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Abstract: Temperature changes have a strong effect on Hemispherical Resonator Gyro 
(HRG) output; therefore, it is of vital importance to observe their influence and then make 
necessary compensations. In this paper, a temperature compensation model for HRG based 
on the natural frequency of the resonator is established and then temperature drift 
compensations are accomplished. To begin with, a math model of the relationship between 
the temperature and the natural frequency of HRG is set up. Then, the math model is 
written into a Taylor expansion expression and the expansion coefficients are calibrated 
through temperature experiments. The experimental results show that the frequency 
changes correspond to temperature changes and each temperature only corresponds to one 
natural frequency, so the output of HRG can be compensated through the natural frequency 
of the resonator instead of the temperature itself. As a result, compensations are made for 
the output drift of HRG based on natural frequency through a stepwise linear regression 
method. The compensation results show that temperature-frequency method is valid and 
suitable for the gyroscope drift compensation, which would ensure HRG’s application in a 
larger temperature range in the future. 

Keywords: Hemispherical Resonator Gyro (HRG); natural frequency; temperature 
compensation; drift 
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1. Introduction  

The hemispherical resonator gyro (HRG) is a solid state gyroscope whose sensing property is based 
on a standing vibration wave precession. It has the features of high accuracy, long life span, inherent 
high reliability, natural radiation hardness and no parts that can wear out. With its excellent 
performance, the Scalable Space Inertial Reference Unit (Scalable SIRU) and its predecessor, the 
Space Inertial Reference Unit (SIRU), which all are made from HRGs, have been launched on more 
than 125 spacecraft missions for NASA, Department of Defense, commercial and international space 
applications [1,2]. It is reported that HRGs have already achieved 18 million h of continuous operation 
with 100 percent mission success in various space and military application tasks. 

The HRG contains three primary functional components: the hemispherical resonator, the forcer 
and the pickoff. They are all made of quartz and bonded together within a sealed vacuum housing [3,4]. 

The temperatures of both the inner house and resonator will change due to the heat produced 
through the vibration of the resonator and ambient temperature changes of the HRG. Moreover, owing 
to the uneven heat conduction, a temperature gradient will exist in the vacuum housing of the HRG. 
Since factors such as temperature changes and temperature gradient can strongly result in temperature 
drifts which seriously affect HRG’s application in commercial and military areas, it is of great 
importance to suppress or compensate these temperature drifts. At present, there are mainly two 
methods to suppress the drift caused by temperature changes [5]: 

(1) Temperature stabilization method: the HRG is placed in a controlled temperature chamber, that 
can keep the surrounding temperature constant and provide the best conditions for the gyro, 
which decreases the drift resulting from temperature changes.  

(2) Temperature compensation method based on a math drift model of the HRG: obtain a curve 
about the relationship between the output of the HRG and temperature and make 
compensations on-board through software.  

As for the first method, the sensing components (resonator) of the gyro are encapsulated in a 
vacuum, so basic modes of heat exchange could only depend on the thermal radiation and the heat 
transfer through the sustaining pole between the resonator and the outside cover, causing the 
temperature of sensing components to change slowly. As a result, it takes a long time to make the gyro 
sensing components’ temperature approach the pre-set temperature of the controlled temperature 
chamber before it could work, so it could not meet the needs of rapid reaction. Furthermore, the 
temperature control system will greatly increase the volume, weight and cost which would make the 
strapdown inertial navigation system much too expensive. One point worth mentioning is that volume 
and weight are two decisive factors in space applications, so big volume and weight are regarded as 
fatal limitations.  

Compared with the first method, the latter one (temperature compensation method) is much easier 
to adopt since it doesn’t require an increase in volume, weight or hardware cost. However, the 
resonator is sealed in a vacuum house and any accessories attached to it for temperature sensing would 
seriously deteriorate its performance, making it unrealistic to set up any temperature sensor on the 
resonator. Although the temperature sensor could be fixed on the inner vacuum housing, the heat 
exchange is very slow without air. Thus, the temperature sensor attached to the inner housing is not 
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able to represent the real time temperature of the resonator. In a word, it would be very difficult to 
directly measure the temperature of the resonator. 

