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APC = activated protein C; iNOS = inducible nitric oxide synthase; LED = light-emitting diode; MMDS = microcirculatory and mitochondrial dis-
tress syndrome; NO = nitric oxide; NIRS = near infrared spectroscopy; OPS = orthogonal polarization spectral; pCO2 = partial pressure of CO2;
pO2 = partial pressure of O2; µpO2 = microcirculatory pO2; SDF = sidestream dark-field.
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Abstract
Regional tissue distress caused by microcirculatory dysfunction
and mitochondrial depression underlies the condition in sepsis and
shock where, despite correction of systemic oxygen delivery
variables, regional hypoxia and oxygen extraction deficit persist.
We have termed this condition microcirculatory and mitochondrial
distress syndrome (MMDS). Orthogonal polarization spectral
imaging allowed the first clinical observation of the microcirculation
in human internal organs, and has identified the pivotal role of
microcirculatory abnormalities in defining the severity of sepsis, a
condition not revealed by systemic hemodynamic or oxygen-
derived variables. Recently, sublingual sidestream dark-field (SDF)
imaging has been introduced, allowing observation of the
microcirculation in even greater detail. Microcirculatory recruitment
is needed to ensure adequate microcirculatory perfusion and the
oxygenation of tissue cells that follows. In sepsis, where inflam-
mation-induced autoregulatory dysfunction persists and oxygen
need is not matched by supply, the microcirculation can be
recruited by reducing pathological shunting, promoting micro-
circulatory perfusion, supporting pump function, and controlling
hemorheology and coagulation. Resuscitation following MMDS
must include focused recruitment of hypoxic-shunted micro-
circulatory units and/or resuscitation of the mitochondria. A
combination of agents is required for successful rescue of the
microcirculation. Single compounds such as activated protein C,
which acts on multiple pathways, can be expected to be beneficial
in rescuing the microcirculation in sepsis.

Introduction
The recent development of new medical imaging techniques,
together with data from clinical investigations, has helped to
identify the microcirculation as playing a key role in sepsis [1].
The array of pathogenic factors that occur in sepsis affects
almost every cellular component of the microcirculation,
including endothelial cells, smooth muscle cells, leukocytes,
erythrocytes, and tissue cells. If not corrected directly, a
poorly functioning microvasculature can lead to respiratory
distress in tissue cells further fuelling microcirculatory
dysfunction in a cascade of pathogenic mechanisms leading

to organ failure (Fig. 1). Sakr and colleagues [2] showed that
microcirculatory distress not corrected for 24 hours was the
single independent factor predicting patient outcome. The
central role of the microcirculation in providing oxygen to the
tissue cells makes it of prime importance in determining
organ function. Microcirculatory dysfunction persisting for
extended periods of time can act as a motor driving the
pathogenic effects of sepsis leading to organ failure in much
the same way as the gut was considered to be the motor of
multiorgan failure [3].

The microcirculation
Microcirculatory function is the main prerequisite for
adequate tissue oxygenation and thus organ function. Its
purpose is to transport oxygen and nutrients to tissue cells,
ensure adequate immunological function and, in disease, to
deliver therapeutic drugs to target cells. The microcirculation
consists of the smallest blood vessels (<100 µm diameter)
where oxygen release to the tissues takes place, and consists
of arterioles, capillaries, and venules. The main cell types
comprising the microcirculation are the endothelial cells lining
the inside of the microvessels, smooth muscle cells (mostly in
arterioles), red blood cells, leukocytes, and plasma
components in blood. The structure and function of the
microcirculation is highly heterogeneous in different organ
systems. In general, driving pressure, arteriolar tone,
hemorheology, and capillary patency are the main determinants
of capillary blood flow.

