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Abstract The basal ganglia and cortex are strongly impli-
cated in the control of motor preparation and execution.
Re-entrant loops between these two brain areas are thought to
determine the selection of motor repertoires for instrumental
action. The nature of neural encoding and processing in the
motor cortex as well as the way in which selection by the basal
ganglia acts on them is currently debated. The classic view of
the motor cortex implementing a direct mapping of informa-
tion from perception to muscular responses is challenged by
proposals viewing it as a set of dynamical systems controlling
muscles. Consequently, the common idea that a competition
between relatively segregated cortico-striato-nigro-thalamo-
cortical channels selects patterns of activity in the motor
cortex is no more sufficient to explain how action selection
works. Here, we contribute to develop the dynamical view
of the basal ganglia—cortical system by proposing a compu-
tational model in which a thalamo-cortical dynamical neural
reservoir is modulated by disinhibitory selection of the basal
ganglia guided by top-down information, so that it responds
with different dynamics to the same bottom-up input. The
model shows how different motor trajectories can so be pro-
duced by controlling the same set of joint actuators. Further-
more, the model shows how the basal ganglia might modulate
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cortical dynamics by preserving coarse-grained spatiotempo-
ral information throughout cortico-cortical pathways.
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1 Introduction

Preparation and execution of intentional movements requires
the activity of the motor cortex. This cortical region forms
re-entrant parallel loops with both the dorsolateral basal
ganglia and the cerebellum (Middleton and Strick 2000;
Caligiore et al. 2013). In particular, the interaction between
the motor cortex and the basal ganglia seems to be orga-
nized in relatively segregated cortico-striato-nigro-thalamo-
cortical (CSNTC) loops (Alexander et al. 1986; Haber 2003;
Romanelli et al. 2005). Various computational approaches
have been attempted to explain these loops as implementing
motor sequence processing (Beiser and Houk 1998; Berns
and Sejnowski 1998), or dimensionality reduction (Bar-Gad
et al. 2003). One of the most accredited hypotheses to date is
that they implement action selection (Mink 1996; Redgrave
et al. 1999; Gurney et al. 2001).

There are two main issues in trying to explain how the
motor basal ganglia—cortical loops work. A first issue con-
cerns the nature of the neural encoding used by the motor
cortex. This cortical region reaches both the brainstem motor
centres and, more directly, the spinal motor neurons project-
ing to the muscles (Orlovsky et al. 1999; Ijspeert et al. 2007).
Thus, the same cortical areas control muscles and subcortical
motor centres encoding sophisticated motor patterns (Ijspeert
2008; Ciancio et al. 2013). Over the last two decades, various
hypotheses about the representation of movements within the
motor cortex have been proposed. A wide number of stud-
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ies have interpreted data, mainly coming from single-cell
electrophysiology, as a proof that the motor cortex imple-
ments a topological map of the body in which the activity of
single cells can be directly related to the resulting forces act-
ing on the muscles (Evarts 1968; Georgopoulos et al. 1982;
Sergio et al. 2005). In this vein, several studies also related
the behaviour of distinct motor populations to the control
of parameters such as rotation, speed, or direction of move-
ments (among others: Buys et al. 1996; Georgopoulos et al.
1986; Kakei et al. 1999; Wang et al. 2010). On the other hand,
several findings indicate that individual neurons in the motor
cortex directly project onto wide sets of muscles (Cheney
and Fetz 1985), and that the activity of single cortical motor
neurons is correlated with complex movements (grasping,
reaching, climbing, chewing, etc.; Luppino and Rizzolatti
2000; Graziano and Aflalo 2007). These studies have opened
up a new computational interpretation of the motor cortex
as forming a set of dynamical systems with time variabil-
ity and oscillations not directly encoding movement patterns
(Churchland et al. 2010; Afshar et al. 2011; Churchland et al.
2012; Mattia et al. 2013).

A second issue, related to the nature of cortical encod-
ing, regards the mechanisms through which the basal ganglia
modulate cortical activity in order to select motor plans.
A current view is that selection between different channels
within CSNTC loops determines which cortical pattern or
assembly of neurons will be dishinibited at the level of the
cortico-thalamic motor loops (Redgrave et al. 1999; Gurney
etal. 2001). In this view, each pattern encoded in an assembly
of cortical neurons expresses a distinct motor programme. A
channel can release from inhibition a distinct cortical pattern
(among others Wickens et al. 1994; Graybiel 1998; Ponzi and
Wickens 2010).! This general idea of selection as a differen-
tial dishinibition of separated cortical modules has also been
extended to explain the interaction between cortex and basal
ganglia in cognitive tasks (for instance in the “Prefrontal cor-
tex basal ganglia working memory” PBWM model by Frank
et al. 2001; O’Reilly and Frank 2006). All these proposals,
while focussing on the selection mechanisms, do not explain
how the selected cortical assemblies control the execution of
motor programs or cognitive processes.

Here we present a hypothesis reconciling the dynamical
nature of cortical encoding with the idea that basal ganglia
selection gates thalamo-cortical loops. We propose that selec-
tion does not (or not only) choose between different cortical
assemblies, but rather between different activity dynamics
within the same populations. More in detail, our proposal
distinguishes two different processes. The first process con-
sists in the selection of a distinct set of dynamics within a
cortical module based on the accumulation of coarse-grained

! These studies also focus on the idea that learning to select sequences
of channels allows the acquisition of complex motor actions.
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spatiotemporal information at the level of the basal ganglia.
The second process regards the interaction between these
cortical dynamics and those of other cortical and subcortical
areas to gain top-down and bottom-up information. We will
show a neural network model implementing this proposal.
The model is formed by a dynamical reservoir reproduc-
ing the dynamics of a cortical module interacting with the
selection mechanism within the basal ganglia which is imple-
mented similarly to what done in Gurney et al. (2001). The
model explains how a neural population in the motor cor-
tex can be recruited to generate different movements with
the same motor actuators. Furthermore, it shows how the
proposed mechanisms can handle cyclic (rhythmic) and end-
point (discrete) movements (e.g. a “scratching” movement or
a “reaching” movement). In the following, Sect. 2 illustrates
the model, in particular Sect. 2.1 illustrates how we used
reservoir computing to model cortical dynamics, Sect. 2.2
gives a rationale of how selection processes in the basal
ganglia are modelled here and Sect. 2.3 describes our com-
putational hypothesis on how basal ganglia select different
dynamics within cortex. Section 4 describes the neural archi-
tecture of a core module built to explain the computational
hypothesis and a system-level architecture formed by two
such core modules to explain the emerging properties of
their interaction. Section 4 describes the implementation
details of the core module as well as other further details
in the implementation of the system-level architecture.
Section 5 describes the behaviour of the core module used as
the controller of a three-degree-of-freedom (DoF) 2D simu-
lated kinematic arm and a 20-DoF simulated dynamic hand,
in tasks requiring the selection and expression of differ-
ent cyclic or end-point motor behaviours. This section also
describes the behaviour of the system-level architecture con-
trolling the same 2D three-DoF simulated kinematic arm in
the same tasks. In this case lesions to different parts of the sys-
tem were exploited for the analysis of its emerging properties.

2 Selection of cortical dynamics
2.1 Cortical reservoirs

Recently, various works have highlighted that reservoir com-
puting can be a candidate computational approach to describe
the nature of cortical encoding (Wang 2008; Rigotti et al.
2010; Dominey 2013; Hoerzer et al. 2014). In particu-
lar, reservoir networks fulfil two important requirements to
model the cortex. First, they are complex distributed dynam-
ical systems with the capacity of dealing with the time course
of sensorimotor and cognitive processes. Second, they have
a uniform microstructure, with internal connections ran-
domly generated with parametrized procedures. Reservoir
computing fundamental principles have been contextually
introduced under the notions of liquid state machines (LSM,
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Maass et al. 2002) and echo state networks (ESN; Jaeger
2002). The idea was anticipated in a work by Dominey (1995)
in which the author presented a computational model of
cortical sensorimotor sequence learning to control the ocu-
lomotor system. LSM and ESM approaches mainly differ in
the level of abstraction of the neural units they use. LSM
models are usually composed of units that reproduce real
neurons at the level of their spiking activity. ESN models are
built on the basis of more abstract discrete or leaky-integrator
sigmoidal units, leading to dynamical systems which are eas-
ier to analyze. We implemented the cortical module of the
model presented here as an ESN (see Sect. 4.1). For an exten-
sive review on reservoir computing, see Lukovsevivcius and
Jaeger (2009).

Dynamical reservoirs are generally formed by a fully
recurrent neural network with fixed, typically sparse, random
weights, and one further layer of external units connected to
the internal units to read out the dynamics of the network.
The weights of the connections linking the reservoir units
to the read-out units are suitably learned so that the tempo-
ral activity of the read-out units is a function of the internal
activity of the reservoir. The weights of the internal connec-
tions of the reservoir are chosen so that the network activity
has two features. First, the activity of its units fades to zero
when there is no input and to a fixed-point attractor when
there is a constant input (see Fig. 1b). This feature guaran-
tees that the history of inputs is maintained in the activity of
the network within a time window because input does not
have indefinitely cumulative effects that would result in a
chaotic behaviour of the network. As a consequence, if the
interval between two inputs exceeds this temporal window,
they will not interfere with each other in the modulation of
the network activity. Second, the states of activation of the
network units have a high variability during fading. This fea-
ture guaranties the richness of the temporal response of the
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Fig. 1 a General schema of the functioning of a dynamical reservoir.
The units in the reservoir produce nonlinear dynamics which are tem-
poral functions of the input signals. Weights to the read-out unit are
modified to obtain a desired temporal function of the network activity.
b An example of the internal dynamics of an echo state network: on the
top a simple sinusoidal function as the input signal; on the bottom the
resulting activities of a sample of units. It can be seen that the activity
fades to zero after transient activity when the input signal is set to zero

reservoir to the input. As aresult, the network can in principle
reproduce any nonlinear temporal function with its read-out
units. In other words, the more the states of the network are
dissimilar from one another (low correlation between states
in time), the more the time function that the network can
learn and reproduce can be complex.

Thus in reservoir networks the internal encoding of input
signals and the decoding of the internal activity to reproduce
the output responses are two independent processes. Indeed,
a reservoir is endowed with its own dynamics and encod-
ing emerges spontaneously without any supervised teaching.
This kind of network does not learn the features of the input
signals but only converts them into a high-dimensional vec-
tor of nonlinearly changing neuronal activations resembling
kernel methods used in support-vector networks (Cortes and
Vapnik 1995), with the difference that the activations of the
reservoir can be viewed as temporal kernels. Learning of
a new decoding only updates the weights of the connec-
tions projecting from the units of the reservoir to the external
read-out units (see Fig. 1a). After learning, a read-out unit
transforms the temporal activity of the reservoir correspon-
dent to an input sequence into a single nonlinear signal. Real
cortical activity seems to share these features. Decoding of
motor responses by reading the activity of motor cortex seems
to be possible (Hatsopoulos et al. 2004; Golub et al. 2014). On
the other hand, analysis on the same cortical activity reveals
the presence of temporal dynamics that are not directly linked
to motor responses (Churchland et al. 2012).

As an exception to this architecture, feedback from the
external read-out to the internal units can also be present,
e.g. to produce rhythmic behaviours without external input.
Learning with feedback is not easy in reservoir networks,
but various solutions have been found to implement it (Jaeger
and Haas 2004; Steil 2004; Sussillo and Abbott 2009). In this
case, the internal dynamics of the reservoir is able to acquire
information about its output through the learning process.
However, this information is mixed with the one coming from
the input and transformed in the temporal dynamics of the
network, so it could be isolated only with complex statistical
methods.

2.2 The basal ganglia

This section describes a way in which the basal ganglia might
implement selection through disinhibitory competition. The
role of the basal ganglia in action selection has been the sub-
ject of intense investigation, for example by Mink (1996),
Redgrave et al. (1999) and Gurney et al. (2001) (see also
Humphries and Gurney 2002; Gurney et al. 2004; Humphries
et al. 2006; Bogacz and Gurney 2007). Gurney et al. (2001)
proposed one of the most accredited computational hypoth-
esis about the mechanisms behind basal ganglia selection.
This hypothesis, together with the reservoir computing idea,
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is one of the key ingredients of our explanation about the
interaction between the basal ganglia and cortex in the con-
trol of motor action. We now briefly describe the anatomical
organization of the basal ganglia, and then our implemen-
tation of the selection hypothesis of Gurney et al. (2001)
mentioned above.

