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Bifidobacterium represents a genus within the phylum Actinobacteria which is one of
the major phyla in the healthy intestinal tract of humans. Bifidobacterium is one of
the most abundant genera in adults, but its predominance is even more pronounced
in infants, especially during lactation, when they can constitute the majority of the
total bacterial population. They are one of the pioneering colonizers of the early
gut microbiota, and they are known to play important roles in the metabolism of
dietary components, otherwise indigestible in the upper parts of the intestine, and
in the maturation of the immune system. Bifidobacteria have been shown to interact
with human immune cells and to modulate specific pathways, involving innate and
adaptive immune processes. In this mini-review, we provide an overview of the current
knowledge on the immunomodulatory properties of bifidobacteria and the mechanisms
and molecular players underlying these processes, focusing on the corresponding
implications for human health. We deal with in vitro models suitable for studying strain-
specific immunomodulatory activities. These include peripheral blood mononuclear cells
and T cell-mediated immune responses, both effector and regulatory cell responses, as
well as the modulation of the phenotype of dendritic cells, among others. Furthermore,
preclinical studies, mainly germ-free, gnotobiotic, and conventional murine models,
and human clinical trials, are also discussed. Finally, we highlight evidence supporting
the immunomodulatory effects of bifidobacterial molecules (proteins and peptides,
exopolysaccharides, metabolites, and DNA), as well as the role of bifidobacterial
metabolism in maintaining immune homeostasis through cross-feeding mechanisms.
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EARLY COLONIZATION OF BIFIDOBACTERIA AND PROPER
IMMUNE DEVELOPMENT

Microbiota establishment in newborns involves the assembly of a novel microbial community, a
process that is dependent on several factors, including the mother’s physiology (age, metabolic
state, lifestyle, or even the potential transfer of microorganisms from mother to child before birth),
mode of delivery, genetic background, environmental factors, type of feeding and early antibiotic
use, among others (Hill et al., 2017). Similar results were found for preterm neonates, which are
less abundantly colonized by bifidobacteria (Arboleya et al., 2012). Infant feeding is also a critical
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factor for bifidobacterial establishment in the gut, and breast-fed
infants have been shown to possess higher levels of bifidobacteria
than formula-fed infants (Yatsunenko et al., 2012); these high
bifidobacterial levels decrease after breast milk cessation (Davis
et al., 2016).

Pioneering studies revealed reduced levels of bifidobacteria
in the gut microbiota composition of infants at high risk of
atopic disease at 3 weeks and 3 months of age, and a higher
incidence of atopic disease was found in this group of infants
by the age of 1 year (Kalliomaki et al., 2001). Similarly, lower
bifidobacterial levels were found in 3-month-old infants who
later developed atopy at 2 years of age, or asthma at 4 years
of age (Fujimura et al., 2016). All these data point to a
critical role for bifidobacteria in the maturation of our immune
system from gestation to childhood, suggesting that the low
abundance of these early colonizers is associated with a deviated
physiological state in infancy. Indeed, current evidence suggests
a role of early life bifidobacteria establishment in programming
future health. Therefore, it is of great importance to know the
specific strains (and species) able to regulate immune responses,
either directly or indirectly through the modulation of the
gut microbiota, and the underlying mechanisms, in order to
design dietary strategies focused on preventing immune-related
disorders.

STRAIN-SPECIFIC IMMUNOMODU-
LATORY ACTIVITIES/IN VITRO AND
IN VIVO MODELS OF STUDY

In Vitro Models
In vitro models have important limitations but they enable the
preliminary screening of the effects that bacterial cells or fractions
might have on different components of the immune response
(Kobayashi et al., 2017). Most in vitro models based on immune
cells employ peripheral blood mononuclear cells (PBMCs).
In this way, whole cells of B. longum, B. breve, B. bifidum,
and B. animalis subsp. lactis strains demonstrated capacity to
induce dendritic cell (DC) maturation, and a species/strain-
dependent T cell polarization response (Medina et al., 2007;
López et al., 2010; Nicola et al., 2016). These studies revealed
that, while B. animalis and many B. longum strains induced
the production of the modulatory cytokine IL10 to varying
degrees, the greatest strain-dependent differences were displayed
in TNFα and INFγ production (Figure 1). Stimulation of
PBMCs with subcellular fractions of bifidobacteria, including
cytoplasmic, surface extracts, and supernatants, has also allowed
the identification of molecular determinants of the elicited effects.
For instance, a trypsin-labile cytoplasmic fraction of a B. bifidum
strain was identified as the effector of CD8+ T cell activation;
and supernatants of B. breve BB99 and B. longum 1941 exerted
a regulatory T cell induction (Mouni et al., 2009). PBMC models
are thus useful to identify desirable immune profiles in probiotic
strain screenings (Liu et al., 2016).

