
Semi-supervised drug-protein interaction prediction from
heterogeneous biological spaces

Zheng Xia1, Ling-Yun Wu2 , Xiaobo Zhou1 , Stephen T.C. Wong∗1

1Bioinformatics and Bioengineering Program,The Methodist Hospital Research Institute, Weill Medical College, Cornell University,
Houston, TX 77030, USA
2Institute of Applied Mathematics, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080,China

Email: Zheng Xia - zxia@tmhs.org; Ling-Yun Wu - lywu@amt.ac.cn; Xiaobo Zhou - xzhou@tmhs.org; Stephen T.C. Wong∗-

stwong@tmhs.org;

∗Corresponding author

Abstract

Background: Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in

silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions

and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization

semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information

which often generates better results than using the labeled data alone. Furthermore, our semi-supervised

learning method integrates known drug-protein interaction network information as well as chemical structure and

genomic sequence data.

Results: Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel,

GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets

databases such as KEGG.

Conclusions: We report encouraging results of using our method for drug-protein interaction network

reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.
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Background

Developing a new drug is an expensive and time-consuming process that is subject to a variety of

regulations such as drug toxicity monitoring and therapeutic efficacy. Meanwhile, there are thousands of

FDA-approved drugs in the market and drugs in later phases of clinical trials. Finding the potential

application in other therapeutic categories of those FDA-approved drugs by predicting their targets, known

as drug repositioning, is an efficient and time-saving method in drug discovery [1]. Additionally, predicting

interactions between drugs and target proteins can help decipher the underlying biological mechanisms.

Therefore, there is a strong incentive to develop powerful statistical methods that are capable of detecting

these potential drug-protein interactions effectively.

Various methods have been proposed to address the drug-target prediction problems in silico. One

common method is to predict the drugs interacting with a single given protein based on the chemical

structure similarity in a classic classification framework. Keiser et al. [2, 3] proposed a method to predict

targets of proteins based on the chemical similarity of their ligands. This kind of approach, however, does

not take advantage of the information in the protein domain. Another widely-used method is molecular

docking [4] which requires the non-trivial modeling of 3D structure of the target protein. Unfortunately the

3D structures of many proteins are not available [5], e.g., very few GPCRs have been crystallized.

Recently, some new approaches are proposed to perform drug-target prediction using both the chemical

(drug chemical structure) and genomic (protein structure) spaces information [3, 6, 7]. In [6] the two spaces

are encoded together by defining a pair wise kernel which is then fed to the support vector machine (SVM)

for classification. The drawback of this kernel framework is that there will be a huge number of samples to

be classified (i.e., number of drugs multiplies number of proteins) which poses significant computational

complexity. Another problem is that the negative drug-protein pairs are selected randomly without

experimental confirmation. Yamanishi et al. [7] developed a bipartite graph model where the chemical and

genomic spaces as well as the drug-protein interaction network are integrated into a pharmacological space.

In the bipartite model, the known interactions in the training data are labeled as +1 while all other

unknown drug-protein pairs in the training data are assumed as non-interactions with label 0. Then three

different classifiers are available: new drug candidate versus known target protein, known drugs versus new

target protein and new drug candidate versus new target protein candidate. More recently, Bleakley and

Yamanishi [8] proposed a state-of-the-art bipartite local model (BLM) by transforming edge-prediction

problems into well-known binary classification problems. Nevertheless, the first flaw of the bipartite model,

like the kernel SVM method [6], is that the unknown interactions of the drugs and proteins in the training
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data are all assumed non-interaction and cannot be inferred. We also prefer only one classifier to predict

whether one drug-protein pair interacts or not. Lastly, all the methods did not utilize a wealth of unlabeled

information to assist prediction.

In this paper, a semi-supervised learning method - Laplacian regularized least square (LapRLS) [9] is

employed to utilize both the small amount of available labeled data and the abundant unlabeled data

together in order to give the maximum generalization ability from the chemical and genomic spaces.