2.2.1 Intrinsic organization of the basal ganglia

Figure 2 shows the intrinsic organization of the basal gan-
glia and their interaction with the thalamo-cortical loops. The
two main input projections of the basal ganglia come from the
striatum (Str) and the subthalamic nucleus (STN). Both these
nuclei receive most of their afferent projections from the cor-
tex and send efferent projections to the GABAergic output
nuclei of the basal ganglia, the internal globus pallidus (GPi)
or the substantia nigra pars reticulata (SNpr). Str direct effer-
ent projections to these regions originating from the medium
spiny neurons form the direct pathway. These projections are
GABAergic and reach subregions of the GPi/SNpr complex
through parallel channels. STN efferent projections form the
hyper-direct pathway. They are glutamatergic and spread
diffusely over the GPi/SNpr output layers and the external
globus pallidus (GPe). Projections from the Str to the GPe,
and from there to the GPi/SNpr complex, form the indirect
pathway. They are GABAergic and segregated in parallel
substantially segregated channels similarly to those of the
direct pathway. Str spiny neurons whose projections form the
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Fig. 2 Schema of the intrinsic organization of the basal ganglia and
their interaction with thalamic and cortical layers. Arrows reaching the
borders of the boxes indicate that each unit of a sending layer reaches
the corresponding unit of the target layer. In particular, each STN unit
reaches all units of GPe and GPi. Acronyms: Inp input signal; Da
dopamine efflux; Str D1 D1R-expressing striatal populations; Str D2
D2R-expressing striatal populations, ST N subthalamic nucleus, G Pi
internal globus pallidus, G Pe external globus pallidus, 7' ha thalamus,
Ctx cortex
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direct and indirect pathways are mainly distinguishable for
two reasons. First, they tend to express two different families
of dopamine receptors in different proportions. Neurons in
the direct pathway tend to express more D1-like low-affinity
dopamine receptors, while those in the indirect pathway tend
to express more D2-like high-affinity dopamine receptors.
Second, the direct pathway has a feed-forward organization.
Instead, the indirect pathway consists in a multi-synaptic
pathway involving a negative feedback circuit. Indeed, the
GPe is reached by STN projections that are similar to those
reaching the GPi/SNpr complex, with the difference that the
former also sends back inhibitory projections to the STN
itself (see Fig. 2). The organization in parallel segregated
channels within the basal ganglia extends to the pathway
going from the GPi/SNpr complex to the thalamus and then to
the cortex which projects back to the Str and the STN. Along
this pathway local populations maintain a relative segregation
so that CSNTC parallel loops can be identified (Alexander
et al. 1986; Parent and Hazrati 1995; Middleton and Strick
2000; Romanelli et al. 2005). Importantly, while there is wide
evidence that striatal regions also receive information from
cortical territories other than those within the same loop,
there is instead little if no evidence of such “diagonal” (out
of loop) afferent projections to the STN (Romanelli et al.
2005; Mathai and Smith 2011).

2.2.2 Selection within the basal ganglia

Gurney et al. (2001) show how the interaction between the
direct and the hyper-direct projections leads to the emergence
of centre-off fields of pallidal activations. In particular, a
GPi—SNpr neural population reached by highly activated Str
afferents is overall inhibited, while its neighbouring popula-
tions are excited by the STN glutamatergic projections. As
a result, activations of different Str regions compete for the
inhibition of the corresponding regions in the output layers
through STN lateral excitation. Low differences in the activ-
ity of two competing Str regions produce higher differences
in the inhibition of the tonic activity of the corresponding
SNpr and GPi layers. This leads to the selective disinhibition
of distinct thalamo-cortical loops. Moreover, cortical feed-
back projections to the Str and STN make the internal com-
petition between channels a cumulative dynamical process,
similar of those described in neural-field modelling (Si 1977;
Erlhagen and Schoner 2002), with the difference that compe-
tition within these CSNTC channels is based on disinhibition
rather than excitation (Bogacz and Gurney 2007).

2.2.3 Selection locking and unlocking
While the direct pathway and its interaction with the hyper-

direct pathway implements the cumulative disinhibition
described above, the indirect pathway has been proposed to
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control the activity passing through the direct/hyperdirect
pathway (Gurney et al. 2001). In particular, in this view a
lack of tonic dopamine enhances the activity of striatal spiny
neurons projecting to the indirect pathway. This condition
reduces the efficiency and persistence of basal ganglia selec-
tion by reducing the signal/noise ratio, so that the system
can be released from a previous selection (see Sect. 5.1 for a
detailed description of the process).

2.3 Integrating cortex and basal ganglia: the key
computational hypothesis

In this section, we discuss how the basal ganglia dishinibitory
mechanism can act on a single cortical reservoir to select a
specific dynamics within it. Cortical networks can be com-
pared to dynamical reservoirs due to both their uniform
microstructure and the temporal dynamics of their neural
activity (Sect. 2.1). Our hypothesis is that such cortical reser-
voirs can be internally modulated by a selection mechanism
similar to the one described in Sect. 2.2. Selection by the basal
ganglia defines which kind of dynamical system a given corti-
cal module instantiates by changing the modality of response
of a part of it so that the cortical module becomes a specific
function of the input signals.

This hypothesis requires two sets of assumptions. At
the functional level, we assume that direct cortico-cortical
projections and selection by the basal ganglia guide the cor-
tical activity in two distinct ways. On the one side, direct
cortico-cortical projections regulate cortical dynamics by
transmitting fine-grained information that defines the step-
by-step time course of the response of the target cortical
modules. On the other side, selection by the basal ganglia
modulates cortical activity at lower timescales. This feature
emerges from two aspects of the selection mechanism. First,
basal ganglia integrate in time the differences between dif-
ferent sources of information, filtering fluctuations that occur
at fine timscales. Furthermore, once selection locks in (see
Sect. 2.2) it becomes less sensitive to further changes in
the input signals reaching the striatum. As a result, during
selection a part of the thalamo-cortical loop is persistently
released, and the activity of the corresponding cortical sub-
population enhanced.

At the structural level, we make three assumptions about
the architecture of the basal ganglia-cortical system (see
Fig. 3). First, different CSNTC channels reach a single cor-
tical module. Second, those channels maintain themselves
segregated within this module, reaching different subgroups
of neurons. Third, all neurons within the cortical module
maintain their uniformly sparse internal interconnectivity.

Afferent projections to this system reach two regions, the
cortex and the input gates of the basal ganglia. According
to the distinction made above, the two sets of projections
have two distinct functional roles. While direct projections
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Fig. 3 Organization of the interactions between a cortical module and
the basal ganglia. Each channel within the basal ganglia projects to a
sub-population of the thalamo-cortical loop. The cortical part of the sub-
population projects back to the striatal input of the channel. Projections
from other cortices to the striatum bias the differential activation of
the channels. Direct projections to the cortical layer fuel its internal
dynamics. The details of the intrinsic organization of the basal ganglia
module are skipped in the picture (see Fig. 2)

to the cortex feed the fine-scale dynamics of the reservoir, the
projections to the basal ganglia feed the differential accumu-
lation of evidence within the channels so as to bias selection
on the basis of large-timescale information.

Simple static control signals (for instance steady excita-
tory signals coming from other cortices) would suffice for
a reservoir network to be modulated in a similar way as
done here by the basal ganglia (Sussillo and Abbott 2009).
Why then should the cortex need a mechanism such as the
competitive disinhibition implemented by the basal ganglia?
The model presented here helps to highlight three possible
answers. First, selection in the basal ganglia can be easily
switched on and off based on neuromodulation. In partic-
ular, maintaining striatal dopamine at a high level keeps
any selected channel steadily disinhibited. Instead, lower-
ing dopaminergic efflux in the striatum releases the system
thus allowing it to switch to another state (see Sect. 2.2).
Parkinsonian patients in whom the efflux of dopamine to the
striatum is impaired show several abnormalities in the vol-
untary initiation, speed and several other features of motor
control (Muslimovic et al. 2007; Abbruzzese et al. 2009;
Espay et al. 2011), thus revealing a main role of striatal
dopamine in motor control. Simulation in Sect. 5.1 illus-
trates how selection in a CSNTC module is switched on/off
by changing dopaminergic efflux to the striatum.

Second, maintaining static signals throughout cortico-
cortical pathways is difficult. Indeed, following the compu-
tational assumptions we made about the nature of cortical
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dynamics (see Sect. 2.1) any information passing through a
cortico-cortical pathway is temporally filtered, resulting in
a complex nonlinear transformation. In the case of motor
control, information about perception comes quite directly
to the primary motor cortex from the somatosensory cortex.
Instead, information about the overall movement to perform,
originating from the environment and from internal states,
reaches the motor cortex indirectly through the dorsal neural
pathway, involving parietal and premotor cortex, and through
the ventral pathway, involving the temporal, prefrontal and
premotor cortex (Baldassarre et al. 2013). As a result, any
top-down signal about the overall movement to perform
depends on the dynamics of other cortical regions and would
not be enough stable to serve for a steady selection of the
internal dynamics. The same information filtered by a mech-
anism as the one of basal ganglia allows the production of
steady signals that are robust to fine timescale perturbations.
Furthermore, disinhibiting thalamo-cortical loops is a less
interfering modulation on cortical activity than direct excita-
tion. In particular, simulations described in Sect. 5 show that
while extra excitation of a cortical area tends to saturate its
activation, and thus to disrupt the information traversing it,
its disinhibition leaves such information intact.

Third, learning task-relevant information at the level of the
cortico-striatal synapses is simpler and faster than learning
it at the level of cortico-cortical connections. In particular,
with respect to the cortex, the basal ganglia can more easily
perform the dimensionality reduction to isolate the coarse-
grained categories relevant to decide which movement to
perform (simulations in Sect. 5 will show this). How does
this reconciles with the evidence of cortico-cortical plastic-
ity (Buonomano and Merzenich 1998; Barth 2002; Fu and
Zuo 2011) that might lead to learn the categories needed to
select movements/tasks? Our idea is that learning at the stri-
atal level occurs relatively fast, and so it can progressively
guide the slower learning between cortical modules (Ashby
et al. 2007; Shine and Shine 2014; Turner and Desmurget
2010). Following this idea, striatal inputs, once categorized,
can steadily bias the selection of the dynamics of the target
cortical module. This selection results in a better distinc-
tion between cortical dynamics which is easier to detect by
learning processes operating at the level of cortico-cortical
connections.

3 Overview of the models

This section describes a neural architecture implementing the
hypothesis described in Sect. 2, and a system-level model to
study the interactions between multiple instances of such
architecture. The description presented here is sufficient to
understand the results, while all computational details of the
implementation of these models are presented in Sect. 4. The
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first model (LOOP_MODEL) is composed of a CSNTC loop
between a basal ganglia component and a cortical compo-
nent (see Sect. 4). From now on, we will call this unit a
CSNTC module. The architecture of a CSNTC module is
shown in Fig. 3. The basal ganglia component is an imple-
mentation of the model of Gurney et al. (2001), consisting
of 3 channels in loop with three different subpopulations of
the cortical component (as in Fig. 2). Each of the three sub-
populations is also in loop with a unit representing a thalamic
population. Dopamine modulates the input to the units of the
striatum in the basal ganglia component. Learning involves
only the connections to the cortical read-out units. We used
LOOP_MODEL to show that this hypothesized neural orga-
nization is able to select, based on the striatal dopaminergic
efflux, differential dynamics given the same sensory contex-
tual information and a differential information about the task.
In particular, LOOP_MODEL is meant to describe the inter-
action between the primary motor cortex and the dorsolateral
basal ganglia in the control of three different motor behav-
iours. Sections 5.1 and 5.2 show how this architecture can be
used to control both cyclic and end-point movements.

