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1. Mexico City Metropolitan Area (MCMA) 

Table S1. Mexico City Metropolitan Area: projected population in 2020. 

Municipality Total 

Hidalgo State 

Tizayuca 137,165 

Mexico City 

Alvaro Obregon 755,537 

Azcapotzalco 408,441 

Benito Juarez 433,708 

Coyoacan 621,952 

Cuajimalpa de Morelos 199,809 

Cuauhtemoc 548,606 

Gustavo A. Madero 1,176,967 

Iztacalco 393,821 

Iztapalapa 1,815,551 

La Magdalena Contreras 245,147 

Miguel Hidalgo 379,624 

Milpa Alta 139,371 

Tlahuac 366,586 

Tlalpan 682,234 

Venustiano Carranza 433,231 

Xochimilco 418,060 

State of Mexico 

Acolman 186,256 

Amecameca 54,548 

Apaxco 31,576 

Atenco 70,016 

Atizapan de Zaragoza 557,108 

Atlautla 32,674 

Axapusco 30,040 

Ayapango 11,081 

Chalco 397,344 

Chiautla 31,803 

Chicoloapan 226,911 

Chiconcuac 27,570 
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Municipality Total 

Chimalhuacan 720,207 

Coacalco de Berriozabal 310,743 

Cocotitlan 15,387 

Coyotepec 44,201 

Cuautitlan 175,004 

Cuautitlan Izcalli 577,190 

Ecatepec de Morelos 1,707,754 

Ecatzingo 10,090 

Huehuetoca 147,326 

Hueypoxtla 46,742 

Huixquilucan 290,231 

Isidro Fabela 12,512 

Ixtapaluca 551,034 

Jaltenco 29,179 

Jilotzingo 20,713 

Juchitepec 27,241 

La Paz 309,596 

Melchor Ocampo 61,172 

Naucalpan de Juarez 910,187 

Nextlalpan 43,640 

Nezahualcoyotl 1,135,786 

Nicolas Romero 441,064 

Nopaltepec 9,753 

Otumba 38,186 

Ozumba 31,154 

Papalotla 4,367 

San Martin de las Piramides 29,145 

Tecamac 500,585 

Temamatla 13,690 

Temascalapa 41,685 

Tenango del Aire 13,344 

Teoloyucan 69,466 

Teotihuacan 60,992 

Tepetlaoxtoc 33,108 
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Municipality Total 

Tepetlixpa 21,137 

Tepotzotlan 104,335 

Tequixquiac 39,658 

Texcoco 262,015 

Tezoyuca 46,527 

Tlalmanalco 51,370 

Tlalnepantla de Baz 756,537 

Tonanitla 10,960 

Tultepec 160,943 

Tultitlan 556,493 

Valle de Chalco Solidaridad 419,700 

Villa del Carbon 50,614 

Zumpango 217,166 
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Figure S1. Municipalities of Mexico City, State of Mexico and the State of Hidalgo that conform Mexico City 
Metropolitan Area
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2. Calibrated posterior distributions 

Figure S2. Scatter plot of pairs of calibrated parameters with correlation coefficient and posterior marginal 
distributions. 𝛽: community transmission rate; 𝜏: household transmission rate; 𝜂!: effectiveness of NPI 
on 2020/03/21 - 2020/04/17; 𝜂": effectiveness of NPI on 2020/04/17 - 2020/05/23; 𝜂#: effectiveness of 
NPI on 2020/05/23 - 2020/08/11; 𝜂$: effectiveness of NPI on 2020/08/11 - 2020/10/26; 𝜂%: effectiveness 
of NPI on 2020/10/26 - 2020/12/07; 𝜈&': initial detection rate; 𝜈(': final detection rate; 𝜈)*+,: rate of 
change between initial and final detection rate; 𝜈-./: Day at which detection rate is between initial and 
final values.
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Figure S3. Prior and posterior marginal distributions of calibrated parameters. 𝛽: community transmission rate; 
𝜏: household transmission rate; 𝜂!: effectiveness of NPI on 2020/03/21 - 2020/04/17; 𝜂": effectiveness of NPI 
on 2020/04/17 - 2020/05/23; 𝜂#: effectiveness of NPI on 2020/05/23 - 2020/08/11; 𝜂$: effectiveness of NPI on 
2020/08/11 - 2020/10/26; 𝜂%: effectiveness of NPI on 2020/10/26 - 2020/12/07; 𝜈&': initial detection rate; 𝜈(': 
final detection rate; 𝜈)*+,: rate of change between initial and final detection rate; 𝜈-./: Day at which detection 
rate is between initial and final values. 
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3. Supplementary results 

Figure S4. Effective reproduction number (Re) for status-quo (A) and by intervention (B) by levels of 
compliance with social distancing during end-of-year holiday period. Double-dashed vertical line in panel A 
represents that last day used for calibration. The shaded area shows the 95% posterior model-predictive interval 
of Re and colored lines show the posterior model-predicted mean based on 1,000 simulations using samples 
from posterior distribution. 
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Figure S5. Cumulative proportion of population ever been infected under status quo in which there is 
substantially less compliance with social distancing during the end-of-year holiday period. Double-dashed line 
indicates last day used for calibration. The shaded area shows the 95% posterior model-predictive interval of the 
outcomes and the colored line shows the posterior model-predicted mean based on 1,000 simulations using 
samples from posterior distribution.  
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Figure S6. Cumulative proportion of infections being detected as cases for the status quo in which there is 
substantially less compliance with social distancing during the end-of-year holiday period. The model’s 
calibrated case detection rate is time-varying. The shaded area shows the 95% posterior model-predictive 
interval of the outcomes and the colored line shows the posterior model-predicted mean based on 1,000 
simulations using samples from posterior distribution. 
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Table S2. Estimated mean and 95% prediction interval in parentheses of cumulative cases and deaths by March 
07, 2021 under different holiday contact scenario. (A) Assuming reduced social contacts during the end-of-year 
holiday period; (B) assuming higher social contacts during the end-of-year holiday period. 

Policy 
Holiday contact scenario 

(A) (B) 

Cumulative Covid-19 cases (millions) 

Social distancing: status quo; Schooling: not in-person 
0·98 

(0·59 – 1.59) 

1·35 

(0·79 – 2·00) 

Social distancing: stricter; Schooling: not in-person 
0·77 

(0·53 – 1·17) 

1·10 

(0·70 – 1·59) 

Social distancing: stricter; Schooling: in-person 
0·87 

(0·58 – 1·34) 

1·20 

(0·79 – 1·78) 

Social distancing: status quo; Schooling: in-person 
1·19 

(0·66 – 1·92) 

1·61 

(0·93 – 2·37) 

Cumulative Covid-19 deaths (thousands) 

Social distancing: status quo; Schooling: not in-person 
53 

(37 – 78) 

68 

(45 – 94) 

Social distancing: stricter; Schooling: not in-person 
45 

(35 – 61) 

57 

(42 – 78) 

Social distancing: stricter; Schooling: in-person 
49 

(37 – 67) 

63 

(46 – 86) 

Social distancing: status quo; Schooling: in-person 
61 

(40 – 89) 

77 

(50 – 107) 
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Figure S7. Estimated weekly percent increase in incident and cumulative cases and deaths comparing status-quo 
in which there is substantially less compliance with social distancing during the end-of-year holiday period vs 
continuing observed compliance during the holiday period in MCMA. Vertical lines denote the start and end of 
less compliance with social distancing during the end-of-year holiday period. The error bars show the 95% 
posterior model-predictive interval of the percentage increases based on 1,000 simulations using samples from 
posterior distribution. 