Other in vitro models differentiate DCs, a specialized
type of antigen presenting cells, from monocytes. DCs are

regarded as the main guardians of the intestinal mucosa and
are important in initiating the microbiota–immune system
cross-talk. Their pattern recognition receptors (PRRs) interact
with specific microbial-associated molecular patterns (MAMPs),
which orchestrated molecular cascades that will determine the
nature of the immune response (Hoarau et al., 2008; Wittmann
et al., 2013). In vitro differentiated DCs allowed the identification
of specific domains of a B. bifidum surface protein and the
exopolysaccharide (EPS) of B. longum 35624, as the effectors
of the immune responses elicited by the strains (Guglielmetti
et al., 2014; Schiavi et al., 2016). DC models have also been
used to predict the anti-inflammatory potential of bifidobacterial
strains/molecules in specific population groups; for instance,
bifidobacteria improved antigen uptake and processing by DC
from Crohn’s disease patients (Strisciuglio et al., 2015).

Other in vitro models using immune cells employ murine
splenocytes (Tanabe et al., 2008; Srutkova et al., 2015),
macrophage-like cell lines (He et al., 2002; Lee et al., 2012;
Mokrozub et al., 2015), or cells isolated from the gut-associated
lymphoid tissues (GALT) (Hidalgo-Cantabrana et al., 2014),
although they have not been widely used to examine the
immunomodulation potential of bifidobacteria and thus their
utility to predict immune responses is yet to be confirmed.

The immunomodulation potential of bifidobacteria has also
been studied on enterocytes including Caco-2 or HT29 cell
models (Bahrami et al., 2011; Chichlowski et al., 2012; Khokhlova
et al., 2012; Arboleya et al., 2015; Sánchez et al., 2015; Luongo
et al., 2017). Although the immune response of epithelial cells is
much more limited than the one exerted by specialized immune
cells, enterocytes are more directly exposed to the intestinal
milieu and are considered to play a key role in initiating the
bifidobacteria–host interactions.

Beyond that, co-culture systems employing both immune
and intestinal cells have also been implemented to study
microbial–host interactions and promise to overcome some of
the limitations of single cell type models (Duell et al., 2011).
However, few studies have used them on bifidobacteria (Pozo-
Rubio et al., 2011). The application of organized multicellular
systems like intestinal organoids for these kinds of studies is
envisaged (Noel et al., 2017).

In Vivo Models
Germ-free (GF) and conventional in vivo models, including
healthy and disease-induced models, have shed light on
the immune modulation capability of bifidobacterial strains
including live and heat-killed cells (Sugahara et al., 2017).
Screening of a large collection of gut symbionts on GF mice
identified a B. adolescentis strain which induces a robust Th17
response, albeit not inducing intestinal inflammation (Tan et al.,
2016). However, immune responses may vary strongly depending
on the health status of the host, as the human sera of Clostridium
difficile patients were shown to be more reactive against B. longum
extracts than that of healthy individuals (Górska et al., 2016).

In vivo models of intestinal diseases have demonstrated the
potential of B. bifidum and B. animalis strains to restore immune
markers and intestinal barrier in low chronic inflammation
models (Philippe et al., 2011). Similarly, B. longum CECT
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FIGURE 1 | Schematic representation of the effects on immune functions that certain strains of B. animalis, B. longum (Left), and B. bifidum (Right) have
demonstrated in in vitro and in vivo experiments. Many B. animalis and B. longum strains have demonstrated capacity to promote a Th1 response, while, on the
contrary, some B. bifidum strains have been revealed capable to induce a Th17 polarization. Treg responses can also be regulated by certain strains of other
species. Immunomodulatory properties are strain-dependent, and further evidence is needed in order to give to each bifidobacteria species a specific immune
response in the intestinal mucosa.