The second model (SYSTEM_MODEL, Fig. 4) is a
system-level architecture explaining the interaction between
multiple CSNTC modules. SYSTEM_MODEL is formed by
two CSNTC modules and a further cortical module. In SYS-
TEM_MODEL one of the CSNTC modules (Fig. 4, centre)
represents the primary motor loop and the read-out units
of its cortical component directly control movements. The
other CSNTC module (Fig. 4, left) represents a higher-level
motor loop whose cortical output projects both to the stria-
tum and to the cortex of the previous module. The cortical
module at the right of Fig. 4 represents the somatosensory
cortex. Its output reaches the striatum and the cortex of the
primary motor module similarly to the high motor module
(the somatosensory cortical module is not in loop with the
basal ganglia, as it happens for primary sensory cortices).
The SYSTEM_MODEL is directed to give a computational
explanation of how the interaction between CSNTC modules
allows for a better cortico-cortical communication of coarse-
grained information, e.g. to control the different movements
to perform. It also serves as a test of the role of cortico-
striatal learning in defining how cortico-striatal information
biases basal ganglia selection. A computational analysis of
the possible ways to implement cortico-striatal learning is
beyond the scope of this study. Instead, we introduce in
Sect. 4.5 asimple unsupervised learning mechanism support-
ing category learning within the striatum (in future work, this
mechanism might be strengthened with additional modula-
tion of dopamine to implement reward-based learning). This
unsupervised learning mechanism was implemented in the
corticostriatal connections reaching the primary motor stria-
tum from the high-level motor cortex. This simple learning
mechanism is sufficient to illustrate our hypothesis on the
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Fig. 4 A system-level architecture describing the interaction between
primary and higher-level basal ganglia—cortical loops. The model is
formed by two CSNTC modules, the one on the centre-left represent-
ing an high-level motor area and the other on the right representing
a primary motor area module. Sensory input comes from a cortical
module representing the somatosensory cortex (on the right). On the
left three examples of a train of higher-level input arrays abstracting
information about the task coming from prefrontal and associative cor-

role of the basal ganglia in filtering information at a coarse-
grained spatiotemporal definition. Section 5.3 describes in a
simulation the effect of lesioning these connections on the
learning and expression of three motor tasks.

Throughout the paper we tested the model with three dif-
ferent tasks (hence basal ganglia have three channels) to
simplify the visualization of the results. However, the model
is able to scale to a higher number of tasks as shown in figure
1 in Online Resource 4.

4 Computational details

This section illustrates the computational details of the var-
ious components of the model and the learning algorithms
used to train the cortical read-out and the cortico-striatal con-
nection weights.

4.1 The cortical component

We implemented a cortical component as a reservoir network
described by the following dynamical system:
T = —u-+ Wyx + Wyz €))
where u € R" is the vector of activation potentials of the

module units, x € RM is the vector of external inputs to
the component, Wyy € RM*N is the matrix of weights of

\
s,

Perception

. J

tical areas. Each example contains three orthogonal binary input arrays
defining three different tasks. Input arrays are grouped to form three
categories encoding three different tasks in time. Such a categorization
is hardwired in the connections to the high-level motor striatum. The
connection in red reaching the primary motor striatum from the high-
level motor cortex is the only cortico-striatal connection that is kept
free to change, based on the learning rule described in Sect. 4.5 (colour
figure online)

the connections from the external inputs to the units of the
reservoir, W, € RV*V ig the matrix of internal connection
weights. z € RY is the output function of the vector u given
by:

z = [tanh (@ (u — th))]+ )

where « is the slope and ¢4 is the threshold of the function.
This output function differs from the simple tanh function
used in classical echo state models (Jaeger 2002) as it takes
only its positive part. We preferred this transfer function so
that the activation of the network units, viewed as activity
of whole neural populations, has an higher biological plau-
sibility (see Heiberg et al. 2013; Nordlie et al. 2010, for an
analysis of rate models). The activity described in Egs. 1 and
2 is used in all units in the models.

In all simulations lateral connection weights W, were
generated randomly and normalized following the con-
straints of leaky echo state reservoirs (Jaeger et al. 2007),
with a further transfomation to improve the richness of the
dynamics (see Appendix 1). In the case of online learning
(see Sect. 4.4) read-out units are defined as in Eqgs. 1 and 2
with the difference that the lateral connections between them
are not present. In the case of offline learning (see Sect. 4.4)
read-out units are just linear functions of inputs (as usually

done in reservoir networks):
o=W,z

3

where 0 € R? and W,,, € RO*N,
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Feedbacks from read-out units have been extensively stud-
ied among others by Jaeger and Haas (2004), Steil (2004),
Sussillo and Abbott (2009), and Hoerzer et al. (2014). We
chose not to explore this feature so as to maintain the sim-
plicity of the models since the focus of this paper is on the
system-level interaction between the basal ganglia and cor-
tex.

4.2 The basal ganglia component

The basal ganglia component was an implementation of
the model of Gurney et al. (2001) with three channels (see
Sect. 3). The model units were modelled through Egs. 1 and
2. The microarchitecture of the module can be derived from
Fig. 2. All layers were formed by three units. Each con-
nection was a feedforward link between one unit and the
topological corresponding unit in the following layer, thus
reproducing in an abstract fashion the structure of basal gan-
glia partially segregated channels (one-to-one connections).
The only exception to this was the STN, as each of its units
was connected which all GPi and GPe units (all-to-all con-
nections).

The modulation of dopaminergic efflux on the activity
of striatal D1-expressing units was implemented as a multi-
plicative excitatory effect:

$p1 = —sp1 + (blp1 +dap1) (Wsee + WiX) 4

where sp is the vector of D1R-expressing striatal units, bl p1
defines the responsiveness to the input not due to dopamine,
dap; defines the responsiveness to the input depending on
dopamine, c¢ is the vector of inputs from the cortical units,
W;. is the matrix of weights of the connections between
c and s, x is the vector of activities reaching each channel
from out-of-loop cortices, Wy, is the matrix of weights of
the connections between x and s.

The modulation of dopaminergic efflux on the activity
of striatal D2-expressing units was implemented as a multi-
plicative inhibitory effect:

TSp2 = —Sp2 + (Wixe + WiX) (&)

blpr +dap>

where s p» is the vector of D2R-expressing striatal units, bl p
defines the scale of responsiveness to the input not due to
dopamine and dap; defines the scale of responsiveness to
the input depending on dopamine (see also Fiore et al. 2014,
for a similar implementation).

4.3 The CSNTC module

The CSNTC module was implemented as a composition of
a cortical module (Sect. 4.1) and a basal ganglia module
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(Sect. 4.2), as depicted in Fig. 2. The units of the cortical
module project to the Str and the STN layers of the basal
ganglia module. Direct input reaches the cortical module as
well as the basal ganglia module.

4.4 Learning the read-out weights

For the update of the connection weights to the read-out units,
we used either batch regression or online learning methods.
Regression was used to search the weights when computa-
tional speed was needed. Online learning was used to show
that the target tasks could also be acquired in a biologically
plausible way.

4.4.1 The batch method

For batch regression, we used Tikhonov regularization (Vogel
2002) as usually done in echo state networks optimization
(Lukovsevivcius and Jaeger 2009). In particular we consid-
ered

— The training dataset Y = [Y;...Y; ...YQ]T where
Y = [y1 Y yg] is the array of data for a single
desired trajectory and y; = [y1...yo]! is the point at
time ¢ of the desired trajectory Y;.

— Theinput dataset X = [X;...X; ..., XQ]T where X; =
[z1 ...z ...zg]is the array of input data related to a sin-
gle desired trajectory and z, € R¥ is the vector of input
at time 7.

On this basis, the learning rule is as follows:
-1
W, = (XTX + )PI) xTy (6)

where W, is the array of read-out weights (see Eq. 3), I is
the identity matrix and A is the regularization parameter.

4.4.2 The online method

We used the “backpropagation—decorrelation” (BPDC) algo-
rithm described by Steil (2004) (see also Steil 2007) as the
online learning method. We chose it because it has a low
computational complexity (O(n)). BPDC has been studied
in reservoirs where the read-out units belong to the reser-
voir and project feedback connections to the other neurons
of the network. In BPDC, a decorrelation factor and an error
backpropagation factor contribute to the modification of the
weights reaching the read-out units. Since we limit our model
to feedforward read-out units we can use a simplified version
of the BPDC rule:

n
AW, 141 = Egtﬂd? @)
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where 7 is the learning rate, d; is the decorrelation factor:

Z;
=" 8
T+ xIx + B ®

where S is a regularization factor, and the backpropagation
factor g, 1 simplified to the finite difference of the errors is:

gr1=0—-Ar)e —e 9)

where e, = 0, — y; is the error between the current activa-
tions of the read-out units o; and the vector y; of the desired
activations. In the original rule, the finite difference of the
errors g4 is weighted by a backpropagation term involving
the derivatives of read-out activations. This term depends on
the autoconnections of the read-out units (Steil 2004), and
reduces to zero in case of the absence of such autoconnec-
tions as in our model.

4.5 Learning the cortico-striatal weights

In the simulations implementing SYSTEM_MODEL learn-
ing of the cortico-striatal connections was also simulated (see
Sects. 3 and 5). In these cases, we used the unsupervised Oja
learning rule (Oja 1982) for the update:

AWsi1 = (si¢] = (5 0s017) O Wey)  (10)

where 7, is the learning rate, Wgy is the matrix of weights
from a cortical layer outside the CSN'TC module to the striatal
layer within the CSNTC module, s is the vector of activities
of the target striatal units (as in Eq. 2) filtered by a k-winner-
takes-all (KkWTA) function (here k = 1), x is the vector of
activities of the cortical units filtered by a k-winner-takes-
all (kWTA) function (here k = 30), 1 € RMe is a vector of
all ones with the same length of x, and © is the element-
wise multiplication operator. During the phase of cortico-
striatal learning, Gaussian noise A (i, o) was also added
to the activation of the striatal units to produce a random
perturbation to the selection.

4.6 Software

All simulations were implemented in C++ with the use of the
Armadillo open-source C++ library for linear algebra (see
Sanderson 2010). Simulations were run on a Linux Debian
Wheezy operating system hosted on a Intel I7 PC. The Mat-
plotlib Python library (Hunter 2007) was used to produce
plots and animations in all simulations with the three-DoF
two-dimensional arm. The 20-DOF hand in the second
set of simulations was implemented with the open-source
CENSLIB library for 3-D scientific simulations (Mannella
2013) based on the Bullet physics engine (Coumans 2013).

Data in the third set of simulations were analysed using the R
statistics and graphics program (R Development Core Team
2008).

5 Simulations

This section illustrates three sets of simulations of the mod-
els described in Sect. 3. The first set of simulations using
LOOP_MODEL (Sect. 3) showed that the hypothesized
neural organization is able to select, based on the striatal
dopaminergic efflux, different dynamics and hence differ-
ent rhythmic movements given the same sensory contextual
information to cortex and a different information about
the task to the basal ganglia. The second set of simula-
tions involving LOOP_MODEL showed that the same model
could also learn and produce fixed-point movements. Finally,
a third set of simulations involving SYSTEM_MODEL
(Sect. 3) showed the differential role of basal ganglia and
cortex in motor control.

5.1 Simulating motor control with a single CSNTC
module

The idea described in Sect. 2.3 was first tested by implement-
ing LOOP_MODEL that controls the motor behaviour of a
simulated arm. In particular, the aim of this simulation was
to show that LOOP_MODEL can select different dynamics
given the same sensory contextual information and a different
information about the task.

The simulation also showed how dopamine can play a
key role in the on/off switching of the basal ganglia selection
that leads to the learning of the target task. For simplicity we
chose a two-dimensional simulated environment and a three-
DoF articulated kinematic arm. Each of the three arm joints
were controlled by a distinct read-out unit of the model. The
task consisted in reproducing three different periodic behav-
iours that could be visually interpreted as writing a square, a
sideways “8” shape and a moon-like shape (see Fig. 5). On
the controller side, this corresponded to learning and repro-
ducing three different sequences of read-out activities based
on the selection of one of the three different basal ganglia
channels (Fig. 3).

The simulation was subdivided in a learning phase and
a test phase. Each phase was composed of several sessions.
During a session each of the three behaviours was recalled
once in random order, giving rise to three “trials.” During
each trial a binary signal was sent to one of the striatal
channels to bias selection. This binary signal represented
information received by the basal ganglia component of the
module from cortical or thalamic regions outside the mod-
ule. A bottom-up context information, formed by a sinusoidal
wave was directly sent to the cortical component of the mod-
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Fig. 5 Schematic description of the two-dimensional kinematic arm
used in the simulations. The three shapes on the top are the target tra-
jectories to be learned. A square, a sideways figure eight and a moon-like
shape can be recognized from the top-centre to the top-right of the figure

ule. This sinusoidal wave was the same throughout all trials in
the simulation. It represented information directly coming to
the cortical module from other cortical regions. Within each
trial, the dopaminergic efflux was switched on after a short
interval from the trial onset and was switched off before its
end. We also defined a time window, which we called “task
window,” internal to the dopaminergic efflux interval: learn-
ing took place within these task windows. This ensured that
the cortical activity only depended on direct cortical input and
basal ganglia disinhibition and not on perturbations due to the
trial onset. Importantly, there was no reset between sessions,
trials, or anywhere else throughout the whole simulation thus
testing the capacity of the system dynamics to autonomously
handle such transitions. In the initial training phase, the read-
out weights were updated via an online learning or batch
learning process, in distinct simulations (see Sect. 4.4 for
details). The duration of the training phase depended on the
kind of learning that was implemented. Online learning (see
Sect. 7) consisted in 1000 sessions in which the read-out
weights were updated in order to fit the desired trajectory.
Batch learning required one session to store the array of cor-
tical activations. Here for simplicity, we only describe the
results obtained using the batch learning process (regression).
The test phase was composed of three sessions. The first two
sessions served to guaranty that the behaviour is stable after
itis learned. The error (normalized root-mean-square error—
NRMSE) was measured over the three task windows in the
three trials, involving the three movements, of the last test
session.