Fortunately, as references [6–8] mention, the resonator oscillation frequency of the HRG has a 
temperature sensitivity of about 80 ppm/°C due to the temperature coefficient of the Young’s modulus 
of fused quartz. Since the reference phase generator of the primary control loop is locked to the 
resonator in the HRG, its frequency provides a direct measure of the temperature of the resonator and 
can be used for thermal modeling. In reference [9], Loper and Lynch point out that the resonator 
frequency variation is an excellent measure of its temperature variation, and they give a direct linear 
formula of the relationship between the resonator natural frequency and the resonator temperature, but  
no detailed analyses of the relationship between temperature and frequency of HRG are available. 
Furthermore, little attention has been focused on the gyroscope temperature compensation by using the 
natural frequency in the literature. 

The resonator itself could serve as a high precision temperature sensor for temperature 
compensation of the gyroscope. In reference [10], a smart temperature sensor which employs the 
change of the quartz natural frequency realizes the temperature measurement with a precision of 
0.01 °C. Thus, it is feasible to employ the natural frequency change of the HRG resonator to realize the 
temperature measurement. This method can not only improve the performance of the HRG over the 
whole temperature range, but is also inexpensive and easy to adopt since it needs no additional 
hardware. 

This paper provides detailed descriptions of the relationship between the temperature and frequency 
of the HRG. As long as the frequency of resonator is obtained by the digital control loops of the HRG, 
temperature compensation for the output of the gyroscope can be realized in real time [11,12]. 

2. The Temperature-Frequency Characteristic of the HRG Resonator 

References such as [13,14] describe the relationship between resonant frequency of HRG and its 
material parameters, but none of the references give the detailed deviation process and there are even 
some errors in the results of reference [13]. Those errors are corrected in this paper.  

Figure 1. The illustration of the mean shell of the hemispherical resonator. 
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The energy method can be applied to determine the natural frequency of the HRG resonator, and 
then the temperature coefficient of the natural frequency of HRG can be obtained. A model for a thin 
axis-symmetrical hemispherical shell with mean radius r  and radial thickness h  is shown in Figure 1, 
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which is assumed to be isotropic with free boundary conditions on the open end. When the hemisphere 
shell doesn’t rotate, the hemispherical shell has displacements of the form [13]: 

( , , ) ( ) cos cos
( , , ) ( )sin cos
( , , ) ( ) cos cos

n

n

n

u t u n t
v t v n t
w t w n t

ϕ θ ϕ θ ω
ϕ θ ϕ θ ω
ϕ θ ϕ θ ω

=⎧
⎪ =⎨
⎪ =⎩

 (1) 

where ( )u ϕ  is the generatrix direction displacement; ( )v ϕ  is the ring direction displacement and ( )w ϕ  
is the radial direction displacement. The kinetic energy of the shell can be expressed as [15]: 

/2 22 2 2 2

0 0

1 ( )sin
2

K r h u v w d d
π π

ρ ϕ θ ϕ= + +∫ ∫  (2) 

where K and ρ  respectively refer to kinetic energy and density of the shell. In addition, from the 
theory of elasticity, the well-known expression for the strain energy stored in a body during elastic 
deformation is [16,17]: 
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where dV is the element volume; ie  and iγ  are respectively normal strains and shear strains; iσ  is the 
normal stresses. By applying the Kirchhoff hypothesis of thin shells, Equation (3) is reduced to: 
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When the materials are isotropic, Hooke’s law is written as follows: 
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where E is the Young’s modulus and μ  is the Poisson ratio. The total strains at an arbitrary point in the 
shell can be represented as: 

2
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e z
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⎪ = +⎨
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 (6) 

where εφ, εθ and εφθ are the normal and shear strains in the middle surface; ϕκ
 and θκ  are the middle 

surface changes in curvature; τ is the middle surface twist and z  measures the distance of the arbitrary 
point from the corresponding point on the middle surface along k  and varies over the thickness. Then, 
substituting Equations (5) and (6) into Equation (4), integrating over the thickness, yields: 
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For the case of a hemispherical shell, the middle surface strain and curvature changes in  
Equation (7) are: 
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As for free vibration of clamped-free hemispherical shell, under the condition of paucity 
displacement, the Lord Rayleigh inextentional condition is satisfied, so the normal stress and shear 
stress will be approximately reduced into zero, which is: 

0ϕ θ ϕθε ε ε= = =  (9) 