7347 attenuated the production of inflammatory cytokines and
the CD4+ T cell-mediated immune response in a gliadin-
induced enteropathy model (Laparra et al., 2012). Other disease
models, described below, have been tested in literature. In food-
allergy models, a vesicle-derived protein from B. longum (Kim
et al., 2016) and a B. animalis (Ezendam et al., 2008) strain,
administered during lactation, exerted immunomodulatory
effects. In a gut model, B. longum strain 51-A reduced
inflammation (Vieira et al., 2015). Finally, in obesity models,
B. pseudocatenulatum restored the lymphocyte–macrophage
balance and B. adolescentis IM38 improved high-fat-diet induced
colitis inhibiting NF-κB activation (Moya-Pérez et al., 2015;
Lim and Kim, 2017). Furthermore, the role of bifidobacteria in
responsiveness to immunotherapy has recently been suggested.
Accordingly, using tumor models in mice, Bifidobacterium
administration was shown to improve tumor-specific immunity
and response to therapy through augmented DC function,
opening new avenues to exploit the bifidobacterial-immune
dialog in the context of this disease (Sivan et al., 2015).

Finally, non-murine in vivo models, like pig models, are very
attractive for the study of microbe–host interactions due to the
similarities in the gastrointestinal function and development
between pigs and humans. In this context, bifidobacterial
administration in neonatal piglets has been shown to increase
the production of intestinal IL-10 (Herfel et al., 2013), and to
improve B and T cell responses following rotavirus vaccination
(Vlasova et al., 2013; Kandasamy et al., 2014; Ishizuka et al.,
2016). In addition, colonization with a combination of lactobacilli

and bifidobacteria in non-vaccinated gnotobiotic piglets reduced
the severity of rotavirus infection, while in vaccinated animals
enhanced Th1 (Chattha et al., 2013). Thus, in vivo models
closer to humans are valuable to study the immunomodulatory
potential of certain strains, should be “particularly in the context
of pig models in order to study pre-term birth and necrotizing
enterocolitis (NEC)” (Oosterloo et al., 2014).

Humans
Different immunoreactive proteins from two B. longum strains
have been identified in mono-colonized mice, rabbit, and human
sera, revealing that the effects are strain and host specific (Górska
et al., 2016) and emphasizing the need to further support
in vitro immunomodulatory effects in clinical trials. A summary
of human studies that focus on the immunomodulatory effects of
bifidobacterial consumption in multiple disorders, in some of
which gut microbial ecology dysbiosis and altered immune
profiles coexist, is presented in Table 1.

MOLECULAR STRUCTURES DRIVING
SPECIFIC IMMUNOMODULATORY
EFFECTS

Findings from the last 10 years support the idea that
bifidobacteria exert their beneficial effects on host health
through the immunomodulatory action of some of their surface-
associated molecules (Hoarau et al., 2006; Ewaschuk et al., 2008).
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TABLE 1 | Bifidobacterium role on diseases with an immunological component.

Species/strains
tested

Population Observations Reference

Intervention studies

B. lactis BB12 Healthy adults Four weeks administration of yogurt with the strain resulted in lower
expression of TLR-2 on CD14+HLA-DR+ cells and reduction in
TNF-α secretion

Meng et al., 2017

B. lactis Bi-07 Healthy elderly adults Four weeks administration improved phagocytic activity of
monocytes and granulocytes

Maneerat et al.,
2014

B. animalis ssp. lactis
HN019

Systematic meta-analysis on four
clinical trials/healthy elderly subjects

The strain supplementation resulted in increased PMN phagocytic
capacity and moderately increased NK cell tumoricidal activity

Miller et al., 2017

B. animalis LKM512 Atopic dermatitis adult patients Administration into a yogurt daily for 4 weeks induced a Th1-type
cytokine profile

Matsumoto et al.,
2007

B. lactis NCC2818 Seasonal allergic rhinitis to grass
pollen/adults

Eight weeks probiotic administration reduced Th2-cytokines
secretion and CD63 expressing basophiles correlating to improved
symptoms