Figure 6 shows basal ganglia activity in the test phase,
focusing on the transition between the end of a trial and
the beginning of the following one. This transition can be
described in relation to the dopaminergic concentration in
the striatum:
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Fig. 6 Simulations of the single CSNTC module architecture
(LOOP_MODEL). Course of basal ganglia activity ina CSNTC module
with three channels in the transition between the first and the second test
trial: The fop row shows the input signals reaching the three channels
from other cortices (outside the CSNTC module) are shown. The input
signal to the green channel is initially higher than the others. In the mid-
dle of the course of activity the input signal to the red channel becomes
the highest. 0 Da activity is low. The network is in a low-energy state.
Changing the input signals does not affect basal ganglia activity. / As
soon as Da activity becomes high, activity in Str D1 grows while the
corresponding activity Str D2 get steady low. 2 This change produces
inhibition of the highly activated channel in the G Pi layer. 3, 4 The
network reaches a new equilibrium where activity in the highly acti-
vated channel is in an up state throughout layers StrD1, STN, Tha,
and Crx. This equilibrium persists even when the input signal goes
off and only a lowering of Da activity interrupts it. 5 Activations in
Str D1 revert to a down state, while those of St D2 become lower and
with temporary peaks. 6 Differences between channels fade back to
low values inthe GPi. 7 StrD1, STN, Tha, and Ctx revert to down-
state activity. Acronyms Inp input signal; Da dopamine efflux; StrD1
DI1R-expressing striatal populations; Str D2 D2R-expressing striatal
populations; ST N subthalamic nucleus; G Pi internal globus pallidus;
G Pe external globus pallidus; 7 ha thalamus; Ctx cortex (colour figure
online)

— High dopamine: If the concentration of dopamine at the
striatal synapses moves from a low level to a high level,
the activity of all D2R-expressing Str populations sta-
bilizes at low values, while the activity of the selected
DIR-expressing Str population starts growing (Fig. 6,
point 1). This change produces a selective inhibition of
the highly activated channel in the GPi layer, while a simi-
lar selective inhibition is removed in the GPe layer (Fig. 6,
point 2). The overall increase in GPe activity produces
a temporary deactivation of the STN layer. As a conse-
quence, the overall activity of GPi is lowered allowing
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the dishinibition of a thalamo-cortical loop. Lock-in: As
long as disinhibition of the thalamo-cortical loop per-
sists, cortical increased activation excites the Str and the
STN (see Fig. 6, point 3). Str, STN and cortical neurons
belonging to the selected channel switch to an up state
of activation, in a feedback loop reaction, and selection
becomes locked-in (see Fig. 6, point 4).

Low dopamine: If the concentration of dopamine at the
striatal synapses moves from a high level to a low level,
the D2R-expressing population is free to react to inputs
and to inhibit the GPe (see Fig. 6, point 5). This activity
breaks the equilibrium within the GPe-STN loop (see
Fig. 6, point 6). Unlock: The level of activity of SNpr-GPi
neurons cannot be reliably maintained below threshold
anymore, the thalamus becomes inhibited, and cortical
activity turns back to a down state, thus unlocking the
network (see Fig. 6, point 7).

Within the model, all these dynamical events require a back-
ground activity in the cortical layer to happen. Without this,
there is no thalamic activity, and thus the recurrent activity
within the loops is null.

Figure 7 shows cortical activity in the test phase of a typ-
ical simulation. During each trial, the following events take
place:

1. Direct inputs to the cortex trigger the reservoir activity.
Cortical activity stays at low levels if the selection process
is not locked-in due to a lack of dopamine in the striatal
layer (see Fig. 7a, point 1).

. When dopamine efflux increases, inputs to the basal gan-
glia from other cortices bias the competition so that one
of the channels is disinhibited (see Fig. 7a, points 2, 3).

. Activity of the cortical neurons in loop with the disin-
hibited thalamic region is amplified (see Fig. 7a, point
3).

The presence of a highly activated neural population within
the reservoir when a channel is locked-in has consequences
on the whole cortical activity. As a result the cortical dynam-
ics during the three task windows are different from each
other, even though the sinusoidal signal activating the cor-
tex is the same. Thus, when selection is steadily locked-in,
the behaviour of the network is a well-determined temporal
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Fig. 7 Simulations of the single CSNTC module architecture
(LOOP_MODEL). Cortical activity during three trials of a test ses-
sion. a Raster plot of the activity of the units in the cortical component.
The first half of rows on the top shows the activity of the units connected
in loop with the three thalamic channels. The graph clearly shows the
switching from a down state to an up state of each subgroup of cortical
units when the related thalamic loop is disinhibited. The last 20 % of
rows on the bottom show the activation of the set of units that is reached

600
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by the cortico-cortical input (see e), whereas the remaining units are not
reached by any input. b Activation of the three read-out units during the
testing time window. The bold black lines stress the target output that
had to be learned. Their duration denotes the learning time window. ¢
Striatal dopaminergic efflux. Dopamine is set at a high level during each
trial and at a low level between trials. d Cortical input to the three chan-
nels of the striatum. Gaussian noise is added to each signal. e Sinusoidal
input reaching a set of units of the cortical module
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Fig. 8 Simulations of the single CSNTC module architecture
(LOOP_MODEL) showing the model capacity of generalization over
scaling and translation. Each column of graphs shows the behaviour
of the controlled 2D arm in case of the selection of one of the three
basal ganglia channels. Bold light grey curves denote the target trajec-
tories. Bold dark grey curves denote the trajectories expected during

function of its inputs. Consequently, the weights to a read-out
unit can be modified so that its activation follows a desired
behaviour. Figure 7b shows the activity of the three read-out
units in a test done after such a learning. It can be seen that the
same read-out unit is capable of decoding the three dynamics
of the cortical network into three distinct temporal patterns of
activity. A video of the test phase of this simulation is given
in Online Resource 1. Figure 1 in Online Resource 4 shows
the behaviour of the model in the case in which it learns and
reproduces four different motor trajectories instead of three
to show how the model can learn a large number of patterns.
We also performed some tests to show how LOOP_MODEL
is able to generalize learned motor trajectories over different
features of the movement, for example scale or translation. In
these tests, during the initial phase each target trajectory was
learned in three different positions (see Fig. 8a, light grey
curves) or at three different scales (see Fig. 8b, light grey
curves). A further input signal was added to the sinusoidal
signal going to the reservoir component of the model. This
additional input signal was a constant signal whose ampli-
tude varied based on the amount of translation or scaling of
the trajectory. In the following test phase, a generalization
test was added to the tests of the three learned trajectories. In
this generalization test, the amplitude of the constant input
signal did not correspond to any of the three amplitudes that
were experienced during the learning phase but was rather a
value between two of them. The results of these tests show
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the generalization tests. The thinner curves show the trajectories actu-
ally performed in the three target tests and in the generalization tests.
The top row of graphs a shows the case in which the same trajectory
has been learned at three different spatial positions. The bottom row b
shows the case in which the same trajectory has been learned at three
different scales

that the model performs a motor trajectory that is translated
or scaled in proportion to the level of the constant signal
along a continuum that generalizes over the three learning
samples (see Fig. 8a, b, dark grey curves). In this simulation,
we used simpler shapes than before as target trajectories. This
was done to clearly decouple the scaling factor from of the
translation factor. Figure 2 in Online Resource 4 shows the
same simulation with the previously described more complex
trajectories.

5.2 Simulating end-point motor control

A further simulation was implemented to show how LOOP_
MODEL can learn not only rhythmic (limit-cycle attractor)
movements but also discrete (fixed-point attractor) move-
ments. All settings were as those of the first simulation with
the only difference consisting in the use of three fixed-point
target trajectories instead of the ones described in Fig. 5.
Figure 9 shows the results of a typical test session. The three
plots represent the movements of the arm to reach three dif-
ferent final targets. On the top-left of each plot a graph shows
the activations of the read-out units in the three joints of the
arm. It can be seen that, after learning, the model is able to
produce the desired posture.

To test how the model scaled to real scenarios in motor
control, we further tested it as a controller of a 20-DoF
dynamic hand in a 3D physics simulator. The task was sim-
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Fig. 9 Simulations of the single CSNTC module architecture
(LOOP_MODEL) showing the capacity of the model to learn and per-
form discrete movements. The three graphs show the trajectories of the

ilar to the ones just described and consisted in moving the
hand so to reach one of three different postures based on the
task information. The model could easily learn all the three
desired postures and reproduce them based on the related
input. Learning of the read-out units was implemented via
the online learning rule described in Sect. 4.4. A video of the
simulation is given in Online Resource 2.

5.3 Simulating the interaction between high-level and
primary motor modules

The third set of simulations implemented SYSTEM_MODEL
described in Sect. 2.3. The aim of this set of simulations
was to illustrate how selection implemented by the basal
ganglia maintains the task information throughout cortico-
cortical pathways. Furthermore, it illustrates how a simple
unsupervised cortical—striatal learning process is sufficient
to allow the reduction of the dimensionality of cortical input
to the striatum and extract information about the task (see
Sect. 2.3). This architecture was tested, as the previous one,
as a controller of a three-DoF kinematic arm acting in a
two-dimensional simulated environment. Similarly to the
previous case, each of the three joints of the arm were con-
trolled by a distinct read-out unit of the model. Also the
task was the same. Two types of information reached the
controller. These two sources were intended to reproduce
the difference between low-level sensory information and
high-level task information. A first input carried the infor-
mation about the trial task, that is about the trajectory to
perform. This information represented the modulation by the
prefrontal cortices, here abstracted as a binary vector signal
(depicted on the left of Fig. 4). In particular, nine channels
subdivided in three groups conveyed the signal about which
of the three motor actions had to be carried out. Each chan-
nel in a group reached the same unit of the striatum of the
high-level motor CSNTC module. Each channel also reached

arm while reaching each of the three the target postures (white and red).
The top-left of each graph shows a plot of the modification in time of
the angles of the three arm joints (colour figure online)

the cortical part of the same CSNTC module in a distrib-
uted way, with randomly chosen weights. The reason for this
abstraction was that we were interested, as in the previous
set of simulations, in reproducing the effect of a task-related
high-level coarse-grained information on the selection of the
cortical dynamics. A second input represented the informa-
tion arriving to the somatosensory cortex from sensors. We
abstracted this information as a sinusoidal signal (see the
bottom-right of Fig. 4). This sinusoidal signal reached the
somatosensory module in a distributed way, with randomly
chosen connection weights. The reason for this abstraction
was that, as above, we were interested, as in the previous set
of simulations, in reproducing the effect of a sensory-related
low-level fine-grained information on the maintenance of the
cortical dynamics.

Learning happened at two levels. One learning process
involved the connections going from the high-level motor
cortical module to the striatum of the primary motor CSNTC
module. A second learning process involved the connections
going from the primary motor cortical module to its read-out
units (the top-centre of the figure). Learning the connections
between external input (from prefrontal cortex) and the high-
level motor striatum was instead abstracted by implementing
hardwired connections, as in this case unsupervised learn-
ing is not sufficient. Indeed, information about the desired
categories to be acquired is not contained in the prefrontal
information, and further motivational information would be
needed. Thus in this case a reward-based learning process,
the study of which was out of the scope of this work, should
have been implemented.

The simulation was divided in three phases:

— First training phase Cortico-striatal weights from the
high-level motor cortical module to the primary motor
striatum were updated using the unsupervised learning
rule described in Sect. 4.5. During this phase, random
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Fig. 10 Simulations of the system-level architecture composed of two
CNSTC modules (SYSTEM_MODEL). Performance of the model in
the execution of the three tasks during the SAME test condition in each
of the three kinds of simulations. The grid on the left shows the trajec-
tories in the SAME test conditions, while the one on the right shows
the trajectories in the DIFF test conditions. Within each grid the left
column shows the performance in the BASELINE simulations. In both
cases the trajectories of the arm follow the target with a very small

noise was added to the striatal input of the primary motor
module so that selection could happen randomly at the
beginning. This phase lasted 30 sessions.