Substituting Equations (8) into Equation (9) yields [13]: 
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where C  is an arbitrary constant. 
Substituting Equations (10) into Equation (1) and then the Equation (1) can be expressed as: 
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Substituting Equation (11) into Equations (2) and (7), the energies stored in the shell can be 
obtained. Thus, expressions of the maximum kinetic and potential energy are [18]: 
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Utilizing the condition max maxK U= , the natural frequency of the hemispherical shell can be 
determined , which is [13,14]: 
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Attention is paid to the 2n =  vibration mode of the resonator, and then the natural frequency can be 
rewritten as: 
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where the terms I and J are defined as follows: 
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I and J are only relative to the shape of the hemispherical shell and f  denotes the natural frequency 
of the resonator at a certain temperature. Considering the temperature effect on the natural frequency, 
the Equation (14) can be rewritten as follows: 
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From Equation (15), we can conclude that the natural frequency of the resonator is not only relative 
to the Young’s modulus E  but also related to the resonator’s density ρ , Poisson ratio μ , thickness h  
and radius r . All the parameters are easily affected by the temperature, but the Young’s modulus 
contributes most to the natural frequency changes since it is susceptible to the temperature [7]. Since a 
resonator’s material properties are affected by temperature changes, its natural frequency would 
change as temperature changes. Based on the relationship between the temperature and natural 
frequency, the inner temperature of the HRG can be obtained through its digital frequency outputs; 
therefore, the temperature drift can be compensated from the natural frequency other than temperature 
which is hard to measure by using sensors. 

However, if all the terms which are affected by temperature are respectively taken into 
consideration, the relationship between temperature and natural frequency will be very difficult to 
obtain. Therefore, in this paper, a Taylor expansion method is employed to analyze the temperature 
coefficient of frequency of HRG for simplicity. The frequency temperature function ( )f T  at the 
reference temperature 0T  can be described as a Taylor series which is: 
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Based on the theory of thermodynamics of materials, the natural frequency of quartz can be 
expressed as a three-order polynomial, so the high-order terms can be neglected: 
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Comparing Equation (15) with Equation (17), it is found that it is difficult to obtain the coefficients 
by analytical methods, so we obtain the coefficients by temperature experiments. 

3. Temperature-Frequency Coefficient Calibration Experiments 

Under the FTR mode of the HRG, four control loops, which are reference-phase loop, amplitude-
control loop, quadrature-control loop and rebalance control loop, are employed to ensure that the HRG 
works at a high performance status. Reference-phase loop and amplitude-control loop are employed to 
maintain the primary vibration pattern at its natural frequency and at constant amplitude. The 
quadrature control loop which changes the stiffness of the resonator is employed to eliminate the 
frequency split of the two vibration modes. Simultaneously, the rebalance loop is employed to nullify 
the response of the second mode, and the rotation rate can be obtained from the force which is used to 
nullify the response of the second mode. The information including rotation rate and the vibrating 
frequency of the resonator are all obtained in digital form. Since the reference phase loop is locked to 
the resonator, its frequency change traces the temperature changes of the resonator. 

Figure 2. The temperature experiments carried out by a controlled temperature chamber. 

 

Experiments are designed to get the temperature-frequency coefficient of the HRG, as shown in  
Figure 2. In order to obtain the temperature-frequency coefficient of the gyroscope, it was placed in a 
temperature chamber for 4–5 h while the the temperature ranged from −20 °C to 40 °C, respectively, in 
10 °C steps. Due to the slow heat exchange of the inner gyroscope, it took a long time to make the 
resonator temperature identical with the pre-set ones. During this process, we recorded the frequency 
until it did not change any more, which denoted that the temperature of the resonator was identical 
with the pre-set one of the temperature chamber. 

The frequency change of the gyroscope which was placed in the temperature chamber with the 
temperature setting −10 °C is shown in Figure 3(a). The date sample frequency was 200 Hz with a 
FPGA and the duration time was nearly 5 h. As shown in the Figure 3(a), at first, the frequency 
decreased rapidly, but after 9,000 s, the frequency decreased slowly, which meant that the temperature 
was nearly stable. After 15,000 s, the frequency hardly change anymore which denoted that the 
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resonator’s temperature had reached the set temperature. Frequency of the resonator at this moment is 
in correspondence with the temperature −10 °C. 

Figure 3. HRG natural frequency varies with temperature changes. (a) Frequency changes 
from room temperature to −10 °C; and (b) Frequency changes from room temperature to 
40 °C. 