 

 



4. Stanford-CIDE Coronavirus Simulation Model (SC-COSMO)
framework∗

*Additional contributors to the specific design and implementation of the SC-COSMO model described below are
listed in alphabetical order and include: Anneke Claypool, Michael Fairley, Valeria Gracia, Natalia Kunst, Andrea
Luviano, Yadira Peralta, Marissa Reitsma.
†All Members of the SC-COSMO Modeling Consortium provided support, input and/or helpful comments on our

work generally and are listed in alphabetical order here: Fernando Alarid-Escudero, Jason Andrews, Jose Manuel
Cardona Arias, Liz Chin, Anneke Claypool, Hugo Berumen Covarrubias, Ally Daniels, Mariana Fernandez, Hannah
Fung, Zulema Garibo, Jeremy Goldhaber-Fiebert, Valeria Gracia, Alex Holsinger, Erin Holsinger, Radhika Jain, Nee-
sha Joseph, Natalia Kunst, Elizabeth Long, Andrea Luviano, Regina Isabel Medina Rosales, Marcela Pomar Ojeda,
Yadira Peralta, Lea Prince, Marissa Reitsma, Neil Rens, Tess Ryckman, Joshua Salomon, David Studdert, Hirvin
Azael Diaz Zepeda.

1 Model description
The epidemiology of COVID-19 in the absence of treatment or vaccination can be described as a multi-compartment
susceptible-exposed-infected-recovered-susceptible (MC-SEIR) model with demography.1 In such a model, the ex-
posed (E) compartments represent individuals that are infected but who are not yet infectious, and the infectious (I)
compartments represent individuals that are both infected and infectious (i.e., can infect susceptibles (S) if a contact
occurs).1 Notably, by using multiple levels for the E and I compartments along with allowing for differential rates
of symptom onset and of detection (described in sections below), the model structure can also capture the possibility
of asymptomatic infectiousness as well as infectiousness varying over the course of infection. Figure S8 depicts the
generalized structure of the non-age-stratified MC-SEIR compartmental model (age structure described below). Each
of these compartments represents part of the population characterized by their COVID-19 status as a function of time.
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*Note: Background mortality rate (µ) from all model compartments (not shown)

Figure S8: Diagram of the SC-COSMO model.
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Figure S8 includes a number of important processes and for simplicity elides others that are included in the model
and that we will describe subsequently. In the figure, we see that people are born into the susceptible compartment S
at a rate b. Not shown explicitly, all people face age-specific background mortality rates (µ) from all compartments.
People can become infected at a rate λ and enter the exposed compartment E, progressing to becoming infectious I
before recovering and enteringR. Those who are infected face an excess risk of death from their COVID-19 infections
which may be reduced by proper and timely supportive medical care (pd and αDX , respectively). The figure shows
that the exposed and infectious compartments are stratified by severity level (l = 1, . . . , L) and by whether they have
been diagnosed (DX). We ensure realistic distributions of times in E and I by using a multi-compartment structure;
specifically, we have multiple E and I compartments, and rates of progression (σ) from E to I and (γ) from I to R
that are multiplied by the number of each type of compartments (J and K, respectively).1

For epidemics like COVID-19, both age-structure and household-structure are important to consider to appropri-
ately capture its dynamics.2 We next describe how these are incorporated into the model.

We begin with age-structure. Because it is important to model the age-dependent dynamics of COVID-19 contacts,
transmission, and case severity, we expanded the MC-SEIR model to include a realistic age structure (RAS) and
heterogeneous, venue-specific age-structured mixing outside of the household (we describe household mixing later).
We divided the population into N age groups where each a-th age group has its own set of Sa, Ej

l,a, EDXj
l,a, Ikl,a,

IDXk
l,a, and Ra compartments for a = 1, . . . , N . The total size of the population at time t is Pop which is the sum

across compartments, age groups, and all other stratifications noted above. Importantly, we term the components of
the model described up until now the “community submodel” (i.e., the non-household components) to differentiate
them from the “household submodel” which we describe next.

We provide an initial description of the household submodel and how it interacts with the community submodel.
The household submodel acknowledges that people are generally embedded within households. Such embeddings are
important to consider particularly because interventions have focused on shelter-in-place where people continue to be
exposed to contacts and transmission within their households even as their exposures outside of their households have
been reduced.

It is challenging to construct compartmental models that properly embed within-household and community trans-
mission. Approaches for doing this have been described previously for simple SIR models (e.g.,3). We extend the
prior approach in,3 combining it with our community submodel (the RAS MC-SEIR model) for COVID-19 to produce
an overall model of the population.

To describe overall transmission dynamics in the population, we first describe the key elements of the household
submodel, then the details of transmission in the RAS MC-SEIR submodel and how the household submodel’s trans-
mission is integrated into it, and finally provide full details about the household submodel. The key components of the
household submodel are: 1) once a given household’s members are all infected and/or recovered, no further transmis-
sion occurs within that household (unless there are births into the household); and 2) if households are not completely
isolated from one another such that community transmission is still occurring, then the within-household force of
infection (related to the household Secondary Attack Rate, e.g.,4) can drive additional community transmission. This
occurs through chains of transmission where one household member infects another and then, either member also
transmits to individuals in the community who are outside of the household. Through these key features, the house-
hold submodel generates a component of the overall force of infection which we term λHH . The details of this force
of infection are provided with the description of the household submodel below in equation (11).

1.1 Community submodel with transmission from household force of infection
The community submodel (the RAS MC-SEIR model) is described by a system of [(2 + 2L(J + K))N ] ordinary
differential equations (ODEs):
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dS1

dt
= bPop− (λ1 + µ1)S1 − λ1,HHPop1

dSa

dt
= − (λa + µa)Sa − λa,HHPopa for a = 2, . . . , N

dE1
1,a

dt
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rE
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1
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Ej
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l
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dt
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(
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l
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dIkl,a
dt

= γKIk−1
l,a + rI

k

(l−1),aI
k
(l−1),a −

(
rI

k

l,a + γK + νI
k

l + φI
k

l + µa

)
Ikl,a for k = 2, . . . ,K; l = 2, . . . , (L− 1)

dIkL,a

dt
= γKIk−1

L,a + rI
k

(L−1),aI
k
(L−1),a −

(
γK + νI

k

L + φI
k

L + µa

)
IkL,a for k = 2, . . . ,K

dIDX1
l,a

dt
= σJEDXJ

l,a +
(
νI

1

l + φI
1

l

)
I1
l,a − (γK + µa) IDX1

l,a

dIDXk
l,a

dt
=
(
νI

k

l + φI
k

l

)
Ikl,a − (γK + µa) IDXk
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L∑
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[(
1− pdl,a

)
γK

(
IKl,a
)