Further, the standard LapRLS is improved by incorporating a new kernel established from the known

drug-protein interaction network (NetLapRLS). In our framework, the known interactions are labeled as

+1 and all other unknown pairs are labeled as 0 to indicate they are going to be predicted. Two classifiers

are trained on the drug and protein domains respectively and then are combined together to give the final

prediction. Compared with a naive weighted profiled method, the proposed drug-protein interaction

methods based on LapRLS and NetLapRLS obtain better results than using the labeled data alone. And

the proposed NetLapRLS which incorporates drug-protein network information provides superior

performance than standard LapRLS.

Results and Discussion
Cross validation results analysis

The weighted profile method, standard LapRLS and NetLapRLS were evaluated on the four classes of

target proteins including enzymes, ion channels, GPCRs and nuclear receptors. We carried out a ten-fold

cross-validation by splitting the golden standard interaction dataset into 10 subsets. Each fold was then

taken in turn as a test set and the remaining nine folds are used as training set. For example, there are 54

drugs and 26 proteins in the nuclear receptor data set with 90 known interactions. In each cross-validation,

the 80 drug-protein pairs are used as the training data while the remaining 1,324 drug-protein pairs

including the 10 positive interactions are designated as the testing data set. Thus the training sample is

very small compared with the testing data set. This motivates us to employ the semi-supervised method

that can utilize the information from the unlabeled samples to predict drug-protein interaction. The

performance is evaluated using receiver operating curve (ROC) analysis [10]. For simplicity, we set

βd = βp = 0.3, γd1 = γp1 = 1, and γd2 = γp2 = 0.01 for NetLapRLS. These parameters can be better

selected by a further cross validation. If γd2 and γp2 are set to be 0, NetLapRLS becomes the standard

LapRLS method. Table 1 shows the AUC (area under the ROC curve), sensitivity and specificity. The

sensitivity and specificity are defined as TP/(TP+FN) and TN/(TN+FP), respectively. The cutoff for
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calculation of sensitivity and specificity is set to select the top pairs with the same number of the test set.

From Table 1 and Figure 1, we can see that LapRLS and NetLapRLS methods, which use unlabeled

information, provided better performance with respect to AUC score and sensitivity. Among the four data

sets, the two semi-supervised learning methods provided the highest sensitivity scores in enzyme data set

because there are most known interactions. The known interaction number is a key factor of our

semi-supervised methods since the testing data set is much larger than training data set in our

cross-validation setup. The proposed NetLapRLS which incorporates the drug-protein interaction network

information obtained better result than the standard LapRLS, especially with respective to the sensitivity

which is dramatically improved. On the four data sets, the sensitivity from NetLapRLS performed better

than LapRLS by 42%, 100%, 108% and 31% respectively and, demonstrated the importance of network

information. The improvement in sensitivity of NetLapRLS over LapRLS is most significant in ion channel

data set because the inner-connection in the ion channel drug-protein interaction network is most complete

according to the proportion of unreachable paths between drugs and proteins [7]. Yildirim et al. [11]

concluded that there are an overabundance of ’follow-on’ drugs from the topological analyses of current

drug-protein network, that is, drugs that target already known proteins, i.e., me-too drugs. With the

drug-protein network being completed fastly by high-throughput experimental and computational

approaches, this network information is becoming critical in drug discovery.

Comparison with bipartite local model [8]

Recently, Bleakley and Yamanishi [8] extended Yamanishi’s bipartite method [12] to bipartite local model

which is considered as state-of-the-art. The predictions from the drug domain and protein domain using

SVM are combined together to form a final prediction by a maximum operation. We also employed this

kind of integration by a mean operation. However, we used a semi-supervised learning method to handle

the classification with small samples labeled which is difficult for traditional supervised classifiers. For

instance, in the above cross-validation experiment of the nuclear receptor data set, the semi-supervised

classifier is trained on 80 positive samples in order to make predictions on 1,324 unlabeled samples. In the

BLM, the ten-fold cross-validation is performed on the drug and protein domains separately. The known

interactions between the selected drugs and proteins are labeled as interaction while interactions between

the drugs and proteins for training are regarded as non-interaction. Though we consider the undetermined

relationship between drug-protein pair should not be labeled as non-interaction, we adopt the cross

validation method in the BLM for the sake of comparison in the same condition. The comparison is
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performed in terms of AUC,area under precision-recall (AUPR), sensitivity, specificity and PPV as shown

in Table 2. Sensitivity, specificity and PPV are calculated when the top one percentile in the prediction

score is chosen as a cutoff because high-confidence prediction results are more useful in practical

applications. We observed that BLM method outperformed our NetLapRLS in AUC and AUPR scores,

but the performances of our NetLapRLS are comparable with BLM in sensitivity, specificity and PPV.