(a) (b) 

Similarly, Figure 3(b) shows the frequency changes when the temperature is increasing. The 
temperature chamber was set to 40 °C in advance and the frequency of the resonator was increasing as 
its temperature increased. After a long time, the frequency was stable, which meant that the heat 
balance in the gyroscope was established. The frequency at that moment can reasonably stand for the 
temperature 40 °C. As mentioned above, every temperature point repeats the similar experiment from 
which we can get different frequencies relative to different temperatures, which are listed in Table 1. 

Table 1. Different natural frequencies of HRG in correspondence with different temperatures. 

Temperature (°C) Natural Frequency (Hz) 
−20 4,416.97 
−10 4,421.05 

0 4,424.90 
10 4,428.56 
20 4,432.07 
30 4,435.56 
40 4,439.20 

The coefficient of Equation (17) can be obtained through the data in Table 1 by using the  
least-square fitting method, which is: 

5 3 4 21.528 10 9.702 10 0.3716 4424.901f T T T− −= × − × + +  (18) 

The second order coefficient is 9.702 × 10−4 and the third order coefficient is 1.528 × 10−5, which 
means that the high order terms have little effect on the frequency. The fitting curve is shown in Figure 4, 
with the maximum fitting error being 0.12%. 
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Figure 4. Temperature-frequency fitting curve. 

 

Using Equation (18), the temperature of resonator can be inversely calculated from the frequency 
which is the direct output from the HRG primary control loop in digital form. The calculation error is 
listed in Table 2 and the error is also shown in Figure 5(a). Additionally, the temperature calculated from 
the frequency is shown in Figure 5(b), which corresponds to the temperature change in Figure 3(a).  

Figure 5. Temperature calculated from the frequency. (a) Calculated error (b) Frequency 
and temperature curves. 

(a) (b) 

Table 2. Temperature calculated from the frequency and the calculation errors. 

Frequency(Hz) 4,416.97 4,421.05 4,424.90 4,428.56 4,432.07 4,435.56 4,439.20 
Actual temperature(°C) −20 −10 0 10 20 30 40 

Calculate temperature (°C) −19.976 −10.058 −0.0026 10.070 20.011 29.924 40.031 
Calculated error(°C) −0.024 0.0578 0.0026 −0.070 −0.011 0.076 −0.031 

The largest deviation of the temperature error was below 0.1 °C in a temperature interval from 
−20 °C to 40 °C, which is close to the actual temperature. The experimental results indicate that the 
variation stability is very small, with a tolerance of less than 0.1 °C. 
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Based on the analysis above, it can be concluded that the natural frequency of the HRG is relative to 
the temperature and each temperature degree only corresponds to one natural frequency. Consequently, 
the natural frequency of the HRG, which can be easily obtained at any time, can be regarded as a high 
precision index of the temperature of the resonator. As a result, the frequency which is transmitted by 
the HRG system in real time can be used for HRG temperature compensation. 

4. Temperature Model and Compensation of HRG Based on Its Natural Frequency 

Based on the work above, we can compensate the output of HRG when the temperature is changing. 
Under FTR mode, the reference-phase loop and amplitude-control loop are employed to control the 
variation of the primary vibration pattern, which maintains the vibration at its natural frequency and at 
a constant amplitude [4]. Since the natural frequency signal is continuously given by the HRG output, 
on the basis of frequency changes and its change rates induced by the temperature variation, a 
compensation model for HRG is established, and then the compensations are realized by using a 
stepwise linear regression method. 

4.1. Stepwise Linear Regression Method 

Suppose y is an arbitrary variable, and its relation with the independent variables , 1,2...ix i n=  is: 

0 1 1 ... n ny b b x b x ε= + + + +   (19) 

where 0 1, ,..., nb b b  are the regression coefficients, and ε  is an arbitrary error. Regression analysis is to 
evaluate the value of 0 1, ,..., nb b b  by using the independent variables , 1,2...ix i n=  and the dependent 
variable y. The Equation (19) can be rewritten as: 

Y X ε= +b   (20) 

In Equation (20), Y  is a group of observed data; X  is a matrix of known independent variable; b  is 
an unknown vector; ε  is an error vector, and 2( ) 0, ( ) nE D Iε ε σ= = . The Equation (20) is called as a 
linear regression model, which uses the least-squares method to find the best coefficient vector b , 
making the sum of the error square to the least. That is: 