Regulation of the microcirculation
The regulatory mechanisms controlling microcirculatory
perfusion are classed as myogenic (sensing strain and
stress), metabolic (regulation based on O2, CO2, lactate, and
H+), and neurohumoral. This control system uses autocrine
and paracrine interactions to regulate microcirculatory blood
flow to meet the oxygen requirements of tissue cells. The

Review
The microcirculation is the motor of sepsis
Can Ince

Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Corresponding author: Can Ince, c.ince@amc.uva.nl

Published online: 25 August 2005 Critical Care 2005, 9(suppl 4):S13-S19 (DOI 10.1186/cc3753)
This article is online at http://ccforum.com/supplements/9/S4/S13
© 2005 BioMed Central Ltd



S14

Critical Care    August 2005 Vol 9 Suppl 4 Ince

endothelial cells lining the inside of the microvessels play a
central role in this control system by sensing flow, metabolic,
and other regulating substances to regulate arteriolar
smooth-muscle-cell tone and capillary recruitment [4].
Endothelial cell-to-cell signaling transmits upstream informa-
tion about hemodynamic conditions downstream [5]. The
endothelium is also important in controlling coagulation and
immune function, both of which directly affect and define
microcirculatory function.

Regulatory dysfunction
These autoregulatory mechanisms, and thus microcirculatory
function, are severely disrupted during sepsis, and their
dysfunction is a defining factor in the pathophysiology of
sepsis [1]. Microcirculatory dysfunction is characterized by
heterogeneous abnormalities in blood flow with some
capillaries being underperfused, while others have normal to
abnormally high blood flow [6-10]. Functionally vulnerable
microcirculatory units become hypoxic, which explains the
oxygen extraction deficit associated with sepsis [8,9,11-13].
In this condition, the microcirculatory partial pressure of O2
(µpO2) drops below the venous pO2. This disparity has been
termed the “pO2 gap”, a measurement of the severity of
functional shunting, the occurrence of which is more severe
in sepsis than in hemorrhage [12-14]. It is the main reason
why monitoring systemic hemodynamic-derived and oxygen-
derived variables is not able to sense such microcirculatory
distress and mask this on-going process.

In sepsis, the microcirculatory endothelial cells are no longer
able to perform their regulatory function because of disturbed
signal transduction pathways and loss of electrophysiological
communication and smooth muscle control [4,5]. The nitric
oxide (NO) system, a central component in the autoregulatory
control of microcirculatory patency, is severely disturbed in
sepsis by a heterogeneous expression of inducible nitric
oxide synthase (iNOS) in different areas of organ beds,
resulting in pathological shunting of flow [15,16]. Since iNOS
is not expressed homogeneously in organ systems, areas
lacking iNOS have less NO-induced vasodilation and
become underperfused. The smooth muscle cells that line the
arterioles and regulate perfusion lose their adrenergic
sensitivity and tone in sepsis [17,18]. Red blood cells
become less deformable and aggregate more [19-21]. Red
blood cells also play an important role in the regulation of
microcirculatory blood flow by their ability to release NO in
the presence of hypoxia and cause vasodilation [22,23]. This
regulatory property of red blood cells may also be affected in
sepsis. These severe defects, together with the disturbed
coagulation during sepsis, further impede microcirculatory
perfusion and function [15,16]. Additionally, leukocytes
activated by septic inflammation generate reactive oxygen
species that directly disrupt microcirculatory structures,
cellular interactions, and coagulatory function [24-26]. These
and other inflammatory mediators alter barrier function in the
microcirculation, including junctions between cells and
possibly the endothelial glycocalyx, leading to tissue edema

Figure 1

The microcirculation is the motor of sepsis. Circulatory failure as a result of sepsis can be initiated by various insults such as trauma, infection, and
shock. Its treatment is initially based on correction of systemic variables. Microcirculatory distress can persist and remain undetected, a condition
termed microcirculatory and mitochondrial distress syndrome (MMDS). Here, time and therapy contribute to its definition and nature. Left
uncorrected, the different cellular and inflammatory components of the distressed microcirculation interact and increase in severity, fueling the
respiratory distress of the parenchymal cells and ultimately leading to organ failure.
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and further oxygen extraction deficit [27,28]. Left
uncorrected, microcirculatory dysfunction leads to respiratory
distress of the parenchymal cells and resultant organ failure.