Singh et al., 2013

B. lactis HN019 Metabolic syndrome patients Decrease in TNFα and IL6 correlated to improvement in
cardiovascular risk markers

Bernini et al., 2016

B. breve BR03 and
B. breve B632

Cystic fibrosis/children Three months administration of the two strains combination
reduced proinflammatory markers

Klemenak et al.,
2015

Lb. gasseri KS-13,
B. bifidum G9-1, and
B. longum MM-2

Healthy elderly population Three weeks administration of probiotic mix maintained CD4+

lymphocytes and resulted in a more anti-inflammatory cytokines
profile with increased IL-10

Spaiser et al., 2015

B. breve M-16V and
B. longum BB536

Prenatal administration to pregnant
mothers 1 month prior delivery and
to the infants during 6 months

Reduced risk of developing eczema in the probiotic group Enomoto et al.,
2014

B. longum BB536,
B. infantis M-63,
B. breve M-16V mixture

Seasonal allergic rhinitis and
intermittent asthma/children

Improvement of symptoms following 4 weeks of probiotic
administration

Miraglia Del Giudice
et al., 2017

B. longum BB536 Healthy newborns The number of IFN-γ secretion cells and the ratio of IFN-γ/IL-4
secretion cells was increased, suggesting improvement of Th1
function

Wu et al., 2016

B. longum BB536 Elderly subjects receiving enteral
tube feeding

Twelve weeks administration resulted in increased serum IgA and
maintenance of NC cell activity

Akatsu et al., 2013

B. longum 35624 Patients of ulcerative colitis (UC),
chronic fatigue syndrome (CFS),
and psoriasis, as compared to
healthy controls

Six to eight weeks of probiotic administration reduced CRP, TNFα,
and IL6 in UC, CFS, and psoriasis patients

Groeger et al.,
2013

B. infantis NLS Celiac adults Six weeks probiotic administration reduced Paneth cells numbers
and expression of α-defensine-5, as compared to patients under a
gluten-free diet without probiotic supplementation

Pinto-Sánchez
et al., 2017

B. longum CECT 7347 Children with newly diagnosed
coeliac disease

Three months administration resulted in reduced peripheral CD3+

lymphocytes, TNFα, and sIgA in stools
Olivares et al., 2014

Observational studies

B. breve Eczema risk in children at high risk
of allergic disease

Early B. breve colonization was associated to reduced risk of
eczema

Ismail et al., 2016

Bifidobacterium spp.
and B. adolescentis

Allergic asthma in adults Reduction in gut bifidobacterial representation and B. adolescentis
prevalence within the bifidobacterial group in the studied population

Hevia et al., 2016

B. pseudocatenulatum Gout patients B. pseudocatenulatum depletion in gout patients Guo et al., 2016

Summary of observational and intervention studies in humans.

This is based on the interaction of a specific bifidobacteria
molecule, a MAMP, with a PRR presents on the membrane
of epithelial/immune cells, which mostly configures the cellular
structure of the intestinal mucosa (Sutterwala and Flavell, 2009).
Although mucosa itself is differently organized, depending on
the gut section considered, bifidobacteria are thought to exert
their immunomodulatory activity mainly in the colon and in the
distal part of the ileum, where up to 46% of the Peyer’s patches
are located (Van Kruiningen et al., 2002). Scientific evidence
has shown the presence of immunomodulatory compounds in

bifidobacteria spent medium which are released during bacterial
growth (Figure 1).

Proteins and Peptides
Bifidobacterial proteins are one of the targets of human
immunoglobulins, notably IgA, which is secreted into the
gut lumen in order to control the commensal microbiota
populations. Up to six different extracellular proteins from the
strains B. longum subsp. longum NCIMB 8809, B. bifidum LMG
11041T, and B. animalis subsp. lactis IPLA 4549 were recognized
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by pooled sera from healthy individuals, or Inflammatory
Bowel Disease (IBD) patients (Hevia et al., 2014). Perhaps the
best known example of an immunomodulatory protein is the
extracellular serpin secreted by B. longum subsp. longum. Serpin
stands for serine protease inhibitor and includes different families
that share the ability to bind and irreversibly inactivate proteases.
The gene coding for serpin is not widely distributed among the
genus Bifidobacterium, being present in up to nine species so
far (Turroni et al., 2010a). More precisely, the targets of serpin
secreted by B. longum are two important pro-inflammatory
proteases: human neutrophil and pancreatic elastases (Ivanov
et al., 2006), proteases that have been shown to induce the serpin
gene through a two-component regulatory system (Alvarez-
Martin et al., 2012). Limiting the local action of these proteases
suggests a role of bifidobacteria in the maintenance of gut
homeostasis.