2 2ˆ minJ Y X Y X= − = −b b   

As a result, b̂  is the least square estimate of b . The necessary condition for the least error is: 
ˆ ˆ ˆ( ) ( ) 2 2 0ˆ ˆ

T T TJ Y X Y X X Y X X∂ ∂= − − = − + =
∂ ∂

b b b
b b

   

and then: 
1ˆ ( )T TX X X Y−=b    

The sufficient condition for the least error is:  

( ) 0ˆ ˆ
J∂ ∂ >

∂ ∂b b
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As a systematic method, stepwise regression involves adding or removing terms from a model on 
the basis of their statistical status in a regression. If a term is not currently in the model, the null 
hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient 
evidence to reject this null hypothesis, the term will be then added to the model. Conversely, if a term 
is currently in the model, the null hypothesis is that the term has a zero coefficient, if evidence is not 
enough to reject the null hypothesis, the term will be removed from the model. To be brief, stepwise 
regression is widely used since it is unbiased and has a minimum variance among all unbiased 
estimators formed from linear combinations of the response data by the Gauss-Markov theorem. 

4.2. Temperature Compensations Realized by Stepwise Regression Method 

In the real work conditions for the HRG, the frequency change rates are different from each other 
because the heat field is uncertain and the heat conduction is uneven. Therefore, a drift model based on 
the frequency changes and frequency change rates is applied to make temperature compensations for 
the HRG. Besides, considering the coupled terms of frequency changes and the frequency change 
rates, three order temperature model can be established: 

3
2 3 2 2

0 4 5 6 7 8 9
1

( ) ( ) ( )i
i

i

df df df df df dfB B k f k k k k f k f k f
dt dt dt dt dt dt=

= + + + + + + +∑   (21) 

where f  stands for the frequency change; B stands for the output bias and ik  stands for the 
coefficients about frequency and frequency change rates. The compensation model above is composed 
of nine unknown variables, and finally generates a compensation model by stepwise linear regression, 
to which the significant items are added and from which the insignificant items are removed. At last, a 
frequency-bias model is shown as follows: 

3
2 3

0 4 5 6 7
1

( ) ( )i
i

i

df df df dfB B k f k k k k f
dt dt dt dt=

= + + + + +∑   (22) 

where a B0 represents the constant bias and it has no relation to the temperature; k1 − k3 represent the 
frequency change item coefficients, showing the change trend of the bias related to the 
frequency(temperature). k4

  
− k5 are the coefficients of frequency change rates; k7 is the coefficient of 

frequency change coupled with frequency change rates, showing the effect on the bias of HRG by their 
combination. 

We make compensations for the drift of HRG by using the model described above. The blue curve 
in Figure 6(a) shows the output of the HRG from room temperature to −20 °C. As the temperature 
decreases, the gyroscope output also decreases as shown in Figure 6(a). Then the bias stability can be 
calculated from the original data, which is 3.0143 °/h. The red curve in Figure 6(a) is the compensation 
model output, from which the gyroscope output can be compensated and the compensated output is 
shown in Figure 6(b). The bias stability calculated from the compensated data is 0.5848 °/h, which 
basically reaches the constant temperature precision. In a word, the compensation effect is very 
obvious.  
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Figure 6. The output of the gyro. (a) The uncompensated output of the gyro from room 
temperature to −20 °C; (b) The compensated output of the gyro. 

(a) (b) 

5. Conclusions 

The external temperature changes have a strong effect on the HRG, for example, the material 
properties such as Young’s modulus, the radius of the resonator and so on change because of the heat; 
the excite electrodes, resonator and pick-off electrodes displace irregularly due to the heat deformation, 
and all those phenomena result in bias drift decreasing the degree of precision of the HRG. As a result, 
it is of vital necessity to observe the influence on the HRG output by the temperature changes and then 
compensate for it. Only in this way, can the performance of the HRG be improved. In this paper, the 
relationship between temperature and frequency are firstly established, and then we compensate for the 
output of HRG by the frequency changes through its relation to the temperature changes. This method 
reduces the complexity of the compensation without using a temperature sensor. More importantly, it 
can be found that the experiments give a satisfactory result by using this compensation method, and it 
significantly improves the temperature stability of the HRG. 
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