Semi-supervised learning method is superior to the traditional supervised learning method when labeled

samples are small along with large unlabeled samples available. In this cross validation setup, the unknown

interactions are labeled as non-interaction in the training data set. So our NetLapRLS did not get good

results in AUC and AUPR scores compared with BLM because most of samples are labeled. However,

NetLapRLS still gave good prediction results in sensitivity, specificity and PPV. This indicated that

NetLapRLS can provide a list of drug-protein interaction candidates with high confidence.

Enzyme

Table 3 shows the list of the top 5 predicted drug-protein pairs, with annotation given in the KEGG

database [13]. Searching the latest version of KEGG drug database and Drugbank [14], we found that the

fifth highest scored drug-protein pair (D00097 and hsa5743) in Table 3 is annotated as an interaction.

Figure 2 shows the predicted top 50 scoring drug-protein interaction network on the enzyme data using the

all known interactions as the training data set.

Ion channel

Table 4 shows the list of the top five predicted drug-protein pairs on the ion channel data set, with

annotation given in the KEGG database [13]. In the latest version of KEGG drug database, the targets of

drug D00477 (rank 2 in table 4) include SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A and SCN9A.

The targets of drug D00552 are SCN10A, SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN8A and SCN9A.

Thus, our predicted target of D00552 is confirmed (rank 3 in Table 4). The targets of drugs D00477 and

D00552 are very similar which can be explained by their common chemical structures in Figure 3. Based

on the chemical structure similarity, we predict that SCN10A is also a target of drug D00477 (rank 2 in

table 4), as the interaction between SCN10A and D00552 is known. Rank 5 in table 4 predicts GABAR2 is

one of the targets of drug D00546. This prediction is reasonable because in Drugbank D00546 is annotated

to interact with GABAR1 which is very similar with GABAR2 in sequence and function. Figure 4 shows

the predicted top 50 scoring drug-protein interaction network on the ion channel data set using the all
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known interactions as training data set.

GPCRs

Table 5 shows the list of the top five predicted drug-protein pairs on GPCRs data set, with annotation

given in KEGG database. Based on the most recent KEGG database, the predictions of rank 2 and 3 in

Table 5 are confirmed. Additionally, six predicted new targets (hsa146, hsa147, hsa150, hsa151, hsa152 and

hsa155) of drug adrenaline (D00095) from the newly predicted interactions with 50 highest scores are also

annotated as an interaction in the latest KEGG drug database. Ranks 4 and 5 in Table 5 predict both

D02345 and D00283 target protein DRD3. In Drugbank, D02345 and D00283 are annotated to interact

with protein DRD1, DRD2, and DRD4. Because DRD3 is very similar with those proteins in function, our

method predicts DRD3 is also the target of drugs D02345 and D00283. This result demonstrated our

method employed the information from protein domain. Figure 5 shows the predicted top 50 scoring

drug-protein interaction network on the GPCRs data set using the all known interactions as the training

data set.

Nuclear receptor

Table 6 shows the list of the top 5 predicted drug-protein pairs on nuclear receptor data set, among which

four predictions are about drug D00348. In Drugbank, drug D00348 is annotated to interact with protein

(retinoic acid receptor, alpha). The two predicted targets with the highest scores (hsa5915 and hsa5916) of

drug D00348 are both from retinoic acid receptor class. Those proteins are probably as the targets of the

same protein due to their similarity in sequence and function. Figure 6 shows the predicted top 50 scoring

drug-protein interaction network on the nuclear receptor data set with the all known interactions as the

training data set.