— Second training phase The read-out weights from the
primary motor cortical module to the subcortical actua-
tors were updated in a supervised manner, as described
in Sect. 4.4. This phase lasted three sessions in the
bach learning version, and 1000 sessions in the online
version.

— Test phase The behaviour was tested in two different con-
ditions. In one condition (SAME), the temporal pattern
of binary vector signals reaching the higher-level motor
module was the same as in the training phases. In the
other condition (DIFF), the last bit within each group
was switched on to encode the desired trajectory, instead
of the first bit of the same group as done in the pre-
vious phases (see Fig. 4, on the left). Thus the binary
vector signals in the two conditions were orthogonal, and
their belonging to the same groups of information could
be optimally detected only through reward-based clus-
tering (here abstracted with hardwired connections) at
the level of the striatum of the high-level CNSTC mod-
ule.

@ Springer

DIFF
BASELINE PARTIAL_LESION FULL_LESION
1.4 1.4 1.4 m
0.8 D 0.8 D 0.8
06 12 06 12 06 12
1.4 <> 1.4 <>> 1.4
0.8 0.8 0.8 ﬁ}

0.6 1.4 0.6 1.4 0.6 1.4
1.4 1.4 1.4

0.6 1.4 0.6 1.4 0.6 1.4

error. Within each grid the centre column shows the performance in the
PARTIAL_LESION simulations. In both cases, the error increases. All
trajectories are centred on the target shapes. Within each grid the right
column shows the performance in the FULL_LESION simulations. In
both cases the shape of the trajectories is completely lost in the repro-
duction. In the SAME condition, the only information maintained is the
position of the target shape in space

Three simulations were preformed to show the function
played by the different components of the model.

— BASELINE All connections in the architecture were
intact. This represented the control condition of the exper-
iment.

— PARTIAL_LESION The cortico-striatal connection
between the high-level motor module and the primary
motor module was lesioned before the learning processes.
This condition tested the hypothesis for which the task
information coming from the high-level motor module
must be passed to the striatum of the primary motor mod-
ule in order to optimize the selection of the right cortical
dynamics.

— FULL_LESION Both the cortico-striatal connections
between the prefrontal/associative input and the high-
level motor module and the cortico-striatal connection
between the high-level motor module and the pri-
mary motor module were lesioned before the learning
processes. This condition tested the hypothesis for which
in the model the task information is almost completely
lost at the level of primary motor control when it is not
filtered by the basal ganglia.
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Fig. 11 Simulations of the system-level architecture composed of two
CNSTC modules (SYSTEM_MODEL). NRMSE means of BASE-
LINE, MOTOR and FULL simulation groups. Top Means and standard
errors of the BASELINE and MOTOR simulations are compared in the
SAME and DIFF test conditions. Bottom Means and standard errors of
the BASELINE and FULL simulations are compared similarly in the
SAME and DIFF test conditions. Each set of simulations was composed
of 100 simulations with different random number generator seeds. Note
the different y-axis scale of the two graphs

Each kind of simulation was repeated 100 times, each
time setting a different random number generator seed so
that each simulation could be considered a test on a different
individual.

In the case of the BASELINE simulation, when the binary
vector signal about the task was the same as in the training
phase (SAME condition), the resulting behaviour was a cor-
rect reproduction of the requested behaviour (Fig. 10, left
column). Furthermore, in the DIFF test condition, the mea-
sured error (NRMSE) was only slightly higher than the one
in the SAME condition (see Fig. 11).

In the case of the PARTIAL_LESION simulation, the
resulting behaviour during the test phase was partially
impaired (Fig. 10, centre columns of graphs in the SAME
and DIFF blocks). The overall information about the posi-
tion in space of the target trajectory shape was maintained,
as well as a partial amount of information about the shape
itself. In this case, the difference between the measured errors
in the SAME and DIFF conditions was higher (Fig. 11).
Indeed, a two-way ANOVA revealed a significant effect of the
interaction between the presence of motor lesions (LESION)
and the two conditions (TEST) (TEST F(1,393) = 7.53,
p = 0.006; LESION F(1,393) = 796.301, p < 0.001;
TEST x LESION F(1,393) = 18.7, p < 0.001).

In the case of the FULL_LESION simulations, the result-
ing behaviour during the test phase was destructively altered
(Fig. 10, right column). The overall information about the
position in space of the target trajectory shape was still main-
tained in the SAME condition, but almost no information
about the shape itself was retained. In the DIFF condition, no
information was maintained at all, even information regard-
ing the position in space of the target trajectory shape. In
this case, the difference between the measured errors in the
SAME and DIFF conditions became dramatic (Fig. 11). A

two-way ANOVA revealed a significant effect of the inter-
action between the presence of motor lesions (LESION)
and the two conditions (TEST) (TEST F(1,393) = 2.71,
p < 0.001; LESION F(1,393) = 7.03, p < 0.001;
TEST x LESION F(1,393) =10.872,p < 0.001).

A video showing the SAME test conditions for the three
simulation types is given in Online Resource 3.

6 Discussion

The simulations presented here show that the disinhibitory
process implemented by the basal ganglia can be a reli-
able mechanism for the selection of the internal dynamics
within a single cortical module. In particular, the simulation
in Sect. 5.1 shows that basal ganglia disinhibition is sufficient
to select differential cortical dynamics. These dynamics can
be read out to control the activity of motor actuators, exploit-
ing the ability of dynamical reservoirs to learn sequences and
generalize the relations between the input and output spaces,
as shown by the ability to generalize motor trajectories over
translation and scale.

The simulation in Sect. 5.1 also shows that the con-
trol of this selection can be suitably modulated by striatal
dopamine. In the simulation, the dopaminergic efflux regu-
lates the efficacy in the initiation, termination and lock-in of
basal ganglia selection. As a result, during the test phase the
cortical dynamics are switched to a “neutral” state when stri-
atal dopamine level is low. When striatal dopamine level is set
to a higher level, the class of cortical dynamics is determined
by selection in the basal ganglia so that the correct read-
out signals are produced. Such a role of dopamine in motor
control is consistent with what is observed in Parkinsonian
patients. Indeed, these patients show deficits in learning
new motor abilities (Muslimovic et al. 2007; Abbruzzese
et al. 2009; Espay et al. 2011), as well as in skilled move-
ments such as handwriting and graphical tasks (Rosenblum
et al. 2013; Tucha et al. 2006), due to a reduced efficacy
of basal ganglia action caused by low levels of dopamine.
Notably, micrographia, a peculiar handwriting deficit shown
by Parkinsonian patients (McLennan et al. 1972; Kim et al.
2005; Jankovic 2008; Ma et al. 2013) has been qualitatively
reproduced by the model described here when the external
afferents to the striatal layers are partly or totally lesioned
(second set of simulations, Fig. 10).

Simulations also show that basal ganglia disinhibition can
play several roles. First, basal ganglia disinhibition poten-
tiates how cortical modules sparsify the input in time and
space. Sparsification in time and space is a fundamental
property of reservoirs. Thanks to this property reservoir,
networks allow a linear solution of problems that are orig-
inally nonlinearly separable. In the model, the striatum
filters the coarse-grained information of the input. Based on
this coarse information, basal ganglia disinhibition persis-
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tently enhances the dynamics of differential cortical sub-
populations (Fig. 7). This focussed enhancement amplifies
the sparsification processes of the cortical module. Based on
this strengthened sparsification, the cortical module can learn
multiple radically different mappings between input and out-
put signals while limiting possible interference effects. The
third set of simulations illustrates this enhancing effect of
basal ganglia disinhibition. The reproduction error measured
in the SAME test condition of the PARTIAL_LESION sim-
ulation is significantly higher than the error in the SAME
test condition of the BASELINE simulation. This is a clear
evidence that the primary motor cortical module without the
disinhibition by the primary motor basal ganglia fails to suf-
ficiently sparsify the input so as to suitably map it to the
target movement trajectory. Instead, the motor cortex with
the enhancement of the basal ganglia can learn all the tar-
get trajectories without interference in correspondence to the
coarse information related to the different movements.

Second, basal ganglia disinhibition preserves coarse-
grained information throughout cortico-cortical pathways.
This property derives from the same enhancement effect dis-
cussed above. When a cortical subpopulation is enhanced a
strong mark is impressed to the dynamics of the cortical mod-
ule. This mark can be easily exploited by both cortico-cortical
and cortico-striatal learning processes when information tra-
verses multiple CSNTC modules. The third set of simulations
shows the importance of this property. The reproduction error
measured in the DIFF test condition of the FULL_LESION
simulation is dramatically higher than the error in the other
simulations, resulting in a completely disrupted behaviour.
This dramatic effect is due to the impairment of the striatal
activity of the high-level motor module that prevents coarse-
grained information about the task to reach the primary motor
cortex.

6.1 Comparison with other models

The model presented here can be compared with the main
computational hypotheses proposed in the literature to
describe the functional interaction between cortex and basal
ganglia by appealing to dynamical concepts as here. The
models described by Wickens et al. (1994), Houk and Wise
(1995), Beiser and Houk (1998) and Frank et al. (2001) share
two common ideas. First, the activity of a cortical assem-
bly or column is bistable, switching between a lower and a
higher state. Second, the basal ganglia select which column
to switch on through disinhibition based on a striatal internal
competition. Wickens et al. (1994), starting from the Heb-
bian hypothesis of cell assemblies, proposed that the control
of motor programs is implemented by the cortex through the
ignition of cortical assemblies. In their model, when cells
belonging to an assembly are activated over a threshold, a
reaction chain leads to the ignition of all the other cells in
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the same assembly. This process ends with a stable activa-
tion of the whole assembly that is then sufficient to trigger
a motor program. The role ascribed to the selection process
of the basal ganglia is to differentially amplify the activation
of cortical assemblies. In the authors’ hypothesis, as cortical
assemblies reaching the striatum partially overlap, learning
at the level of the cortico-striatal connections connects the
activation of assemblies between each other, allowing the
triggering of sequences of motor programs. Houk and Wise
(1995) described a localistic firing-rate model of the interac-
tion between thalamo-cortical loops and the basal ganglia in
which the striatum acts as a context detector, linking motor
behaviours to the right contextual patterns. Context is given
by both the activity of the cortical column that is in loop
with the striatal unit and by the activity of other cortical
columns. Striatal functioning is based on a winner-take-all
mechanism. The main feature of the model is that a tem-
porary activation of a striatal unit produces a switch to a
permanent higher activation of the target cortical column,
which thus instantiates a memory of the context detected by
the striatum. Beiser and Houk (1998) further investigated
the computational hypothesis proposed by Houk and Wise
(1995). They showed that a composition of such cortico-basal
ganglia loops where cortico-striatal connectivity is randomly
generated produces responses that are uniquely coupled to
different sequences in the presentation of the cues. Frank
etal. (2001) and O’Reilly and Frank (2006) described a com-
putational model of working memory based on the prefrontal
cortex and basal ganglia (the PBWM model) that is also
built on the two principles described above. In the PBWM
model, cortical modules are implemented as attractor net-
works whose dynamics are modified through an algorithm
based on both Hebbian and error-driven learning. Basal gan-
glia selectively gate inputs to the cortical modules through
disinhibition. When a channel is selected, the target cortical
module receives external inputs that possibly drive the net-
work to a new attractor state whereas when the channel is
inhibited the previous attractor state is maintained. Contrary
to the previous models, the cortical networks of the PBWM
model can store and learn several attractor states. This fea-
ture, combined with the temporal selective gating of the basal
ganglia, allows the model to solve complex working memory
tasks. This model, as some of the others described above, is
meant to describe working memory in the prefrontal cortex
more than motor control in the motor cortical areas, although,
as also noted by the authors, working memory and motor con-
trol rely on similar principles. This contiguity also emerges
on the anatomical level, where the microstructure of the inter-
action between the prefrontal cortex and the ventro-medial
basal ganglia is the same as that between the motor cortices
and the dorsal basal ganglia. Notwithstanding their power,
none of the four models above give a full account of the
dynamic nature and integration of high-level motor control
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(selection, initiation, modulation and termination of move-
ments) and the very implementation of the motor programs.