+
(
1− αDX

l pdl,a
)
γK

(
IDXK

l,a

)]
− µaRa,

(1)

where b is the birth rate into the youngest age class a = 1; σ is the rate at which exposed individuals in class Ej
l,a

progress to class Ej+1
l,a and also from EDXj

l,a to class EDXj+1
l,a for j = 1, . . . , (J − 1) and from the exposed class

EJ
l,a to the infected class I1

l,a and from EDXJ
l,a to IDX1

l,a; rE
j

l,a is the rate of developing a more severe infection for

individuals moving fromEj
l,a toEj

(l+1),a for each of the severity classes l = 1, . . . , (L−1); νE
j

l is the rate of detection

due to symptoms from which Ej
l,a go to EDXj

l,a for j = 1, . . . , J ; φE
j

l is the rate of detection due to screening from
which Ej

l,a go to EDXj
l,a for j = 1, . . . , J ; γ is the rate at which infectious individuals in class Ikl,a progress to class

Ik+1
l,a and also from IDXk

l,a progress to class IDXk+1
l,a for k = 1, . . . , (K−1) and it is also the recovery rate from the

infectious classes IKl,a and IDXK
l,a to the recovered class Ra; rI

k

l,a is the rate of developing a more severe infection for

individuals moving from Ikl,a to Ik(l+1),a for each of the severity classes l = 1, . . . , (L− 1); νI
k

l is the rate of detection

due to symptoms from which Ikl,a go to IDXk
l,a for k = 1, . . . ,K; φI

k

l is the rate of detection due to screening from
which Ikl,a go to IDXk

l,a for k = 1, . . . ,K; pdl,a is the proportion of infectious individuals in class IKl,a that die from
COVID-19; αDX

l is a reduction in the proportion who die from COVID-19 due to detection and appropriate healthcare
in severity class l; and µa represents the age-specific background mortality experienced from all compartments and
stratifications.

Given its main intended uses, the current model does not include immigration inflows into the population nor does
it include population aging. Its equations would require modification to consider such scenarios.
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Table 1: Description of variables, subscripts and superscripts

Symbol Description

Subscripts
a Age group {1, . . . , N}
l Severity levels {1, . . . , L}

Superscripts
j Number of exposed compartment {1, . . . , J}
k Number of infectious compartment {1, . . . ,K}

Variables
λa Force of infection at age group a overall
λa,HH Force of infection at age group a from household transmission
Sa Susceptible in age group a
Ej

a j-th exposed/infected in age group a; for j = 1, . . . , J

EDXj
l,a j-th detected exposed/infected in age group a; for j = 1, . . . , J and l = 1, . . . , L

Ikl,a k-th infectious in age group a; for k = 1, . . . ,K and l = 1, . . . , L

IDXk
l,a k-th detected infectious in age group a; for k = 1, . . . ,K and l = 1, . . . , L

Ra Recovered in age group a

1.1.1 Force of infection

The force of infection (FOI), λ, is the key quantity governing the transmission of infection within a given population,
defined as the instantaneous per capita rate at which susceptibles acquire infection. FOI reflects both the degree of
contact between susceptibles and infectious individuals and the transmissibility of the pathogen per contact. Because
contacts can happen in a variety of different venues (1, ..., V ) that may be differentially reduced under particular
intervention scenarios (e.g., school closures reduce school contacts), we actually construct λ as

∑V
v=1 λ

v for all non-
household venues. The model also incorporates a force of infection from household transmission, λHH , which we
define separately from the other components of the FOI in the description of the household submodel below in equation
(11).

The FOI λva (for the non-household venues) represents the venue-specific rate of disease transmission from infec-
tious people in all age groups to susceptibles in age group a,5 and likewise, we define the age-group specific FOI for
household transmission λa,HH . Overall, the non-household λva is defined for the COVID-19 RAS MC-SEIR model
from a particular venue v as

λva =

K∑

k=1

[
N∑

a′=1

βk
aW

v
a,a′

(
L∑

l=1

Ikl,a′

Pop

)
+

N∑

a′=1

fβk
aW

v
a,a′

(
L∑

l=1

IDXk
l,a′

Pop

)]
; a = 1, . . . , N, (2)

where the transmission rate, βk
a , describes the probability that an infected individual of age a′ who is k days into his

infectious period will infect a susceptible of age a per unit of time and W v
a,a′ is the {a, a′} entry of the venue-specific

Who-Acquired-Infection-From-Whom (WAIFW) matrix,W v , and f ∈ [0, 1] is a reduction factor in transmission from
infectious individuals that are diagnosed (due for example to quarantine and isolation). As shown in equation 2 by the
fact that we are summing over infection severity levels l and that we do not have separate β parameters by severity
level, the current model makes no assumption about severity level-specific differential transmissibility other than the
indirect effect that more severe infections are more likely to be diagnosed and hence may transmit less frequently post
diagnosis. In fact, the current model assumes that β is a single constant value.

Each W v has N2 elements, representing mixing between each pair of age groups in the model at that venue. The
venue-specific FOI in equation (2) for λv is therefore a system of N equations that can be represented in matrix form.
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1.2 Household submodel
As with,3 the household submodel tracks the proportion of households whose members are in various disease states of
COVID-19’s natural history. For example, of all households in a given population at some time during the simulation,
5% of 3-person households might have 1 member susceptible and 2 members recovered (HH(S=1,...,R=2)). More
generally, we denote the proportion of households whose members are in any combination of natural history states
(i.e., counts of members in each state which we abbreviate sc for state counts) as HHsc where 1 =

∑
scHHsc.

The number of distinct proportions (HHsc) that represent households with different state counts grows rapidly
with both household size (hhsize) and with the number of natural history states (states). In fact, the equation for the
number of household proportions (and hence differential equations) with a fixed household size is:

ODEs =
(hhsize+ states− 1)!

(hhsize!(states− 1)!)
. (4)

To keep the number of household types, and hence ODEs, manageable, we make a number of simplifying assump-
tions. First, we assume that all households are the same size as the average household for a given location, rounding
the average household size to the nearest whole integer (e.g., hhsize = 3 for counties in California and likewise
for Mexico City Metropolitan Area, Mexico). Second, we assume that the age composition, distribution of infection
severity, and fraction of infections that are detected are the same across households; therefore, while the household
submodel retains the multi-compartment structure for exposed E and infectious I states, it does not explicitly stratify
by age of household members, nor does it explicitly differentiate between undetected and detected (DX) infections or
severity levels of infection.

The household submodel’s initial state is computed in a manner that corresponds with the community submodel’s
initial state. For a given size of the total population at the start of the community model Popt=0 under the assumption
of all households being size hhsize = hhsizeavg, the number of households is Nhouseholds = Popt=0/hhsizeavg.
If there is one person in the E1 state in the entire population, then the fraction of households that have an infected
member is 1/Nhouseholds and the remainder are households with all susceptibles: (Nhouseholds−1)/Nhouseholds. For
other starting conditions (i.e., more than one exposed, infectious, or recovered individual) this initialization generalizes
easily under the assumption (which we make) that the initial few infections are not correlated within household (i.e.,
if there are 3 infections they would be in 3 separate households).

The household submodel’s dynamics include: progression, recovery, within-household and community-household
transmission, births, and deaths. Modeling many of these dynamics in the household submodel is somewhat more
complicated than in the community submodel because the household submodel tracks the fraction of households in a
set of discrete states characterized by counts of members in each natural history state and has multiple exposed and
infectious compartments relevant for progression and recovery.