Conclusions

In this work, we presented a semi-supervised learning method NetLapRLS for drug-protein interaction

prediction by integrating information from chemical space, genomic space and drug-protein interaction

network space. Our method has no use of the negative samples and predicts the interaction of each

drug-protein pair. The results we obtained when predicting human drug-target interaction networks

involving enzymes, ion channels, GPCRs, and nuclear receptors demonstrated the superior performance of

NetLapRLS. Furthermore, recently added drug-target interactions to the KEGG immediately allowed us to
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confirm some strongly-predicted drug-target interactions on the four data sets obtained using our method.

This enhances the strength of our proposed method for realistic drug-target prediction application.

The ideal way to use semi-supervised learning for predicting compound-protein interactions is to

incorporate information from different biological spaces by a multi-task kernel and is fed to classical

semi-supervised learning. However, the implementation of such a large scale semi-supervised learning

method will be computationaly costly. Our future work, will incorporate more sophisticated and

biologically relevant information into the kernel similarity, such as side effect [15], to improve the

prediction accuracy.

Methods

Semi-supervised learning (SSL) has been attracting much research attention in the machine learning

community [16]. SSL provides better prediction accuracy by using unlabeled information. Here we employ

a data-dependent manifold regularization framework which uses the geometry of the probability

distribution [9]. One of the implementations of this framework is the Laplacian regularized least squares

(LapRLS) which is simple and has comparable performance with Laplacian regularized support vector

machine.

Consider the drug dataset D = {d1, . . . , dnd
} and the target protein dataset P = {p1, . . . , pnp

} where nd and

np are the numbers of the drugs and proteins in the study respectively. An interaction pattern of drug di

and target protein pj is represented by a binary label matrix Y ∈ Bnd×np . If drug di is known to interact

with target protein pj , Yij = 1 otherwise Yij = 0. Given the ’gold standard’ drug-target interactions, the

goal is to infer their unknown interactions. Two classifiers will be trained using LapRLS on the chemical

and genomic spaces separately, followed by a combination of the two classifiers. A supervised learning

method is suitable in this case. However the known interactions from public databases are still extremely

small compared to the whole drug-target interaction space. Another issue is that we only have the

information of the interactions, but do not know which drug target pair has no interaction, i.e., no negative

samples in the training process. Herein we first test a simple supervised weighted profile method. Then the

standard LapRLS and drug-protein interaction network incorporated NetLapRLS are extended to predict

the drug-protein interaction.
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Materials

The data used here is downloaded from ⟨http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/⟩ [7]. Here

below we provide a brief description.

• Chemical data

The chemical structure similarity between compounds are calculated by SIMCOMP [17] using

chemical structures fetched from KEGG LIGAND database. SIMCOMP provides a global similarity

score by the ratio between the size of common substructures and the size of the union structures of

two compounds. Applying this operation to all compounds pairs, we constructed a similarity matrix

denoted Sd ∈ Rnd×nd which represents the chemical space information.

• Genomic data

A normalized Smith-Waterman score is calculated to indicate the similarity between two amino acid

sequences of target proteins which were obtained from the KEGG GENES database. All protein

pairs similarities are computed to construct a similarity matrix denoted Sp ∈ Rnp×np which

represents the genomic space.

• Drug-protein interaction data

At the time of the paper [7] was written, Yamanishi et al. [7] found 445, 210, 223, and 54 drugs

targeting 664 enzymes, 204 iron channels, 95 GPCRs, and 26 nuclear receptors, receptively, and the

known interactions are 2926, 1476, 635 and 90.

Combining weighted profiles

The method of combining weighted profiles follows the idea that the label of the new sample is determined

by its similarity with the training samples. For a drug di, its interaction f(di, pj) with a protein pj in P is

predicted with the following formulation:

f(di, pj) =
1

Ndi

nd∑
k=1

sd(di, dk)Ykj (1)

where sd(di, dk) is a chemical structure similarity score from Sd and Ndi is a normalization term defined as

Ndi =
∑nd

k=1 sd(di, dk). Meanwhile, for a protein pj , its interaction f(pj , di) with a drug di can also be

calculated in the genomic space by:

f(pj , di) =
1

Npj

np∑
k=1

sp(pj , pk)Yik (2)
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where sp(pj , pk) is a genomic sequence similarity score from Sp and Npj
is a normalization term defined by

Npj =
∑np

k=1 sp(pj , pk). Note that Equations (1) and (2) are estimating the interaction of the same

drug-protein pair (di ∼ pj) from different data sources. The two predictions should be combined to give

the final prediction by

f̄(di, pj) =
f(di, pj) + f(pj , di)

2
. (3)

The drug-protein pairs (di, pj) in f̄(di, pj) with high scores are predicted to interact each other. The

original weighted profile method is used in [7]. However their predictions in the two spaces are not fused.