A different model was proposed by Dominey (1995) in
which the first idea of a cortical dynamical reservoir (see
Sect. 2.1) was proposed in the implementation of a prefrontal
cortex module that controls the basal ganglia disinhibition to
the superior colliculus for saccade generation. In this model
the temporal dynamics of the cortical module allows the
system to learn, through reinforcement learning, to control
oculomotor behaviour. Differently from the model presented
here, however, selection in the basal ganglia is not imple-
mented and the re-entrant interaction between cortex and the
basal ganglia is not reproduced.

The model presented here is coherent with the described
works because it implements both context detection by
the basal ganglia, here in a biological plausible way, and
maintenance of cortical states through the release of thalamo-
cortical loops. However, our model has also important
novelties with respect to the described models. First, it
merges the property of maintaining a memory of the current
state (Wickens et al. 1994; Houk and Wise 1995; Beiser and
Houk 1998; Frank et al. 2001), with the property of produc-
ing an internal dynamics in response to the input (Dominey
1995), so that the evidence of complex neural activity can be
reconciled with the role of frontal cortex in working mem-
ory, in line with the duality of electrophysiological data in
which both maintenance of activity patterns (Georgopoulos
et al. 1982; Scott 2003) and complex temporal dynamics
(Hatsopoulos et al. 2007; Afshar et al. 2011; Churchland
et al. 2012) are found in the same cortical circuits. Second,
it implements the interaction between dopamine-based basal
ganglia selection and cortical activity in a plausible biological
way. Thus our model explains in detail how motor programs
are selected and performed.

7 Conclusions

We described a model that proposes a hypothesis on the
mechanisms of interaction between cortex and the basal
ganglia. The model was built by integrating reservoir com-
puting as a model of cortex, and cumulative competition
leading to disinhibition as a model of the basal ganglia. The
model shows that selection of the basal ganglia can con-
trol cortical activity by drastically changing its dynamics. In
particular, selection substantially improves the sparsification
processes within cortex. It also explains how cortical activity
can transiently maintain information while producing com-
plex temporal patterns of activation. This is made possible by
the basal ganglia imposing specific dynamics to the selected
cortical subpopulations.

Notwithstanding these strengths the model does not
explain at least two important issues, representing two pos-
sible starting points for future work. First, all simulations

presented here use supervised learning to update cortical
read-out connections, so the model does not explain how
such connections might be acquired with learning processes
typical of cortex, in particular Hebbian learning (Arai et al.
2011; Koch et al. 2013) and possibly trial-and-error learning
(Hoerzer et al. 2014). We restricted our implementation to
supervised learning because of its large use in reservoir com-
puting, and the consequent availability of algorithms to solve
technical problems, given that our focus was on the system-
level interaction between the basal ganglia and cortex and not
on learning processes. Unsupervised and error-driven learn-
ing in reservoir computing are starting to be studied only
recently (see Legenstein et al. 2009; Hoerzer et al. 2014 for
an promising solution to reward-driven learning).

The second issue that the model does not face involves
the effects of closed-loop interactions with the environ-
ment on learning. Realistic motor control operates within
a closed-loop system involving the brain, the body and the
environment where the motor acts exerted by the animal
generate a continuous feedback from the environment. This
feedback is readily integrated by the brain to control and
modulate the motor acts themselves. For example, the activ-
ity of the primary motor cortex is continuously modulated
by somatosensory information (here abstracted with a sinu-
soidal input), or by motor efferent copies, during movement
performance. Modelling the effects of this modality of inter-
action with the environment is very important as it produces
relevant effects on the nature of motor control and perfor-
mance. Some solutions have been developed with the aim to
manage online feedback in reservoirs networks while updat-
ing the read-out weights (Steil 2004; Sussillo and Abbott
2009). Simulating the model with a more realistic input will
be a goal of future research.

An interesting issue that can be investigated with the
model is the relation between learning equilibrium-points
and learning complex motor trajectories. Are these two dif-
ferent possible modalities of motor learning or are they
interrelated? Do they share the same neural substrates? Sec-
tion 5 highlighted that the model, exploiting the properties
of dynamical reservoirs, can learn to reach an equilibrium-
point posture (Feldman 1986; Bizzi et al. 1992; Caligiore
et al. 2014) alongside learning rhythmic complex tra-
jectories. Furthermore, the learning of constant read-out
activities should be easier to achieve by a reward-driven
learning algorithm. Thus, we speculate that initial learning
of a complex trajectory might be guided by a reward-
based acquisition of few intermediate key points relevant
for the whole motor trajectory. These via points might
then scaffold the acquisition of the final accurate trajec-
tory, in particular on the basis of cortico-cortical learn-
ing processes and possibly the contribution of cerebellum
(Wolpert et al. 1998; Shadmehr and Krakauer 2008; Cali-
giore et al. 2013).
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Appendix 1: Optimizing the weights of
leaky-integrator reservoirs

Generating suitable connection weights of a reservoir net-
work to optimize the learning of the read-out weights for a
given task is not always easy. In particular, there is not a
systematic way to modulate the temporal variability of the
network response. The richness of the temporal response of
a reservoir network to an input is the founding element of its
computational expressiveness. Indeed, networks with richer
dynamics can reproduce in their read-out units nonlinear tem-
poral trajectories with an high definition. In other words, the
more the states that the network visits in time are dissimilar
from one another (low correlation between states), the more
the output function that the network can learn to reproduce
can be complex. Here we describe a heuristic algorithm that
we have developed, and used in the models presented here,
to improve the temporal variability of echo state reservoirs.
In a dynamical system of type X = WX, the properties of
the matrix W determine its temporal dynamics. In particu-
lar, the real and imaginary components of the eigenvalues
of W determine, respectively, the amount of infinitesimal
contraction/expansion or infinitesimal rotation in the phase
space of the system (Stender 2007). Thus, a matrix with
eigenvalues having high imaginary and low real components
produces dynamics with high infinitesimal rotations and a
low amount of contraction/expansion. Infinitesimal rotations
in the dynamics correspond to low correlation between suc-
cessive states; that is, richer dynamics. It is possible to build
a matrix with these properties starting from a random square
matrix M € " *", This matrix M is equivalent to the sum of
two matrices Mim + Mkew, where Mgim = (M + MT) /2is
a symmetric matrix with all nonzero eigenvalues being pure
real and Mg, = (M — MT) /2 is a skew-symmetric matrix
with all nonzero eigenvalues being pure imaginary. Given
this property, we can build a matrix Myoy = ¥ - Mgim +
(1 — ¥) - Mgew, Where the parameter ¥ is the proportion
between the amplitude of real versus imaginary eigenval-
ues of M. By setting a small value of v (in particular
0 < ¥ < 0.5) one can obtain a matrix that determines
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Fig. 12 For each row of graphs, the left graphs represent the eigen-
values of the weight matrix. a An echo state network where the weight
matrix is built with = 0.2 and € = 0.0001. Notice that the high vari-
ability of its dynamics while fading. b A standard echo state network
(¥ =0.5,¢ =0.0001)

an higher amount of rotation and a lower amount of con-
traction/expansion than the original matrix. We can now use
this matrix to built the matrix of weights of an echo state
network of n units by normalizing it to a matrix M4, SO
that (1 —¢€) < p ((81/7) - Mporm + (1 = (82/7)) - I) < 1,
where p(.) is the spectral radius (Jaeger et al. 2007). Fig-
ure 12 shows how a reservoir with such a modification has a
richer response to an impulse during its fading dynamics.

Appendix 2: Parameters of the simulations

Numerical integration of the units of the model

Basal ganglia units

dt =0.001
T =0.005
th = 0.0
a=1.0
blp; = 0.1
blp) = 0.2
dap; = 0.5
dapr, = 5.0
Channels = 3
Thalamic units
dt =0.001
T =0.005
th =0.0
a=1.0
n=3
Cortical units
dt =0.001
T =0.005
th=0.0
a=1.0

n =300
Sparseness = 1.0
€*=0.0001
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Weights
Intrinsic connections of the basal ganglia

To From

GPe STN SD1 SD2
GPi —0.1 3.0 —3.0 .
GPe . 2.0 —2.5
STN —1.5

Connections between the components of the CSNTC module

To From

GPi Tha c Others
Sp1 0.3 0.8
Sp2 0.25 0.8
STN . 1.0
Tha —-30.0 . 0.4
[¢ 0.6
Learning
Offline learning

Read-out weights—regression
22 =0.000001

Online learning

Read-out weights—BPDC

B =10.00001

n=20.2

Cortico-striatal weights—QOja’s rule
Nse = 0.05

kwrag, =1

kwrae, =30

References

Abbruzzese G, Trompetto C, Marinelli L (2009) The rationale for
motor learning in Parkinson’s disease. Eur J Phys Rehabil Med
45(2):209-214. http://www.ncbi.nlm.nih.gov/pubmed/ 19377414

Afshar A, Santhanam G, Yu BM, Ryu SI, Sahani M, Shenoy KV (2011)
Single-trial neural correlates of arm movement preparation. Neu-
ron 71(3):555-564. doi:10.1016/j.neuron.2011.05.047

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization
of functionally segregated circuits linking basal ganglia and cor-
tex. Annu Rev Neurosci 9:357-381. doi:10.1146/annurev.ne.09.
030186.002041

Amari S (1977) Dynamics of pattern formation in lateral-inhibition type
neural fields. Biol Cybern 27(2):77-87. doi:10.1007/BF00337259

Arai N, Miiller-Dahlhaus F, Murakami T, Bliem B, Lu MK, Ugawa Y,
Ziemann U (2011) State-dependent and timing-dependent bidirec-
tional associative plasticity in the human sma-m1 network. J Neu-
rosci 31(43):15,376-15,383. doi:10.1523/INEUROSCI.2271-11.
2011

Ashby GF, Ennis JM, Spiering BJ (2007) A neurobiological the-
ory of automaticity in perceptual categorization. Psychol Rev
114(3):632-656. doi:10.1037/0033-295X.114.3.632

Baldassarre G, Caligiore D, Mannella F (2013) The hierarchical organ-
isation of cortical and basal-ganglia systems: a computationally-
informed review and integrated hypothesis. In: Baldassarre G,
Mirolli M (eds) Computational and robotic models of the hier-
archical organisation of behaviour. Springer, Berlin, pp 237-270

Bar-Gad I, Morris G, Bergman H (2003) Information processing,
dimensionality reduction and reinforcement learning in the basal
ganglia. Prog Neurobiol 71(6):439-473. doi:10.1016/j.pneurobio.
2003.12.001

Barth AL (2002) Differential plasticity in neocortical networks. Physiol
Behav 77(4-5):545-550. doi:10.1016/S0031-9384(02)00932-0

Beiser DG, Houk JC (1998) Model of cortical-basal ganglionic process-
ing: encoding the serial order of sensory events. J] Neurophysiol
79:3168-88. http://www.ncbi.nlm.nih.gov/pubmed/9636117

Berns GS, Sejnowski TJ (1998) A computational model of how the
basal ganglia produce sequences. J Cogn Neurosci 10(1):108-121.
http://www.ncbi.nlm.nih.gov/pubmed/9526086

Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S (1992) Does the nervous
system use equilibrium-point control to guide single and multiple
joint movements? Behav Brain Sci 15:603-613. http://www.ncbi.
nlm.nih.gov/pubmed/23302290

Bogacz R, Gurney K (2007) The basal ganglia and cortex implement
optimal decision making between alternative actions. Neural Com-
put 19(2):442-477. doi:10.1162/nec0.2007.19.2.442

Buonomano DV, Merzenich MM (1998) Cortical plasticity: from
synapses to maps. Ann Rev Neurosci 21:149-186. doi:10.1146/
annurev.neuro.21.1.149

Buys EJ, Lemon RN, Mantel GW, Muir RB (1986) Selective facilitation
of different hand muscles by single corticospinal neurones in the
conscious monkey. J Physiol 381:529-549. http://www.ncbi.nlm.
nih.gov/pubmed/3625544

Caligiore D, Pezzulo G, Miall RC, Baldassarre G (2013) The contribu-
tion of brain sub-cortical loops in the expression and acquisition of
action understanding abilities. Neurosci Biobehav Rev 37:2504—
2515. doi:10.1016/j.neubiorev.2013.07.016

Caligiore D, Parisi D, Baldassarre G (2014) Integrating reinforcement
learning, equilibrium points and minimum variance to understand
the development of reaching: a computational model. Psychol Rev
121(3):389—421. doi:10.1037/a0037016

Cheney PD, Fetz EE (1985) Comparable patterns of muscle facilitation
evoked by individual corticomotoneuronal (cm) cells and by sin-
gle intracortical microstimuli in primates: evidence for functional
groups of cm cells. J Neurophysiol 53(3):786-804. http://www.
ncbi.nlm.nih.gov/pubmed/2984354