Other well-known protein structures with an
immunomodulatory action are pili, which self-assemble on
the bifidobacteria surface in the form of filaments and have a
primary function of adherence to the intestinal surface (Turroni
et al., 2014). Lower levels of IL10 and higher levels of TNFα

were detected in the murine cecum mucosa as a response to the
presence of a Lactococcus lactis strain, genetically modified for
producing B. bifidum pili. This response was not observed in
the wild-type strain, suggesting a specific interaction of these
structures with the gastrointestinal mucosa (Turroni et al.,
2013). Another protein with an immunomodulatory effect is
the peptidoglycan hydrolase TgaA, a surface-associated protein
in B. bifidum, which was shown to induce IL2 production in
monocyte-derived dendritic cell (MoDC), the key cytokine in
Treg cell expansion (Zelante et al., 2012; Guglielmetti et al.,
2014). Finally, our own work has revealed the presence of
immunomodulatory peptides encrypted in the sequences of
bifidobacteria proteins. In this sense, a peptide contained within
the sequence of the protein translocase subunit SecA of B. longum
DJ010A triggered a marked Th17 response when incubated with
human PBMCs (Hidalgo-Cantabrana et al., 2017b).

EPSs
EPSs are carbohydrate polymers that are synthesized and
exhibited in the bifidobacterial surface (Hidalgo-Cantabrana
et al., 2014). Although the exact molecular mechanisms have
not been described so far, EPSs have a great impact on the
host immune function (Hidalgo-cantabrana et al., 2012). In a
murine model, the EPS-producing strain B. breve UCC2003
was associated with increases in the mucosal levels of the pro-
inflammatory IL12, INFγ, and TNFα which turned out to protect
against Citrobacter infection (Fanning et al., 2012). Murine
J77A.1 macrophages challenged with the EPS produced by strain
B. longum BCRC 14634 increased the production of the anti-
inflammatory cytokine IL10 when compared to basal conditions,
and when challenged with lipopolysaccharide, the presence of the
EPS was linked to lower levels of the pro-inflammatory cytokine
TNFα (Wu et al., 2010). It is noteworthy that the rhamnose-rich,
high-molecular weight EPS isolated from the strain B. animalis
subsp. lactis IPLA-R1 was able to increase IL10 production in a
PBMC model and to decrease the TNFα production in human

colonic biopsies (Hidalgo-Cantabrana et al., 2015). Moreover, the
administration of strain IPLA-R1 to Wistar rats was associated
with higher serum levels of TGFβ and lower serum levels of the
pro-inflammatory interleukin IL6 (Salazar et al., 2014).

EPS produced by specific bifidobacteria strains have
been shown as molecules able to prevent exacerbated pro-
inflammatory responses. B. longum subsp. longum 35624
is a strain which has shown clinical efficacy in Irritable
Bowel Syndrome, a human condition cursing with chronic
mucosal inflammation (Altmann et al., 2016). The anti-
inflammatory effects elicited by this strain were shown to
rely in its surface-associated EPS, which prevented expansion
of the pro-inflammatory Th17 response compared to an
exopolysaccharide-negative mutant derivative (Schiavi et al.,
2016).

Finally, recent data on a mouse model of pathological cell
shedding, EPS from B. breve UCC2003 appeared to confer
protective effect through MyD88-dependent signaling (Hughes
et al., 2017). Diversity of gene clusters responsible for EPS
biosynthesis is high among bifidobacterial species/strains (not
to mention variations in the level of EPS production) and
this diversity may hold tremendous potential for strain-specific
immune responses.