Figure 7 shows the method of combining weighted profiles provides better prediction than methods using

the single space on the four data sets.

LapRLS and NetLapRLS for drug-protein interaction prediction

In LapRLS and NetLapRLS, the data-dependent regularization terms are normalized Laplacian operation

on graphs. Herein two undirected graphs of drug domain and protein domain including both labeled and

unlabeled samples are represented by Gd = {Vd, Ed} and Gp = {Vp, Ep} ,where the set of nodes or vertices is

Vd = {di}, Vp = {pi} and the set of edges is Ed = {edmn}, Ep = {epmn} respectively. Each drug di or

protein pj is treated as the node on the graph and the weight of edge edmn(epmn) is wdmn(wpmn).

Typically, the weight measures the similarity between two nodes. In our case, the drug domain similarity

Wd = {wdmn} is obtained by combining the chemical similarity Sd and drug-target interaction network.

The protein domain similarity Wp = {wpmn} is derived by combining the genomic similarity Sp and

drug-protein interaction network spaces. The chemical similarity Sd and genomic similarity Sp have

already been introduced in Section Materials.

Next we need to extract the information from the drug-protein interaction network space. The underlying

assumption made here is that if two drugs share more target proteins, they are more similar. For example,

in Figure 8, the blue line means the known drug-protein interaction while the red line represents the

interaction to be predicted. So drug D2 shares 3 same proteins with drug D1 while drug D3 shares a

common protein with drug D1. Drug D1 interacts with Protein P4. Based on the assumption here, we can

infer that it is more probable that drug D2 interacts with protein P4 than drug D3 does. So another

similarity matrix for drug domain from drug-protein interaction network Kd ∈ Rnd×nd can be established

whose each entry is the number of proteins shared by drug di and dj . Similarly, we can also derive the

network similarity matrix Kp ∈ Rnp×np whose each entry is the number of drugs shared by protein pj and

pi. Though drug-protein interaction network was also used in [7], our method employs a different way to
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extract information from the network. The shortest path concept is used in [7] while we utilize the number

of common nodes shared by two proteins(drugs) to indicate a new similarity measurement.

Now the drug domain similarity Wd can be derived from the chemical similarity and drug-protein network

similarity by linear combination Wd = γd1Sd+γd2Kd

γd1+γd2
. Similarly, the protein domain similarity Wp can be

obtained by Wp =
γp1Sp+γp2Kp

γp1+γp2
. Compared with the standard LapRLS , our NetLapRLS incorporates

drug-protein network information into the prediction model. In the following paragraph, we just describe

the method NetLapRLS from which the standard LapRLS can be deduced by setting γd2 = γp2 = 0.

Given the similarity matrices of drug domain and protein domain, we first perform Laplacian operation on

the two graphs which is required by our semi-supervised learning method. The node degree matrices Dd

and Dp are two diagonal matrices with their (k, k)-element defined as Dd(k, k) =
∑nd

m=1 wdk,m and

Dp(k, k) =
∑np

m=1 wpk,m. The Laplacian operation of the two graphs is defined as ∆d = Dd −Wd and

∆p = Dp −Wp respectively. The normalized graph Laplacians are

Ld = D
−1/2
d ∆dD

−1/2
d = Ind×nd

−D
−1/2
d WdD

−1/2
d and Lp = D

−1/2
p ∆pD

−1/2
p = Inp×np −D

−1/2
p WpD

−1/2
p

respectively.