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV
(2010) Cortical preparatory activity: representation of movement
or first cog in a dynamical machine? Neuron 68(3):387—400.
doi:10.1016/j.neuron.2010.09.015

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian
P, Ryu SI, Shenoy KV (2012) Neural population dynamics during
reaching. Nature 487(7405):51-56. doi:10.1038/nature11129

Ciancio AL, Zollo L, Guglielmelli E, Caligiore D, Baldassarre G (2013)
The role of learning and kinematic features in dexterous manipula-
tion: a comparative study with two robotic hands. Int J Adv Robot
Syst. doi:10.5772/56479

@ Springer


http://www.ncbi.nlm.nih.gov/pubmed/19377414
http://dx.doi.org/10.1016/j.neuron.2011.05.047
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1523/JNEUROSCI.2271-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2271-11.2011
http://dx.doi.org/10.1037/0033-295X.114.3.632
http://dx.doi.org/10.1016/j.pneurobio.2003.12.001
http://dx.doi.org/10.1016/j.pneurobio.2003.12.001
http://dx.doi.org/10.1016/S0031-9384(02)00932-0
http://www.ncbi.nlm.nih.gov/pubmed/9636117
http://www.ncbi.nlm.nih.gov/pubmed/9526086
http://www.ncbi.nlm.nih.gov/pubmed/23302290
http://www.ncbi.nlm.nih.gov/pubmed/23302290
http://dx.doi.org/10.1162/neco.2007.19.2.442
http://dx.doi.org/10.1146/annurev.neuro.21.1.149
http://dx.doi.org/10.1146/annurev.neuro.21.1.149
http://www.ncbi.nlm.nih.gov/pubmed/3625544
http://www.ncbi.nlm.nih.gov/pubmed/3625544
http://dx.doi.org/10.1016/j.neubiorev.2013.07.016
http://dx.doi.org/10.1037/a0037016
http://www.ncbi.nlm.nih.gov/pubmed/2984354
http://www.ncbi.nlm.nih.gov/pubmed/2984354
http://dx.doi.org/10.1016/j.neuron.2010.09.015
http://dx.doi.org/10.1038/nature11129
http://dx.doi.org/10.5772/56479

594

Biol Cybern (2015) 109:575-595

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273-297. doi:10.1023/A:1022627411411

Coumans E (2013) Bullet quickstart. 2nd edn. https://github.com/
svn2github/bullet/blob/master/trunk/docs/BulletQuickstart.pdf

Dominey PF (1995) Complex sensory-motor sequence learning
based on recurrent state representation and reinforcement learn-
ing. Biol Cybern 73(3):265-274. http://www.ncbi.nlm.nih.gov/
pubmed/7548314

Dominey PF (2013) Recurrent temporal networks and language
acquisition—from corticostriatal neurophysiology to reservoir
computing. Front Psychol 4:500. doi:10.3389/fpsyg.2013.00500

Erlhagen W, Schoner G (2002) Dynamic field theory of movement
preparation. Psychol Rev 109:545-571. doi:10.1037/0033-295X.
109.3.545

Espay AJ, Giuffrida JP, Chen R, Payne M, Mazzella F, Dunn E,
Vaughan JE, Duker AP, Sahay A, Kim SJ, Revilla FJ, Heldman
DA (2011) Differential response of speed, amplitude, and rhythm
to dopaminergic medications in Parkinson’s disease. Mov Disord
26(14):2504-2508. doi:10.1002/mds.23893

Evarts EV (1968) Relation of pyramidal tract activity to force exerted
during voluntary movement. J Neurophysiol 31(1):14-27. http://
www.ncbi.nlm.nih.gov/pubmed/4966614

Feldman AG (1986) Once more on the equilibrium-point hypothesis
(% model) for motor control. ] Mot Behav 18:17-54. http://www.
ncbi.nlm.nih.gov/pubmed/15136283

Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib
S, Dolan RJ, Puglisi-Allegra S, Baldassarre G (2014) Corticol-
imbic catecholamines in stress: a computational model of the
appraisal of controllability. Brain Struct Funct 1-15. doi:10.1007/
s00429-014-0727-7

Frank MJ, Loughry B, O’Reilly RC (2001) Interactions between frontal
cortex and basal ganglia in working memory: a computational
model. Cogn Affect Behav Neurosci 1(2):137-160. http://www.
ncbi.nlm.nih.gov/pubmed/12467110

Fu M, Zuo Y (2011) Experience-dependent structural plasticity in the
cortex. Trends Neurosci 34(4):177-187. doi:10.1016/j.tins.2011.
02.001

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982)
On the relations between the direction of two-dimensional
arm movements and cell discharge in primate motor cor-
tex. J Neurosci 2(11):1527-1537. http://www.ncbi.nlm.nih.gov/
pubmed/7143039

Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal popu-
lation coding of movement direction. Science 233(4771):1416—
1419. doi:10.1126/science.3749885

Golub MD, Yu BM, Schwartz AB, Chase SM (2014) Motor cortical
control of movement speed with implications for brain—-machine
interface control. J Neurophysiol 112(2):411-429. doi:10.1152/jn.
00391.2013

Graybiel AM (1998) The basal ganglia and chunking of action reper-
toires. Neurobiol Learn Mem 70(1-2):119-136. doi:10.1006/
nlme.1998.3843

Graziano MSA, Aflalo TN (2007) Mapping behavioral repertoire onto
the cortex. Neuron 56(2):239-251. doi:10.1016/j.neuron.2007.09.
013

Gurney K, Prescott T, Redgrave P (2001) A computational model of
action selection in the basal ganglia. i. a new functional anatomy.
Biol Cybern 84:401-410. doi:10.1007/PL00007984

Gurney K, Prescott TJ, Wickens JR, Redgrave P (2004) Computational
models of the basal ganglia: from robots to membranes. Trends
Neurosci 27(8):453-459. doi:10.1016/j.tins.2004.06.003

Haber SN (2003) The primate basal ganglia: parallel and integra-
tive networks. J Chem Neuroanat 26(4):317-330. doi:10.1016/j.
jchemneu.2003.10.003

Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous
and discrete motor behaviors using motor and premotor corti-

@ Springer

cal ensembles. J Neurophysiol 92(2):1165-1174. doi:10.1152/jn.
01245.2003

Hatsopoulos NG, Xu Q, Amit Y (2007) Encoding of movement frag-
ments in the motor cortex. J Neurosci 27(19):5105-5114. doi:10.
1523/JNEUROSCI.3570-06.2007

Heiberg T, Kriener B, Tetzlaff T, Casti A, Einevoll GT, Plesser HE
(2013) Firing-rate models capture essential response dynamics of
LGN relay cells. J Comput Neurosci 35(3):359-375. doi: 10.1007/
$10827-013-0456-6

Hoerzer GM, Legenstein R, Maass W (2014) Emergence of complex
computational structures from chaotic neural networks through
reward-modulated hebbian learning. Cereb Cortex 24(3):677-690.
doi:10.1093/cercor/bhs348

Houk JC, Wise SP (1995) Distributed modular architectures linking
basal ganglia, cerebellum, and cerebral cortex: their role in plan-
ning and controlling action. Cereb Cortex 5(2):95-110. doi:10.
1093/cercor/5.2.95

Humphries MD, Gurney KN (2002) The role of intra-thalamic and
thalamocortical circuits in action selection. Network 13:131-156.
doi:10.1080/net.13.1.131.156

Humphries MD, Stewart RD, Gurney KN (2006) A physiologi-
cally plausible model of action selection and oscillatory activity
in the basal ganglia. J Neurosci 26(12):921-942. doi:10.1523/
JNEUROSCI.3486-06.2006

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci
Eng 9(3):90-95. doi:10.1109/MCSE.2007.55

Ijspeert A, Crespi A, Ryczko D, Cabelguen J (2007) From swimming
to walking with a salamander robot driven by a spinal cord model.
Science 315:1416-1420

Ijspeert AJ (2008) Central pattern generators for locomotion control in
animals and robots: a review. Neural Netw 21(4):642-653. doi:10.
1016/j.neunet.2008.03.014

Jaeger H (2002) Adaptive nonlinear system identification with
echo state networks. In: Advances in neural information
processing systems. MIT Press, Cambridge, MA, pp 593-
600. http://papers.nips.cc/paper/2318-adaptive-nonlinear-system
-identification- with-echo-state-networks.pdf

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
304(5667):78-80. doi:10.1126/science.1091277

Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimization
and applications of echo state networks with leaky-integrator neu-
rons. Neural Netw 20(3):335-352. http://www.ncbi.nlm.nih.gov/
pubmed/17517495

Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis.
J Neurol Neurosurg Psychiatry 79(4):368-376. doi:10.1136/jnnp.
2007.131045

Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement repre-
sentations in the primary motor cortex. Science 285(5436):2136—
2139. doi:10.1126/science.285.5436.2136

Kim EJ, Lee BH, Park KC, Lee WY, Na DL (2005) Micrographia on
free writing versus copying tasks in idiopathic Parkinson’s disease.
Parkinsonism Relat Disord 11(1):57-63. doi:10.1016/j.parkreldis.
2004.08.005

Koch G, Ponzo V, Lorenzo FD, Caltagirone C, Veniero D (2013)
Hebbian and anti-hebbian spike-timing-dependent plasticity of
human cortico-cortical connections. J Neurosci 33(23):9725-
9733. doi:10.1523/JNEUROSCI.4988-12.2013

Legenstein RA, Chase SM, Schwartz AB, Maass W (2009) Func-
tional network reorganization in motor cortex can be explained
by reward-modulated hebbian learning. In: Advances in neural
information processing systems 22: 23rd annual conference on
neural information processing systems 2009. Proceedings of a
meeting held 7-10 December 2009, Vancouver, British Columbia,
Canada., pp 1105-1113. http://books.nips.cc/papers/files/nips22/
NIPS2009_0211.pdf


http://dx.doi.org/10.1023/A:1022627411411
https://github.com/svn2github/bullet/blob/master/trunk/docs/BulletQuickstart.pdf
https://github.com/svn2github/bullet/blob/master/trunk/docs/BulletQuickstart.pdf
http://www.ncbi.nlm.nih.gov/pubmed/7548314
http://www.ncbi.nlm.nih.gov/pubmed/7548314
http://dx.doi.org/10.3389/fpsyg.2013.00500
http://dx.doi.org/10.1037/0033-295X.109.3.545
http://dx.doi.org/10.1037/0033-295X.109.3.545
http://dx.doi.org/10.1002/mds.23893
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://www.ncbi.nlm.nih.gov/pubmed/4966614
http://www.ncbi.nlm.nih.gov/pubmed/15136283
http://www.ncbi.nlm.nih.gov/pubmed/15136283
http://dx.doi.org/10.1007/s00429-014-0727-7
http://dx.doi.org/10.1007/s00429-014-0727-7
http://www.ncbi.nlm.nih.gov/pubmed/12467110
http://www.ncbi.nlm.nih.gov/pubmed/12467110
http://dx.doi.org/10.1016/j.tins.2011.02.001
http://dx.doi.org/10.1016/j.tins.2011.02.001
http://www.ncbi.nlm.nih.gov/pubmed/7143039
http://www.ncbi.nlm.nih.gov/pubmed/7143039
http://dx.doi.org/10.1126/science.3749885
http://dx.doi.org/10.1152/jn.00391.2013
http://dx.doi.org/10.1152/jn.00391.2013
http://dx.doi.org/10.1006/nlme.1998.3843
http://dx.doi.org/10.1006/nlme.1998.3843
http://dx.doi.org/10.1016/j.neuron.2007.09.013
http://dx.doi.org/10.1016/j.neuron.2007.09.013
http://dx.doi.org/10.1007/PL00007984
http://dx.doi.org/10.1016/j.tins.2004.06.003
http://dx.doi.org/10.1016/j.jchemneu.2003.10.003
http://dx.doi.org/10.1016/j.jchemneu.2003.10.003
http://dx.doi.org/10.1152/jn.01245.2003
http://dx.doi.org/10.1152/jn.01245.2003
http://dx.doi.org/10.1523/JNEUROSCI.3570-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.3570-06.2007
http://dx.doi.org/10.1007/s10827-013-0456-6
http://dx.doi.org/10.1007/s10827-013-0456-6
http://dx.doi.org/10.1093/cercor/bhs348
http://dx.doi.org/10.1093/cercor/5.2.95
http://dx.doi.org/10.1093/cercor/5.2.95
http://dx.doi.org/10.1080/net.13.1.131.156
http://dx.doi.org/10.1523/JNEUROSCI.3486-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.3486-06.2006
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks.pdf
http://papers.nips.cc/paper/2318-adaptive-nonlinear-system-identification-with-echo-state-networks.pdf
http://dx.doi.org/10.1126/science.1091277
http://www.ncbi.nlm.nih.gov/pubmed/17517495
http://www.ncbi.nlm.nih.gov/pubmed/17517495
http://dx.doi.org/10.1136/jnnp.2007.131045
http://dx.doi.org/10.1136/jnnp.2007.131045
http://dx.doi.org/10.1126/science.285.5436.2136
http://dx.doi.org/10.1016/j.parkreldis.2004.08.005
http://dx.doi.org/10.1016/j.parkreldis.2004.08.005
http://dx.doi.org/10.1523/JNEUROSCI.4988-12.2013
http://books.nips.cc/papers/files/nips22/NIPS2009_0211.pdf
http://books.nips.cc/papers/files/nips22/NIPS2009_0211.pdf