The intuition of how the household submodel handles progression and recovery is given in the following set
of examples. In a simplified example ignoring the multi-compartment nature of the exposed and infectious states
and considering only progression, if there are 4 household members (1 susceptible, 3 exposed, 0 infectious) at a
given time, then it is possible that 0, 1, 2, or all 3 of the exposed members will progress to infectious on a given
day. Hence, the possible states that this household could go to include (1 susceptible, 3 exposed, 0 infectious),
(1 susceptible, 2 exposed, 1 infectious), (1 susceptible, 1 exposed, 2 infectious), or (1 susceptible, 0 exposed, 3
infectious). In the example, the frequency of households moving to each of the states follows a binomial distribution
with the probability related to the rate of progression (σ). In a similar example considering multiple exposed and
infectious compartments in the MC-SEIR model, the binomial distribution’s probability is then related to σJ ; and if
there are household members in several of the multi-compartment exposed states, the general form of these resulting
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frequencies of household states follows a convolution of binomial distributions. This is likewise the case for recovery
where, in the multi-compartment model, the frequencies of resulting household states also follow a convolution of
binomial distributions with probability related to γK.

In the examples for progression and recovery above for models of counts of household members where E and/or I
are multi-compartment, resulting counts of household members in states follow a convolution of binomial distributions.
The details of this calculation in a general form are given here. Consider C individuals (i.e., the members of a
household) each in a Markov chain with states Xc

t ∈ {1, . . . ,M} for c ∈ {1, . . . , C}. The M states in our case are
those in the MC-SEIR model. The Markov chain has the following transition probabilities (where for simplicity we
have set the probability of flow from R to S equal to 0):

P (Xc
t+1 = Xc

t + 1 | Xc
t ) = p, Xt = 1, . . . ,M − 1 (5)

P (Xc
t+1 = Xc

t | Xc
t ) = 1− p, Xt = 1, . . . ,M − 1 (6)

P (Xc
t+1 = Xc

t | Xc
t ) = 1, Xt = M (7)

In other words, for all states except the last, with probability p, each individual progresses from Xt to Xt+1 (e.g.,
E2 to E3 or from E3 to I1) and with probability 1− p the individual stays in the same state. Individuals remain with
certainty in the last (M th) state after progressing to it.

Having considered each individual, we now consider counts of household members. Let Y m
t be the number of

individuals in statem at time t. We consider a new Markov chain with state (Y 1
t , . . . , Y

M
t ). The transition probabilities

can be calculated as follows. Given a transition from state (Y 1
t , . . . , Y

M
t ) to state (Y 1

t+1, . . . , Y
M
t+1):

1. For each of theM−1 transition arcs in the underlying Markov chain, find the number of individuals transitioning
from state m to m+ 1, denoted ∆t(m,m+ 1) for m < M .

2. The probability of the transition is then a (convolution of) binomial distribution(s):

M−1∏

m=1

(
Y m
t

∆t(m,m+ 1)

)
p∆t(m,m+1)(1− p)Y m

t −∆t(m,m+1) (8)

To find the value of ∆t(m,m+ 1), use the following backwards recursion:

∆t(M − 1,M) = YM
t+1 − YM

t (9)
∆t(m− 1,m) = Y m

t+1 + ∆t(m,m+ 1)− Y m
t (10)

In other words, for each source state (e.g., E2) which at time t might have h household members in it, 0, 1, . . . ,
h members may progress to E3 at time t + 1 with the rest remaining in E2. The counts of progressors are binomial
distributed. However, if there are also some household members in E3 at time t then the count of people in E3 at time
t + 1 is more complicated because it depends on the count of the progressors from the first example as well as the
count of the non-progressors among those in E3. Hence, we arrive at a convolution of binomial distributions as the
general description provided in equation (8) with a simple binomial distribution for cases where there are individuals
in one source state and none in the destination state at time t.

There are both within-household and community-household transmission routes in the submodel. Within-household
transmission involves infectious household members infecting susceptible household members. Community-household
transmission involves infectious individuals in the community (people who are not household members) infecting sus-
ceptible household members. Within-household transmission is related to three components: a) the current number
of infectious household members; b) the rate of contact between household members; c) the probability of within-
household transmission given household contacts (τ ). The number of infectious individuals in the household is given
directly by the household compartment being considered. The number of daily household contacts is computed from
the household mixing matrix for the given jurisdiction that we estimate as described below. Finally, note that be-
cause the intensity of household contacts may differ from contacts in the community, the probability of transmission
conditional on household contacts differs from the probability of transmission given community contacts (β) that we
described above.
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Like the community submodel, the household submodel also includes birth and deaths but in a manner that is
more simplified. First, since the household submodel considers proportions of households, it assumes that births
equal deaths since we want the sum of the proportions to equal 1 at all times (i.e., the number of households may
increase even as the proportions remain the same). Second, the household submodel assumes that the fraction of all
deaths that are due to COVID-19 is relatively small and hence exposes households to an average background mortality
rate (consistent with the jurisdiction that the community model is representing). Hence, there is an outflow from all
household submodel compartments at this death rate proportional to the fraction of all households they represent,
which determines an inflow of births that is spread proportionally across household compartments representing only
those with at least one susceptible member (i.e., newly born individuals are assumed to be born susceptible).

The household submodel must make certain approximations because it does not explicitly stratify by age structure
nor does it do so by diagnosis status of infectious individuals. This has several implications. The first is that contact
rates with household members and also with community members are age-weighted averages of sums of contacts
across ages in the corresponding venue-specific WAIFW matrices that are described above yielding contactsHH . The
second is that the community force of infection in the household submodel comprises age-weighted averages of forces
of infection from infectious and detected infectious individuals in the community submodel. The third is that just as
β is scaled by f in the community submodel for individuals who are infectious and detected, so too τ is scaled by
the same constant for within-household transmission yielding τ ′. However for scaling τ to produce τ ′, the fraction of
household infectious contacts to which this scaling factor applies is assumed to be the same as the fraction of prevalent
infectious individuals who are currently detected in the community submodel.

With this description of the household submodel, we can now define the household force of infection, λHH , which
connects the dynamics of the household submodel back to the community submodel. λHH depends on the number
of within-household contacts between susceptible and infectious members and the probability of transmission given a
household contact (τ ′). Within each household, we define the rate of new infections:

infectionHH = τ ′ ∗ contactsHH ∗
∑

sc

HHsc

(
infectiousHH,sc ∗ susceptibleHH,sc

hhsize

)
, (11)

which is the weighted average of within-household transmission (higher where there are more infectious and suscepti-
ble individuals simultaneously present in the household) where the weight is the fraction of households who have these
counts of infectious and susceptible members. The infections generated by household transmission, infectionHH ,
are not age stratified nor are they scaled to the overall population size so we multiply the rate by the size of the popu-
lation and then spread the new infections flowing from Sa to Ea based upon the proportion of the overall susceptible
population in each age group a at time t. This produces λa,HH which we include in the community submodel above.

We presented further details of this approach at the 2020 Society for Medical Decision Making Annual Meeting.6

1.2.1 Epidemiologic parameters

The epidemiology of COVID-19 is being elucidated at a rapid rate. Key epidemiological parameters include the
latent period (i.e., time spent infected but not yet infectious); the incubation period (i.e., time spent infected but
without symptoms); and the infectious period (time spent infectious prior to recovery). Data from7–9 suggest that
there are periods of time where some individuals are infectious but asymptomatic and also where some individuals are
symptomatic but not yet infectious.