NetLapRLS defines a continuous classification function F that is estimated on the graph to minimize a cost

function. The cost function typically enforces a trade-off between the smoothness of the function on the

graph of both labeled and unlabeled data and the accuracy of the function at fitting the label information

for the labeled nodes. Herein we extend NetLapRLS to the matrix form. The two continuous classification

functions are defined by Fd ∈ Rnd×np and Fp ∈ Rnp×nd . Let’s first address the prediction Fd on the drug

domain. The cost function of NetLapRLS is defined as follows

F∗
d = min

Fd

J(Fd) = ∥Y − Fd∥2F + βdTrace(F
T
d LdFd) (4)

where ∥ · ∥F is Frobenius norm and Trace is the trace of a matrix. Representer theorem [18] shows that the

solution is a linear combination

F∗
d = Wdα

∗
d

Substituting this form into equation (4), we arrive at a convex differentiable objective function with respect

to variable αd ∈ Rnd×np

α∗
d = arg min

αd∈Rnd×np
{∥Y −Wdαd∥2F + βdTrace(α

T
d WdLdWdαd)} (5)

The derivative of the objective function vanishes at the minimizer:

−Wd(Y −Wdαd) + βdWdLdKdαd = 0 (6)
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which leads to the following solution:

α∗
d = (Wd + βdLdWd)

−1Y (7)

Then we get the prediction from the drug domain in the following form:

F∗
d = Wd(Wd + βdLdWd)

−1Y (8)

Similarly, we can also derive the prediction in the protein domain by

F∗
p = Wp(Wp + βpLpWp)

−1YT (9)

In the end, the predictions from drug and protein domains are combined into

F∗ =
F∗

d + (F∗
p)

T

2
(10)
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Figures
Figure 1 - ROC curves of cross validation

ROC curves of the semi-supervised learning and the combining weighted profile methods for four classes

target proteins: enzymes,ion channels, GPCRs and nuclear receptors.

Figure 2 - Predicted enzyme interaction network

Diamonds and circles represent drugs and target proteins, respectively. Blue and red lines indicate known

interactions and newly predicted interactions with 50 highest scores, respectively.

Figure 3 - Chemical structures

Chemical structures of drug D00477 and D00552 (from KEGG).
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Figure 4 - Predicted ion channel interaction network

Predicted ion channel interaction network. diamonds and circles represent drugs and target proteins,

respectively. Bule and red lines indicate known interactions and newly predicted interactions with 50

highest scores, respectively.

Figure 5 - Predicted GPCRs interaction network

Predicted GPCRs interaction network. diamonds and circles represent drugs and target proteins,

respectively. Blue and red lines indicate known interactions and newly predicted interactions with 50

highest scores, respectively.

Figure 6 - Predicted nuclear receptor interaction network

Predicted nuclear receptor interaction network. diamonds and circles represent drugs and target proteins,

respectively. Blue and red lines indicate known interactions and newly predicted interactions with 50

highest scores, respectively.

Figure 7 - The ROC curves of combining weighted profile

The ROC curves of combining weighted profile, weighted profile from chemical and genomic spaces on

GPCR data.

Figure 8 - The example of drug-protein interaction network

The example of drug-protein interaction network.

Tables
Table 1 - Statistics of the prediction performance
Table 2 - Comparison between NetLapRLS and BLM
Table 3 - Top 5 scoring predicted drug-protein interactions for the enzyme data set.
Table 4 - Top 5 scoring predicted drug-protein interactions for the ion channel data set.
Table 5 - Top 5 scoring predicted drug-protein interactions for the GPCRs data set.
Table 6 - Top 5 scoring predicted drug-protein interactions for the nuclear receptor data set.
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Table 1: Statistics of the prediction performance. The AUC is the area under the ROC curve, normalized to
100. The cutoff for sensitivity and specificity is set to select the number of the interactions in the test data.

Data Methods AUC Sensitivity(%) Specificity(%)

Enzyme
Combining weighted profile 92.2 6 99.9

LapRLS 95.0 53 99.9
NetLapRLS 98.3 75 99.9

Ion channel
Combining weighted profile 90.7 17 99.7

LapRLS 96.1 36 99.8
NetLapRLS 98.6 72 99.9

GPCR
Combining weighted profile 86.9 13 99.7

LapRLS 93.4 24 99.8
NetLapRLS 97.1 50 99.8

Nuclear receptor
Combining weighted profile 81.0 11 99.4

LapRLS 85.0 16 99.4
NetLapRLS 88.8 21 99.5

Table 2: Results of BLM and NetLapRLS based on cross validation experiments 5 times. The AUC and
AUPR scores are normalized to 100. The cutoff for sensitivity,specificity and PPV is set to choose the top
one percentile in the predictoin score as positive.