DNA
Bifidobacteria possess genomes with high G+C proportions, and
un-methylated CpG motifs derived from them can interact with
the TLR 9 present on immune cells. Several publications have
reported on the immunomodulatory activity of bifidobacterial
DNA. CpG motifs have in one case been linked to a promotion
of the Th1 response, dedicated to fight intracellular pathogens
such as viruses (Ménard et al., 2010). Another work described an
oligodeoxynucleotide derived from the B. longum BB536 strain
able to inhibit anti-ovalbumin–IgE titres in a murine model
of type-I allergic response after ovalbumin injection (Takahashi
et al., 2006).

BIFIDOBACTERIAL METABOLISM
TRIGGERS CROSS-FEEDING
MECHANISMS THAT MAINTAIN IMMUNE
HOMEOSTASIS IN THE GUT

Many efforts are currently being pursued to understand
the metabolic fluxes within the gut ecosystem among
bifidobacteria, other members of the gut microbiota and
the human host (Hidalgo-Cantabrana et al., 2017a). A major
metabolic contribution elicited by bifidobacteria from their
host is represented by the breakdown of non-digestible,
diet-derived glycans, and carbohydrates provided by the
host known as host-derived glycans [mucins and human
milk oligosaccharides (HMOs)] (Milani et al., 2015). Mucin
is a host-produced glycan that constitutes one of the main
barriers covering the gastrointestinal mucosa (Tailford et al.,
2015). Among bifidobacteria, only members of B. bifidum
species have been shown to efficiently metabolize mucin
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(Ruas-Madiedo et al., 2008; Turroni et al., 2010b; Ruiz et al.,
2011). HMOs are present in high concentrations in human
colostrum and breast milk. Bifidobacteria, which dominate
during early life, are among the best described gut bacteria
with the ability to utilize HMOs. Several species possess
glycosyl hydrolases that cleave specific linkages within the
HMO molecules, the best characterized being those synthesized
by B. bifidum (Ruiz et al., 2016). HMOs are preferentially
fermented by B. bifidum and B. longum species which, together
with B. breve, are the most abundant in breast-fed infant gut
microbiota (Sela and Mills, 2010). Thus, the ability of these
species to utilize these otherwise indigestible carbohydrates
explains their abundance in breast-fed neonates (Zivkovic et al.,
2011).

Metabolic cross-feeding mechanisms in the gut are commonly
exploited by primary microbial degraders like bifidobacteria
which, thanks to partial extracellular hydrolysis of specific
complex carbohydrates (e.g., host-produced glycans), provide
monosaccharides, oligosaccharides, or metabolites for other
microbial gut inhabitants (De Vuyst and Leroy, 2011). As
an example, B. bifidum PRL2010 is a strain specialized in
the extracellular breakdown of host-glycans and, thus, in
the release of simple sugars that can be utilized by other
members of the (bifido)bacterial community (Turroni et al.,
2016). The subsequent fermentative metabolism of these
carbohydrates generates end-metabolites, such as acetate and
lactate, which are the main end-products of the bifidobacteria
catabolism. Acetate released in the gut by bifidobacteria
is used as substrates for other microbial gut fermenters,
mainly butyrate and propionate producers (Flint et al., 2015).
The production of these two major short-chain fatty acid
metabolites have been shown to have anti-inflammatory effects,
and promotes and regulates the pool of colonic Treg cells
(Arpaia et al., 2013; Smith et al., 2013). By inhibiting histone
deacetylase activity in DC and T cells, butyrate acts in the
differentiation of Treg cells, increasing the expression of the
Treg marker FoxP3 (Furusawa et al., 2013). Signalization has
been proposed to be mediated by the butyrate receptors in
epithelial and immune cells named FFAR3 (free fatty acid

receptor 3) and GPR109A (Ahmed et al., 2009; Remely et al.,
2014).

CONCLUDING REMARKS

Bifidobacterial cells, their subcellular fractions, or specific
molecules produced by these microorganisms, hold an important
potential to trigger immunomodulatory responses involved in the
maintenance of our healthy physiological state. However, these
responses are poorly understood and need for more research on
how this molecular communication between bifidobacteria and
host cells is performed. Additionally, the increasing knowledge
on the role played by different gut microbiota members, and
the understanding of the cross-talk and cross-feeding interaction
processes between bifidobacteria, the host, and the surrounding
network of intestinal microbes, should facilitate the synergistic
use of different intestinal microorganisms to modulate the
immunological and inflammatory processes in a microbial
dependent way.
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