We use the Exposed (E) compartments and Infectious (I) compartments to capture the latent and infectious periods,
estimating the distribution of their duration based primarily on.8 Specifically, we obtained the data and code from the
publications to regenerate the empirical distribution of outcomes in their sample. Then, we fit gamma distributions for
the distribution of durations of the latent and infectious periods respectively (latent shape and rate parameters (9.00,
3.00); infectious shape and rate parameters (2.18, 0.70)). These yield mean durations of latency and infectiousness of
3 days (1/σ) and 3.12 days (1/γ) respectively. For the latent period, 95 percent of people have durations between 1.5
and 4.9 days. For the infectious period, 95 percent of people have durations between 0.6 and 7.0 days.

We need to determine the numbers of E and I compartments for our MC-SEIR model. This is important because
the distributions of duration in a compartment are not exponential (what will result if there are only single E and I
compartments respectively) but rather to be realistic and consistent with the empirical data by having multiple com-
partments they will be gamma distributed.1 The number of compartments for E and for I must be positive integers
and should in general be less than or equal to the average duration. We sample from the gamma distribution that is
parametrized in terms of number of compartments and average duration from,1 selecting the number of compartments
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whose distribution is as close to those fit to the data from8 in the previous step (i.e., we minimize the sum of square
errors across the support of the distributions). We find that the best fit is achieved with 3 E compartments and 2 I
compartments.

To connect symptoms to our exposed compartments (E) and infectious compartments (I), we use the idea of severity
classes l that index the E and I compartments to denote asymptomatic (l = 1) and symptomatic (l = 2) individuals.
Similar to how we estimate durations of latency and infectiousness, we estimate the incubation period as a gamma
distribution, fitting to the data from7 (incubation shape and rate parameters (2.97, 0.59)) and also considering.9 This
yields a mean duration of incubation of 3 days with 95 percent of people having durations between 1.0 and 12.0
days. Notably, this implies that the incubation period can differ in duration from that of the latent period. We use
the incubation duration to inform the rates of change from lower severity classes to higher severity classes (i.e., rates
of transition from being asymptomatic to developing symptoms

(
rE

j

1,a, r
Ik

1,a

)
). By examining the cumulative density

function for the gamma distribution of incubation duration, we can determine the fraction of people at the beginning
of each day since infection who are still asymptomatic and the daily change in the cumulative fraction of people who
become symptomatic. These can be used to compute a daily rate of becoming symptomatic from the CDF which is
initially accelerating, rising from 0.024 on the first day to 0.106 on the second, 0.186 on the third, 0.248 on the fourth,
0.296 on the fifth, etc..

We note that in the absence of mass population screening or random population screening, it is likely that symp-
tomatic individuals (i.e., those in higher severity classes, l = 2) are more likely to be diagnosed and hence diagnosis
rates (ν) depend on an individual’s symptom status (described in detail in the sections below). While the model also
allows for the possibility of diagnosis via active screening (φ), generally we set this rate to 0 for the historic periods to
which we are calibrating.

We continue to actively review the literature to further update these parameter values as well as their uncertainties.

1.2.2 Demographic parameters

To model a given population, the main groups of demographic parameters required include: 1) the total size of the
population; 2) the age structure of the population (fraction of the total population in each age group); 3) the crude birth
rate; 4) the age-specific background mortality rates (i.e., mortality due to all causes other than COVID-19); and 5) the
ingredients to compute adjusted population density (total land area, urban land area, and fraction of total population
living in urban areas). All of the above groups of demographic parameters are obtainable from public sources for
many national and subnational geographic areas (i.e., counties of the United States or states of Mexico). However,
adjusted population density deserves specific attention here because of its role in the model inputs and therefore how
we specifically compute it.

For our modeling purposes, we are interested in population density because we wish to reflect the expected intensity
of mixing between people (contacts per unit time) with higher density implying more intense mixing (discussed in
further detail in the section on contact matrices below). Because of this, we opt for an alternative definition to those
typically used for population density. Instead of defining population density as total population divided by the total
area of a given jurisdiction or even the total population divided by the total land area (excluding water and other
uninhabitable places), we focus on adjusted (weighted) population density.

Adjusted population density depends on the following inputs: land area and the fraction of the population living
in urban areas. Land area (as opposed to total area) is important because we want to know how many people there
are per unit area in potentially livable places. Fraction urban is important because urban areas typically occupy a
small fraction of the total land area but can contain a high fraction of the population leading to very high densities
(e.g., New York City has a population density in excess of 50,000 people per mile2). Typically we would then assume
that a relatively small number of square miles houses the fraction of the population that is urban multiplied by the
total population yielding a high density and that the remaining rural population’s average density is its size divided
by the remaining land area. We then either model urban and rural populations separately or else take the average of
their densities weighted by the fraction of the population that is urban/rural which will generally be higher than just
dividing total population by the land area. To reflect relatively local differences, we try obtain such parameters at the
finest geographic level possible which is typically county-level or state-level and likewise model at the finest possible
geographic level.

While multiplying total population by percent urban yields the urban population, a challenge of this method for
constructing the population-weighted density is knowing how much of the land area is urban land area. It is often
possible to obtain lists of cities (e.g., for Brazil or Mexico) or urban and rural census tracts (e.g., for the U.S.) and
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their populations and land areas along with the state and/or county to which each city (or census tract) pertains. One
can then compute the density of the urban population in each of the geographic areas and likewise the rural density by
subtracting the urban land area from the total land area and the urban population from the total population. With these,
one can then compute a population weighted average based on the relative sizes of the urban and rural populations.

For our applied analyses, we have obtained demographic parameters from publicly available sources: For example,
for counties and states in the United States, we use: county population size and age structure from 2018;10 state-specific
life tables;11 and county urban/rural status, land area, and population density.12 Other specific countries on which we
are implementing the model have their own sub-national sources. For other countries at a national level we use.13, 14

1.2.3 Estimation of contact matrices

To model potential transmission between subgroups, we use a contact (WAIFW) matrix approach. Entries in our
contact matrix are the number of daily sufficient contacts a person in a given age group has with people of each age
group in the model. A sufficient contact is defined as one that is close, long, and/or intense enough so that transmission
could occur if one of the individuals was infectious and the other susceptible.

A data challenge for many sub-national populations is that there are no contact matrices estimated based on empir-
ical data sampled from them; hence we develop an approximation method based on available data to estimate contact
matrices. Specifically, we use publicly available national-level contact matrix estimates15 along with epidemiologi-
cal theory on how contact frequency/intensity depends on density in terms of functional form based on studies from
several other human and animal diseases.16, 17

We start with Prem et al.’s estimates of 152 national-level household and non-household contact matrices (total
minus household contact matrices), W v , whose structure is defined in (3), we compute average national-level age-
weighted (based on population age structure) household and non-household contact rates defined as

ratevcontacts,weighted =

N∑

a=1

pa

(
N∑

a′=1

W v
a,a′

)
. (12)

Each entry in the matrix W v represents the number of venue-specific contacts per day by a person of age group a
with people of age group a′. We sum the number of contacts that each age group a has over contacts for all the age
groups and then compute the weighted average with weights equal to pa, the proportion of the population in age group
a.

As epidemiological theory suggests that contacts are related to population density, we estimate this relationship
using a regression approach. We determine the population density of each country based on its urban population, urban
land area, rural population, and rural land area, using these to compute the urban and rural population densities and the
population-weighted average density.18 We then take the natural logarithm of these densities for the regression. We
regress the non-household contact rates on the logged population-distribution weighted density, to establish empirical
estimates of the concave relationship for non-household contacts and no such relationship for household contacts per
theorized relationships as described by Dalziel et al and Hu et al.16, 17

The results of this regression provide us with two coefficients (the intercept and the slope for the log-density)
which enable us to predict expected weighted average contacts for a population with any density. Our method makes
use of the slope coefficient for the log-density.