Data Methods AUC AUPR Sensitivity(%) Specificity(%) PPV(%)

Enzyme
BLM 96.8(0.1) 85.2(0.2) 83.2(0.2) 99.82(0.002) 82.3(0.2)

NetLapRLS 95.6(0.3) 82.6(0.6) 81.0(0.5) 99.80(0.005) 80.2(0.5)

Ion Channel
BLM 97.2(0.1) 83.2(0.4) 28.0(0.03) 99.96(0.001) 96.4(0.1)

NetLapRLS 94.7(0.3) 82.5(0.5) 28.4(0.14) 99.98(0.005) 98.1(0.5)

GPCR
BLM 94.4(0.3) 65.0(1.6) 28.0(0.8) 99.83(0.02) 83.9(2.4)

NetLapRLS 93.1(0.3) 66.0(1.5) 29.2(0.8) 99.87(0.03) 87.5(2.4)

Nuclear Receptor
BLM 84.1(0.9) 58.4(2.2) 14.0(0.6) 99.89(0.04) 90.0(3.9)

NetLapRLS 85.6(1.8) 51.6(2.3) 15.1(1.0) 99.97(0.07) 97.1(6.1)

Additional Files

None.
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Table 3: Top 5 scoring predicted drug-protein interactions for the enzyme data set.

Rank Pair Annotation

1
D00528 Anhydrous caffeine
hsa1549 cytochrome P450, family 2, subfamily A, polypeptide 7

2
D00542 Halothane
hsa1571 cytochrome P450, family 2, subfamily E, polypeptide 1

3
D00437 Nifedipine
hsa1559 cytochrome P450, family 2, subfamily C, polypeptide 9

4
D00410 Metyrapone
hsa1585 cytochrome P450, family 11, subfamily B, polypeptide 2

5
D00097 Salicylic acid
hsa5743 prostaglandin-endoperoxide synthase 2

Table 4: Top 5 scoring predicted drug-protein interactions for the ion channel data set.

Rank Pairs Annotation

1
D00438 Nimodipine
hsa779 calcium channel, voltage-dependent, L type, alpha 1S subunit , beta 2

2
D00477 Procainamide hydrochloride
hsa6336 sodium channel, voltage-gated, type X, alpha subunit(SCN10A)

3
D00552 Ethyl aminobenzoate
hsa6331 sodium channel, voltage-gated, type V, alpha subunit(SCN5A)

4
D02272 Quinidine sulfate
hsa3738 potassium voltage-gated channel, shaker-related subfamily, member 3

5
D00546 Desflurane
hsa2555 gamma-aminobutyric acid (GABA) A receptor, alpha 2(GABAR2)

Table 5: Top 5 scoring predicted drug-protein interactions for the GPCRs data set.

Rank Pair Annotation

1
D02358 Metoprolol
hsa154 adrenergic receptor, beta 2

2
D00095 Adrenaline
hsa155 beta3-adrenergic receptor agonist

3
D00371 Theophylline
hsa135 adenosine A2a receptor antagonist

4
D02354 Thiethylperazine
hsa1814 dopamine receptor D3

5
D00283 Clozapine
hsa1814 dopamine receptor D3(DRD3)
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Table 6: Top 5 scoring predicted drug-protein interactions for the nuclear receptor data set.

Rank Pair Annotation

1
D00348 Isotretinoin
hsa5915 retinoic acid receptor, beta

2
D00348 Isotretinoin
hsa5916 retinoic acid receptor, gamma

3
D00182 Norethindrone
hsa2099 estrogen receptor 1

4
D00348 Isotretinoin
hsa6256 retinoid X receptor, alpha

5
D00348 Isotretinoin
hsa6257 retinoid X receptor, beta
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