Biol Cybern (2015) 109:575-595

595

Lukovsevivcius M, Jaeger H (2009) Reservoir computing approaches to
recurrent neural network training. Comput Sci Rev 3(3):127-149.
doi:10.1016/j.cosrev.2009.03.005

Luppino G, Rizzolatti G (2000) The organization of the frontal motor
cortex. News Physiol Sci 15(19):219-224

Ma HI, Hwang WJ, Chang SH, Wang TY (2013) Progressive micro-
graphia shown in horizontal, but not vertical, writing in Parkinson’s
disease. Behav Neurol 27(2):169—174. doi:10.3233/BEN-120285

Maass W, Natschlager T, Markram H (2002) Real-time computing with-
out stable states: A new framework for neural computation based
on perturbations. Neural Computation 14(11):2531-2560. http://
www.neurocolt.com/tech_reps/2001/113.pdf

Mannella F (2013) CENSLIB—computational embodied neuro-
science simulation library. Online documentation. http://censlib.
sourceforge.net/

Mathai A, Smith Y (2011) The corticostriatal and corticosubthalamic
pathways: two entries, one target. so what? Front Syst Neurosci
5:64. doi:10.3389/fnsys.2011.00064

Mattia M, Pani P, Mirabella G, Costa S, Giudice PD, Ferraina S (2013)
Heterogeneous attractor cell assemblies for motor planning in
premotor cortex. J Neurosci 33(27):11,155-11,168. doi:10.1523/
JNEUROSCL4664-12.2013

McLennan JE, Nakano K, Tyler HR, Schwab RS (1972) Micrographia
in Parkinson’s disease. J Neurol Sci 15(2):141-152. doi:10.1016/
0022-510X(72)90002-0

Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops:
motor and cognitive circuits. Brain Res Rev 31(2-3):236-250.
doi:10.1016/S0165-0173(99)00040-5

Mink JW (1996) The basal ganglia: focused selection and inhibition
of competing motor programs. Prog Neurobiol 50(4):381-425.
doi:10.1016/S0301-0082(96)00042- 1

Muslimovic D, Post B, Speelman JD, Schmand B (2007) Motor
procedural learning in Parkinson’s disease. Brain 130(Pt 11):2887—
2897. doi:10.1093/brain/awm211

Nordlie E, Tetzlaff T, Einevoll GT (2010) Rate dynamics of leaky
integrate-and-fire neurons with strong synapses. Front Comput
Neurosci 4:149. doi:10.3389/fncom.2010.00149

Oja E (1982) A simplified neuron model as a principal component ana-
lyzer. J Math Biol 15(3):267-273. doi:10.1007/BF00275687

O’Reilly RC, Frank MJ (2006) Making working memory work:
a computational model of learning in the prefrontal cortex
and basal ganglia. Neural Comput 18(2):283-328. doi:10.1162/
089976606775093909

Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of
locomotion: from mollusc to man. Oxford University Press, New
York

Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia.
i. the cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev
20(1):91-127. doi:10.1016/0165-0173(94)00007-C

Ponzi A, Wickens J (2010) Sequentially switching cell assemblies in
random inhibitory networks of spiking neurons in the striatum. J
Neurosci 30(17):5894-5911. doi:10.1523/INEUROSCI.5540-09.
2010

R Development Core Team (2008) R: a language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a verte-
brate solution to the selection problem? Neuroscience 89(4):1009—
1023. doi:10.1016/S0306-4522(98)00319-4

Rigotti M, Rubin DBD, Wang XJ, Fusi S (2010) Internal representation
of task rules by recurrent dynamics: the importance of the diversity
of neural responses. Front Comput Neurosci 4:24. doi:10.3389/
fncom.2010.00024

Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the
basal ganglia: experimental and clinical evidence for segregated
sensorimotor channels. Brain Res Rev 48(1):112-128. doi:10.
1016/j.brainresrev.2004.09.008

Rosenblum S, Samuel M, Zlotnik S, Erikh I, Schlesinger I (2013) Hand-
writing as an objective tool for Parkinson’s disease diagnosis. J
Neurol 260(9):2357-2361. doi:10.1007/s00415-013-6996-x

Sanderson C (2010) Armadillo: An open source C++ linear algebra
library for fast prototyping and computationally intensive experi-
ments. Tech. rep., NICTA. http://arma.sourceforge.net/armadillo_
nicta_2010.pdf

Scott SH (2003) The role of primary motor cortex in goal-directed
movements: insights from neurophysiological studies on non-
human primates. Curr Opin Neurobiol 13(6):671-677. doi:10.
1016/j.conb.2003.10.012

Sergio LE, Hamel-Paquet C, Kalaska JF (2005) Motor cortex neural
correlates of output kinematics and kinetics during isometric-force
and arm-reaching tasks. J Neurophysiol 94(4):2353-2378. doi:10.
1152/jn.00989.2004

Shadmehr R, Krakauer JW (2008) A computational neuroanatomy
for motor control. Exp Brain Res 185:359-381. doi:10.1007/
s00221-008-1280-5

Shine JM, Shine R (2014) Delegation to automaticity: the driving force
for cognitive evolution? Front Neurosci 8:90. doi:10.3389/fnins.
2014.00090

Steil JJ (2004) Backpropagation-decorrelation: online recurrent learn-
ing with O (N) complexity. In: Neural networks, 2004. Proceed-
ings. 2004 IEEE international joint conference on, IEEE, vol 2, pp
843-848. doi:10.1109/1IJCNN.2004.1380039

Steil JJ (2007) Online reservoir adaptation by intrinsic plasticity for
backpropagation-decorrelation and echo state learning. Neural
Netw 20(3):353-364. doi:10.1016/j.neunet.2007.04.011

Stender T (2007) A generalization of imaginary parts of eigenval-
ues for matrices: Chain rotation numbers. Linear Algebra Appl
426(1):53-70. doi:10.1016/j.1a2.2007.03.035

Sussillo D, Abbott LF (2009) Generating coherent patterns of activ-
ity from chaotic neural networks. Neuron 63(4):544-557. doi:10.
1016/j.neuron.2009.07.018

Tucha O, Mecklinger L, Thome J, Reiter A, Alders GL, Sartor H, Nau-
mann M, Lange KW (2006) Kinematic analysis of dopaminergic
effects on skilled handwriting movements in Parkinson’s disease. J
Neural Transm 113(5):609-623. doi:10.1007/s00702-005-0346-9

Turner RS, Desmurget M (2010) Basal ganglia contributions to motor
control: a vigorous tutor. Curr Opin Neurobiol 20(6):704-716.
doi:10.1016/j.conb.2010.08.022

Vogel CR (2002) Computational methods for inverse problems, chap
1. SIAM, Philadelphia , pp 1-12. doi:10.1137/1.9780898717570.
Chl

Wang W, Chan SS, Heldman DA, Moran DW (2010) Motor cortical
representation of hand translation and rotation during reaching.
J Neurosci 30(3):958-962. doi:10.1523/JNEUROSCI.3742-09.
2010

Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron
60(2):215-234. doi:10.1016/j.neuron.2008.09.034

Wickens J, Hyland B, Anson G (1994) Cortical cell assemblies: a pos-
sible mechanism for motor programs. J Mot Behav 26(2):66-82.
doi:10.1080/00222895.1994.9941663

Wolpert DM, Miall RC, Kawato M (1998) Internal models in
the cerebellum. Trends Cogn Sci 2:338-347. doi:10.1016/
S1364-6613(98)01221-2

@ Springer


http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.3233/BEN-120285
http://www.neurocolt.com/tech_reps/2001/113.pdf
http://www.neurocolt.com/tech_reps/2001/113.pdf
http://censlib.sourceforge.net/
http://censlib.sourceforge.net/
http://dx.doi.org/10.3389/fnsys.2011.00064
http://dx.doi.org/10.1523/JNEUROSCI.4664-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.4664-12.2013
http://dx.doi.org/10.1016/0022-510X(72)90002-0
http://dx.doi.org/10.1016/0022-510X(72)90002-0
http://dx.doi.org/10.1016/S0165-0173(99)00040-5
http://dx.doi.org/10.1016/S0301-0082(96)00042-1
http://dx.doi.org/10.1093/brain/awm211
http://dx.doi.org/10.3389/fncom.2010.00149
http://dx.doi.org/10.1007/BF00275687
http://dx.doi.org/10.1162/089976606775093909
http://dx.doi.org/10.1162/089976606775093909
http://dx.doi.org/10.1016/0165-0173(94)00007-C
http://dx.doi.org/10.1523/JNEUROSCI.5540-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.5540-09.2010
http://www.R-project.org
http://dx.doi.org/10.1016/S0306-4522(98)00319-4
http://dx.doi.org/10.3389/fncom.2010.00024
http://dx.doi.org/10.3389/fncom.2010.00024
http://dx.doi.org/10.1016/j.brainresrev.2004.09.008
http://dx.doi.org/10.1016/j.brainresrev.2004.09.008
http://dx.doi.org/10.1007/s00415-013-6996-x
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://dx.doi.org/10.1016/j.conb.2003.10.012
http://dx.doi.org/10.1016/j.conb.2003.10.012
http://dx.doi.org/10.1152/jn.00989.2004
http://dx.doi.org/10.1152/jn.00989.2004
http://dx.doi.org/10.1007/s00221-008-1280-5
http://dx.doi.org/10.1007/s00221-008-1280-5
http://dx.doi.org/10.3389/fnins.2014.00090
http://dx.doi.org/10.3389/fnins.2014.00090
http://dx.doi.org/10.1109/IJCNN.2004.1380039
http://dx.doi.org/10.1016/j.neunet.2007.04.011
http://dx.doi.org/10.1016/j.laa.2007.03.035
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1007/s00702-005-0346-9
http://dx.doi.org/10.1016/j.conb.2010.08.022
http://dx.doi.org/10.1137/1.9780898717570.Ch1
http://dx.doi.org/10.1137/1.9780898717570.Ch1
http://dx.doi.org/10.1523/JNEUROSCI.3742-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.3742-09.2010
http://dx.doi.org/10.1016/j.neuron.2008.09.034
http://dx.doi.org/10.1080/00222895.1994.9941663
http://dx.doi.org/10.1016/S1364-6613(98)01221-2
http://dx.doi.org/10.1016/S1364-6613(98)01221-2

	Selection of cortical dynamics for motor behaviour by the basal ganglia
	Abstract
	1 Introduction
	2 Selection of cortical dynamics
	2.1 Cortical reservoirs
	2.2 The basal ganglia
	2.2.1 Intrinsic organization of the basal ganglia
	2.2.2 Selection within the basal ganglia
	2.2.3 Selection locking and unlocking

	2.3 Integrating cortex and basal ganglia: the key computational hypothesis

	3 Overview of the models
	4 Computational details
	4.1 The cortical component
	4.2 The basal ganglia component
	4.3 The CSNTC module
	4.4 Learning the read-out weights
	4.4.1 The batch method
	4.4.2 The online method

	4.5 Learning the cortico-striatal weights
	4.6 Software

	5 Simulations
	5.1 Simulating motor control with a single CSNTC module
	5.2 Simulating end-point motor control
	5.3 Simulating the interaction between high-level and primary motor modules

	6 Discussion
	6.1 Comparison with other models

	7 Conclusions
	Acknowledgments
	Appendix 1: Optimizing the weights of  leaky-integrator reservoirs
	Appendix 2: Parameters of the simulations
	Numerical integration of the units of the model

	References