For each of the 152 countries for which we have data, we employ the following procedure to form sub-national
non-household contact matrix estimates (e.g., county-specific contact matrix estimates in the U.S. or state-specific
contact matrix estimates in Mexico).

First, for each sub-national geography, we determine the population average weighted density which we transform
using the natural logarithm. Next, we define a country-specific prediction equation using the slope coefficient from our
regression above and determining the intercept based upon passing through the national-level population age-weighted
non-household contact rate at the national-level log-density. With this prediction equation and the sub-national logged
densities we generate sub-national predicted non-household contact rates. We take the ratio of the sub-national rates
to the national rates to produce a regression-predicted density adjustment factor for each sub-national geography.

In addition to these density adjustment factors, in order to produce sub-national non-household contact matrices,
we require a representation of the country’s non-household contact matrix that is independent of its population age
structure (a homogeneously mixing population whose subgroups are not all of equal size will have more people mixing
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with the more prevalent subgroups even without any assortative preference). To remove the age structure, we divide
each age group’s vector of age-specific contact rates (the W v

a,a′s for each a and for all a′s) by the proportion of the
population in each age group (p′a).

For each sub-national geography, we then multiply the age structure-removed non-household country-level contact
matrix by the corresponding sub-national regression-predicted density adjustment factor; and finally, we multiply the
population proportions from the sub-national area (its p′as) by the entries in the matrix to compute a matrix of appro-
priate contact frequency with the same underlying assortative preferences for between-group contacts in a population
of the sub-national area’s age structure.

Since the SC-COSMO model considers several different who mixes with whom matrices for non-household con-
tacts (current venues include school, work, and other), the extension to the method above that we use in practice is
that once we have computed the regression-predicted density adjustment factors for each sub-national geography, we
apply them separately to each of the venue-specific national non-household contact matrices (after first removing the
national population age structure from these matrices). We then apply the sub-national population age structure to all
of the resulting matrices. This yields a set of venue-specific sub-national non-household contact matrices that depend
on the sub-national geography’s weighted population density and population age structure.

We presented further details of this approach at the 2020 Society for Medical Decision Making Annual Meeting.19

1.2.4 Excess Mortality and Case Fatality Rates

Excess mortality risk due to COVID-19 infection (the Infection Fatality Rate [IFR]) is difficult to determine with
currently available data because both the population at risk (i.e., denominator) and the number of observed COVID-19
deaths are limited to those individuals who are diagnosed with COVID-19. What can be computed directly from these
observed quantities is the Case Fatality Rate (CFR) and its extension, the age-specific CFR. However, the CFR and its
age-specific versions are likely overestimates of the corresponding IFRs in many situations. The reasons for this are
several. First, CFRs do not include undiagnosed COVID-19 infections and deaths. Second, diagnosis without active
surveillance selects for more severe cases which are more likely to die. Below we describe our current approach for
quantifying deaths from COVID-19.

Furthermore, the overall CFR (or IFR) estimated in one population is also likely to be a biased estimate for other
populations if their population age structures – specifically the age structures of COVID-19 cases/infections – differ
substantially. This is because the overall CFR (or IFR) is a weighted mean where the weights are proportion of people
in each age group at risk. Hence, we prefer the age-specific versions of these quantities, especially when transferring
them from one population to another. An additional source of potential bias is that supportive medical care may modify
the age-specific probabilities of death from COVID-19, and in some settings (e.g., low resource settings vs. wealthier
settings) such differences could also be substantial. While we currently do not have a formal method for correcting for
this sort of potential bias, we imagine an approach that incorporates measures/proxies of healthcare system efficacy
relevant for conditions like COVID-19 and perhaps differences in mortality for other conditions (e.g., hospitalized
pneumonia in general).

Our goal is to generate a set of age-specific COVID-19 mortality rates that are consistent with what has been
described in the literature and how it is estimated, consistent with time-series of observed COVID-19 deaths in the
jurisdictions we are modeling, and which is robust to potential changes in detection rates. We examine a variety of
published sources on IFR and CFR including20 along with the case series and death series from jurisdictions like
counties in California and states in Mexico.

Additionally, aside from the fact that diagnosed individuals may receive supportive medical treatment, we want
to ensure that the likelihood of death for any given individual is the same regardless of diagnosis status – that is,
that if we randomly tested 10% versus if we randomly tested 20% of the population and examined the fractions of
people who are infected with COVID-19 who die under each testing scenario, they should be the same. In reality, in
many settings, testing is not done on random samples of the population and very likely is concentrated in individuals
with more acute illness, those of certain ages, and other characteristics. For this reason, we allow testing rates to
differ by such characteristics and over time. Most importantly for our explanation here, we allow testing (and hence
diagnosis) to differ by severity level of illness and within a given severity level assume that death rates would be equal
for individuals who are detected or not detected (if effective, supportive medical care were not given).

Currently the model assumes that for people with COVID-19 infections and no symptoms (i.e., severity level 1),
the excess risk of death from COVID-19 is 0 (i.e., CFRl=1,a = 0). For individuals who have developed symptomatic
infections, there is an excess risk of death from COVID-19 (CFRl=2,a > 0) which is not currently strongly modified
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by supportive medical care (αDX
l=2 = 1) and that excess death risks have declined in time as testing and detection rates

of somewhat less severe cases within severity level 2 have increased. When detailed and comprehensive data on the
timing and mortality status of cases is available (as is the case in Mexico City Metropolitan Area and other states in
Mexico), we estimate time-varying case fatality rates using statistical regressions. In other cases, we calibrate these
excess death rates to observed, jurisdiction-specific time-series on COVID-19 deaths.

For settings like the United States, the CDC and other departments of health have published outcomes including
case fatality rates for an initial cohort of individuals as well as other information suggesting infection fatality rates,
and additional data are increasingly becoming available in the published literature as well as through state reporting.
We will continue to gather information to update excess mortality risks as new data become available.

1.2.5 Case detection rate

Just like fatality rates, detection rates are challenging to estimate because we lack an important component of the
denominator, the total number of prevalent infections that could be detected if perfectly sensitive and specific testing
were applied to all of them. The metrics that are more commonly reported are: 1) the time-series of total tests
performed; 2) the time-series of the fraction of people tested who are positive for COVID-19. But the relationship
between the commonly reported metrics and the detection rate is likely time-varying and confounded by a number of
other factors.

To begin to get a sense of the possible confounding and complexity, one can imagine the process (ignoring age
groups) as the following. At a given point in time, people who are infected with COVID-19 have a range of symp-
toms/severity. All else equal, we would expect people with more severe symptoms to seek testing more frequently.
However, we would also expect people with other Influenza-like Illnesses (ILIs) or who may believe they were ex-
posed to COVID-19 to also be more likely to seek testing. For both groups, those who seek testing/care will interact
with the healthcare system. At a given point in time, the system has specific criteria for testing (which may or may
not be strictly followed) as well as a supply constraint on the number of tests they can perform. So the number of
potentially true and false positive individuals who are tested depends on these factors and hence the case detection rate
is likely time-varying and challenging to determine.

