
images from intact spheroids remains a major challenge, due to the size of spheroids and poor light
scattering. On the other hand, histological procedures for spheroid sectioning require special care in
handling, as specimen tend to collapse or fracture easily. Mass production, together with developing
easy to handle spheroids that are time and cost effective, with reduced workflows of culture and
analysis, is crucial in order to encourage their routine use in drug discovery research. We are, yet,
still far from giving up using animal models for safety and efficacy studies of drugs. Meanwhile, and
ideally, the use of spheroids in preclinical testing could reduce the number of compounds progressing
to in vivo testing, thereby reducing the numbers of animals used.

In conclusion, the use of 3D models to assess tumor penetration, accumulation and antitumor
activity of drug and nanomedicine candidates is becoming a reality, and should turn out a mandatory
step between 2D and in vivo models in the near future, with a great impact on the transferability of
new anticancer drugs from bench to bedside. Hopefully, the generation of tumor spheroids from the
patient’s own cells may enable personalized approaches to screening and selecting the appropriate
drugs for the patients.
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