Mitochondrial distress
Whether the primary cause of oxygen extraction deficit in
sepsis is explained by the presence of shunted weak, hypoxic
microcirculatory units or by mitochondria unable to process
oxygen is a source of debate [12,29,30]. In a rat heart model
of early sepsis, endotoxemia was observed to induce hypoxic
areas in the microcirculation [12,31]. However, in this model
no mitochondrial dysfunction was found, as evidenced by the
normal response of the mitochondrial energy state to hypoxia
in situ [32]. It is likely that progress from early to severe
sepsis is accompanied or even possibly caused by
microcirculatory dysfunction, which leads to mitochondrial
dysfunction with time. Brealey and colleagues [33] showed
that mitochondrial dysfunction indeed plays an important role
in sepsis where the level of respiratory dysfunction of mito-
chondria correlated with patient outcome. Mitochondrial
failure associated with sepsis contributes to respiratory
distress, especially in hypoxic areas [34], and can fuel tissue
distress leading to organ dysfunction (Fig. 1).

Microcirculatory and mitochondrial distress syndrome
Resuscitation of the circulatory failure associated with sepsis
based on correcting systemic hemodynamic- and oxygen-
derived variables, but where regional and microcirculatory
distress persist, has been termed microcirculatory and
mitochondrial distress syndrome (MMDS) [35]. This concept
has been formulated to identify the vulnerable physiological
compartment masked from the systemic circulation and
responsible for oxygen transport and cellular respiration that
becomes dysfunctional in sepsis, and which can lead to
organ failure (Fig. 1). The defining elements of the nature and
severity of sepsis include the nature of the initial “hit” leading
to sepsis, comorbidities, individual genetic makeup, previous
therapy, and time to treatment.

The time the syndrome has persisted and the prior therapy
received have a defining and modulating effect on the
pathophysiology, and define the subclasses of the syndrome.
The pathogenic nature of time was convincingly demon-
strated by the study of Rivers and colleagues, where early
treatment was shown to be associated with improved
outcome [36]. This view of MMDS, where therapy and time
are included in its definition, indicates that integrative
evaluation of these determining factors of microcirculatory
and mitochondrial function is needed for evaluation of the
severity and nature of the syndrome in individual patients (Fig. 1).

Rescuing the microcirculation
The presence of microcirculatory distress, despite
resuscitation based on hemodynamic and oxygen-derived
endpoints, strongly suggests that microcirculatory failure is a
key factor in the raised lactate levels, disturbed acid–base

balance, and high gastric and/or oral CO2 levels sometimes
seen under such conditions. Microcirculatory failure can
occur in the presence of normal or supranormal systemic
hemodynamic- and oxygen-derived variables, with micro-
circulatory distress being masked from the systemic
circulation by shunting pathways [2,12]. Thus, monitoring
techniques are required to verify that recruitment strategies
for the microcirculation are indeed effective.

Monitoring the microcirculation to optimize treatment
Several methods have been used to monitor microcirculatory
function during circulatory failure in surgery and intensive
care [37]. These include CO2 measurements for sublingual,
buccal, and subcutaneous microcirculatory CO2 levels
[38-41], as well as absorbance, reflectance and near infrared
spectroscopy (NIRS), for measuring microcirculatory
hemoglobin saturation [14,42,43]. Orthogonal polarization
spectral (OPS) imaging after validation [44] was introduced
by us into surgery and allowed the first direct observation of
the microcirculation of human internal organs [45-48]. The
technique allows microscopic visualization of the deeper lying
microcirculation and the flow of red blood cells in the variably
ordered microvessels of the microcirculation [45]. When
applied sublingually, OPS provides a sensitivity and
specificity for gauging the severity of the distributive defect in
sepsis not achieved by conventional monitoring of systemic
hemodynamic- or oxygen-derived variables [2]. Sublingual
capnography combined with OPS imaging has been used to
investigate the relationship between the microcirculation and
metabolic state during resuscitation [38]. In cardiac surgery,
simultaneous measurement of sublingual NIRS for deeper
regional oxygenation, and reflectance spectrophotometry for
measurement of superficial microcirculatory oxygen availa-
bility, gave integrative information about the redistribution of
microcirculatory oxygenation occurring between these
compartments during cardiac surgery. Such combinations,
looking at different functional compartments of the
microcirculation, can integratively ascertain the distributive
alterations of oxygen transport during sepsis, septic shock,
and therapy that are not provided by conventional monitoring
of systemic hemodynamic- and oxygen-derived variables.