We have described our approach to putting bounds on the detection rate based upon logical constraints and available
data on the testing capacity time-series and other modeling, which was presented at the 2020 Society for Medical
Decision Making Annual Meeting.21

1.2.6 Risk of hospitalization and conditional risk of requiring ICU given hospitalization

Risks of hospitalization depend on setting. For example, Verity et al. 202020 report risks of hospitalization conditional
on infection for COVID-19 patients in China which can differ from those in Mexico or in the United States. Because of
this, for specific geographic areas/populations whose healthcare system characteristics may differ, we try to incorporate
local data whenever they are available and of sufficiently high quality. It is possible to estimate probabilities and other
quantities required by the hospitalization module directly from data that is sufficiently detailed as we do with data from
Mexico City Metropolitan Area. For remaining quantities (potentially time-varying) required by the hospitalization
module, it is possible to calibrate them based on time-series of hospitalized prevalence (e.g., daily COVID-19 bed
census).

For detected COVID-19 positive individuals who are hospitalized, some fraction will ultimately have more severe
illness than others. Depending on illness severity, hospitalized patients have a risk of being placed in the intensive
care unit (ICU) or requiring a ventilator. Depending on severity and ICU or ventilator status, patients have different
length of stay distributions. Hospitalized COVID-19 prevalence at any given point in time is therefore determined by
the number of incident cases entering the hospital each day prior to this point in time and the fraction of those people
remaining in the hospital for a sufficient length of time such that they have not yet exited (i.e., leaving due to death or
discharge):

Hosp(T ) =
∑

a


∑

t≤T

IncDXa,t ∗ pHospa,t


∑

s,i

propa,s,i(1− CDFa,s,i(T − t))




 (13)

where T is the date for which we are interested in knowing the census of hospitalized COVID-19 patients (Hosp); t is
a date that happens on or before T ; a is an age group; IncDXa,t is the number of individuals with incident diagnoses
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of COVID-19 for each age group on each date; pHospa,t is the probability of hospitalization among individuals with
diagnosed COVID-19 of a given age group diagnosed on a given date; s indexes more or less severe hospitalized
illness; i indexes ICU and non-ICU treatment; propa,s,i is the proportion of hospitalized COVID-19 patients of a
given age group whose illness is more or less severe and who are or are not treated in the ICU; and CDFa,s,i is the
cumulative density function of length of stay in the hospital for COVID-19 admitted patients conditional on age group,
severity, and ICU status for which we use gamma distributions. For Mexico City Metropolitan Area, we extend this
approach to have these length of stay distributions depend on the date at which hospitalization occurs.

From above, IncDXa,t is clearly specific to particular geographic areas. Likewise, the probabilities of hospital-
ization, the severity and ICU mixture of hospitalized patients, and the length of stays for each patient group likely vary
with local geography. Reports on severity, ICU and length of stay include studies by Guan et al. 2020 and Lewnard
et al. 2020 among others.22, 23 In brief, Guan et al. report the number of hospitalized patients within each of their
age categories who are severe or non-severe. From these and similar sources, we are able to compute quantities like:
the age-specific probability a hospitalized patient was severe; the probability of requiring ICU care conditional on
severity (which does not appear to be strongly conditional on age once severity is taken into consideration); and length
of stay distributions overall by age as well as distributions of additional time spent in the ICU. These quantities can
inform the parameters in the model above (e.g., length of stay estimates inform the CDFs; conditional probabilities of
severity inform the proportions facing different lengths of stay; etc.) when direct jurisdiction-specific quantities are
unavailable. The likelihood of hospitalization conditional on detection is observed in some data sets (e.g., states of
Mexico) but must be calibrated (e.g., counties in California).

1.2.7 Interventions to reduce transmission

The model currently includes non-pharmaceutical interventions (NPIs) which represent various forms of social dis-
tancing and masking (i.e., they act to reduce contacts and/or the probability of transmission given contacts). The size
of the intervention’s effect can vary across age group. Interventions have start and end times. Time-varying interven-
tion effects can therefore be constructed by defining a series of interventions whose start and end times bookend one
another and whose effect sizes can be different from one another. For example, an intervention may have a strong ef-
fect at the time when shelter-in-place orders were implemented but over time with re-openings its effect may attenuate
somewhat depending on continuing compliance with mask orders.

In general, modeled interventions can reduce effective contacts differentialy by venue. The intervention has no
effect on within-home contacts between household members. The intervention reduces contacts at work and other
venues proxying a variety of changes: e.g., greater distances and masking in outdoor locations like parks, more work-
from-home, business conducted outside, masking, and limits on the percentage capacity at which in-person businesses
are allowed to operate. Modeled interventions have two variants with respect to school contacts. The intervention can
be accompanied by school closures in which case there are no school contacts or else it can allow return to school with
some level of resumed contacts relative to pre-COVID school contact levels.

Another category of intervention effect is how well isolation of detected cases can occur. As noted above, the
model allows for a parameter that reduces contact/transmission for detected infectious individuals.

A final intervention category includes vaccines, of which a number of candidates are currently in phase 3 trials
but none have been approved to date. Current implementation work is extending the model’s capability to include
vaccination. This implementation work includes a vaccinated compartment in the model, creating realistic timing and
targeting of vaccination coverage scale-up, allowing for partial effectiveness and potentially waning vaccine immu-
nity which may differ from naturally acquired immunity, and incorporating vaccination effects within the household
submodel.

Parameterization of the NPI interventions is challenging because there are currently no direct measures on the
effect of interventions on effective contact frequencies, duration, or intensity. A variety of sources are attempting to
measure parts or proxies of this. The simplest are surveys of people asking them about how they have changed a
variety of their activities, how much time they spend in their homes, and for what reasons they go out. Simple indirect
measures include quantities like the amount of air population measured by area which shows declines in commuter
traffic and other production that yields emissions but does not show which types of trips are being curtailed. More
sophisticated measures focus on contacts (e.g., the collocation of cellphones based on triangulation from towers or the
location information of devices running various apps or the temporal proximity of credit card purchases by different
purchasers at the same store) or on mobility with or without collocation (e.g., the fraction of time that someone’s
device is not in the location it is during typical sleeping hours or the number of devices on public transport, or how
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far devices travel away from home). Average changes in these measures compared to pre-COVID levels either by
individual or by geography all form estimates of components of reductions in contacts sufficient to transmit COVID.
For many of these measures, at least in California counties, there are average reductions of 10-70 percent or more
which differ by county. What has not been reported to date are measures of individual (or small area) variance of such
reductions within county, which are likely important for considering potential transmission among subgroups who
must go out of their home (e.g., essential services providers) or who do not comply and then secondary transmission
from these groups. Furthermore, when people are mobile or collocate it is not clear from these measures whether they
are taking more or less precautions such as masking.

We currently use a composite approach to determine the timing and effect size of interventions by geographic
location. This involves extracting needed information from mobility data and model calibration (described below).
Currently we use multi-location mobility time-series data from sources like Google Mobility Trends and FourSquare
to determine when, after NPIs were first implemented, these time-series change. For example, directly after NPI
implementation when lock-downs were often in effect, the amount of travel to work locations dropped dramatically
but that effect attenuated over the next month or so and then with re-openings and second viral waves may have
fluctuated. By analyzing location-specific mobility time-series we determine when there are change-points for the
modeled intervention intensity in a given geographic location. However, because changes in mobility patterns do not
necessarily correspond to the full range of changes in contacts nor to how people may increase mask use for the same
number of contacts, we use model calibration to incidence data to inform the effect sizes for each segment of the
time-varying, geography-specific intervention effects. Additionally, we use and have recently made open source and
public a dataset containing county-specific information on public health orders, categorized by the type of activity(s)
they pertain to and the level of strictness.24

2 Calibration
A challenge for many mathematical simulation models is that they may require input values that are unobserved
or unobservable due to financial, practical, or ethical reasons. In such situations, model calibration can be used to
infer these values. Specifically, calibration is the process of estimating values for unknown or uncertain parameters
of a mathematical model by matching its outputs to observed clinical or epidemiological data (known as calibration
targets). The general goal of calibration is to identify set(s) of parameter values that maximize the fit between model
outputs and the calibration targets.25, 26

For the SC-COSMO model, calibration is required for a number of parameters that are not directly observed. These
include the community transmission rates (βk

a ), the household transmission rate (τ ), the time-varying case detection
rates

(
νE

j

l and νI
k

l

)
, and the time-varying, venue-specific effects of interventions on community transmission rates

(κvt ). Generally priors on parameters are defined based on existing knowledge about their values.27 As there is sub-
stantial uncertainty in these input parameters, we employ uniform prior distributions for each. The prior distributions
are uncorrelated, and they are relatively wide to reflect the underlying uncertainty. The prior ranges are defined for
particular settings (i.e., the prior ranges for counties in California may differ from those used for the states of Mexico).

Calibration targets are formed by time-series of incident detected case counts both prior to and after the implemen-
tation of NPIs. As the targets are counts, we construct a likelihood function by assuming that the calibration targets
(yi,t) are Negative Binomial distributed

yi,t ∼ NegBin (µi,t, sizei) (14)

where µi,t is the model-predicted output for each type of target i (e.g., case count) at each time t and sizei is the
dispersion parameter such that

probi,t = sizei/ (sizei|µi,t)

variancei,t = µi,t +
(
µ2
i,t/sizei

) (15)

per alternative parameterizations of the distribution.
We use two main algorithms to find set(s) of input parameters that cause the model’s outputs to match the cal-

ibration targets. The first is the incremental mixture importance sampling (IMIS) algorithm,28, 29 which has been
previously used to calibrate deterministic health policy models.30–32 An advantage of IMIS over other Monte Carlo
methods, such as Markov chain Monte Carlo, is that with IMIS the evaluation of the likelihood for different sampled
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parameter sets can be parallelized, which makes its implementation especially suitable for an high-performance com-
puting (HPC) environment such as the ones used for SC-COSMO calibration. The second is the Nelder-Mead (NM)
algorithm.33 This directed search approach is efficient at identifying critical points with complex models because it
is gradient-free and guarantees convergence to locally optimal solutions. To identify multiple sets of parameters that
are consistent with the calibration targets, we start the NM-based calibration from multiple random starting locations
within our prior space. For both algorithms, when we are only interested in identifying a single, best-fit parameter
set without running the sampling algorithm, we adopt a Laplace approximation where we compute the posterior mode
often called the maximum a posteriori (MAP) estimate, by maximizing the logarithm of the posterior, and use the
MAP estimate (instead of the mean) as an approximation of the parameter set θ. The inverse of the negative Hessian
of the logarithm of the posterior can be used to measure the uncertainty of this approximation.34–38 In the case of
the SC-COSMO model, we use not only the mean and hence use the calibrated posterior parameter distributions for
projections and analyses of scenarios.

3 Outcomes of interest
All the compartments in our models are variables that depend on time, t; however, we omit this index to simplify the
notation. We also omit the index, l, referring to severity levels of exposed and infectious compartments as well as
diagnosed exposed and infectious compartments.

3.1 Demographic outcomes
3.1.1 Population

The age-group-specific population, Popa, is given by

Popa = Sa +

J∑

j=1

Ej
a +

J∑

j=1

EDXj
a +

K∑

k=1

Ika +

K∑

k=1

IDXk
a +Ra, (16)

and the total population across all age groups is given by

Pop =

N∑

a=1

Popa. (17)

3.2 Epidemiological outcomes
3.2.1 Cumulative infectious individuals

The age-group-specific cumulative numbers of infectious individuals, CIa, are given by

CIa =

T∫

0

σJ
(
EJ

a + EDXJ
a

)
dt, (18)

and the total cumulative numbers of infectious individuals across all age groups is given by

CI =

T∫

0

σJ

(
N∑

a=1

(
EJ

a + EDXJ
a

)
)
dt, (19)

where T is the analytic horizon.
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3.2.2 Infectious individuals

The age-group-specific total numbers of infectious individuals at any time t, TotIa, are given by

TotIa =

K∑

k=1

(
Ika + IDXk

a

)
, (20)

and the total number of infectious individuals across all age groups is given by

TotI =

N∑

a=1

TotIa, (21)

3.2.3 Incident infectious individuals

The age-group-specific incident numbers of infectious individuals, IncIa, are given by

IncIa = σJ
(
EJ

a + EDXJ
a

)
, (22)

and the total incident infections across all age groups is given by

IncI =

N∑

a=1

IncIa. (23)

3.2.4 Cumulative diagnosed infections (regardless of infectiousness)

The age-group-specific cumulative diagnosed infections, CIDXa, are given by

CDXa =

T∫

0




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

 dt, (24)

and the total cumulative diagnosed infections across all age groups is given by

CDX =

T∫

0

N∑

a=1




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

dt, (25)

where T is the analytic horizon.

3.2.5 Diagnosed Infections (regardless of infectiousness)

The age-group-specific total numbers of diagnosed infections at any time t, DXa, are given by

DXa =

J∑

j=1

EDXj
a +

K∑

k=1

IDXk
a , (26)

and the total diagnosed infections across all age groups is given by

DX =

N∑

a=1

DXa. (27)
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3.2.6 Incident diagnosed infections (regardless of infectiousness)

The age-group-specific numbers of incident diagnosed infections, IncDXa, are given by

IncDXa =




J∑

j=1

((
νj + φj

)
Ej

a

)
+

K∑

k=1

((
νk + φk

)
Ika
)

 , (28)

and the total incident diagnosed infections across all age groups is given by

IncIDX =

N∑

a=1

IncIDXa. (29)

3.2.7 Total COVID-19 deaths

The age-group-specific total COVID-19 deaths, TotDCOV IDa, are given by

TotDCOV IDa =

T∫

0

(
pdl γK

(
IKl,a
)

+ αDX
l pdl γK

(
IDXK

l,a

))
dt, (30)

and the total cumulative COVID-19 deaths across all age groups is given by

TotDCOV ID =

T∫

0

N∑

a=1

(
pdl γK

(
IKl,a
)

+ αDX
l pdl γK

(
IDXK

l,a

))
dt, (31)

where T is the analytic horizon.

3.2.8 Known COVID-19 deaths

The known cumulative COVID-19 deaths are those observed from diagnosed infected cases only. The age-group-
specific known COVID-19 deaths, KnownDCOV IDa, are given by

KnownDCOV IDa =

T∫

0

αDX
l pdl γK

(
IDXK

l,a

)
dt, (32)

and the total known COVID-19 deaths across all age groups is given by

KnownDCOV ID =

T∫

0

N∑

a=1

αDX
l pdl γK

(
IDXK

l,a

)
dt, (33)

where T is the analytic horizon.
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