Studies by de Backer and colleagues [7], Spronk and
colleagues [10], and Sakr and colleagues [2] on the sublingual
microcirculation using OPS imaging in septic patients have
directly associated the degree of microcirculatory distress with
disease severity and response to therapy. These OPS studies
have shown that the distributive defect associated with sepsis is
characterized by obstructed stagnant blood flow in the smallest
capillaries with near to normal flow in the larger microcirculatory
vessels. This underlines the need to clinically monitor the blood
flow in these small capillaries. OPS imaging is limited in this
respect since OPS images of the capillaries are blurred and
cannot always be detected. To this background we developed a
new improved imaging modality for observation of the micro-
circulation called sidestream dark-field (SDF) imaging [49].
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SDF imaging consists of a light guide, surrounded by 530 nm
light-emitting diodes (LEDs), a wavelength of light that is
absorbed by the hemoglobin of red blood cells, allowing their
observation as dark cells flowing in the microcirculation

(Fig. 2a; see www.sdfimaging.net for real-time movies). The
LEDs at the tip of the guide are optically isolated from the
inner image-conducting core, and pump light deep into the
tissue, illuminating the microcirculation from within. This dark-
field illumination applied from the side completely avoids
tissue surface reflections, giving clear images of micro-
circulatory structures and red, as well as white, blood cell
flow. The improved imaging of the leukocytes is shown in
Fig. 2b. Such magnified images are providing new insights
into cellular and microcirculatory properties at a level of detail
not attained previously. It is expected that SDF imaging will
improve the imaging modality for the microcirculation,
especially for capillaries.

Therapeutic options
Several therapeutic options are available for resuscitating the
microcirculation in septic patients.

Volume resuscitation
Relatively intact autoregulatory mechanisms ensure that
resuscitation from hypovolemic shock through volume pro-
vision is effective in recruiting vulnerable microcirculatory
beds [13,50,51]. Volume provision also restores micro-
circulatory barrier function and promotes microcirculatory
oxygen transport [23,50,52]. However, hemodilution-induced
hemodynamic effects can cause a redistribution of oxygen
delivery away from weak microcirculatory units within organs,
as well as between organs [14] and sublingual compartments
[39,43]. The significance of such redistribution of oxygen
supply and its role in the pathophysiology of sepsis and
resuscitation, however, has yet to be established. Blood is a
much better oxygen carrier than colloid or crystalloid fluids
and transfusion indeed improves oxygen delivery to the
microcirculation more so than such fluids [53]. The age of
stored red blood cells, however, can affect this property of
blood and may need to be taken into account [53].
Hemoglobin-based oxygen carriers are also very effective
oxygen carriers to the microcirculation but still need to be
developed for routine clinical implementation [54].

iNOS inhibitors and steroids
In sepsis, autoregulatory mechanisms are disturbed [55].
Simple fluid resuscitation, while effective in correcting sys-
temic hemodynamics, can leave weak microcirculatory areas
of the microcirculation hypoxemic [11,12]. This pathological
flow distribution [56] is related, among other mechanisms, to a
heterogeneous expression of iNOS in different parts of organ
beds resulting in pathological shunting of flow [15,16].
Consequently, weak microcirculatory units need to be actively
recruited, particularly under conditions of autoregulatory
dysfunction. Of note is that iNOS-deficient mice do not
exhibit the circulatory dysfunction associated with endotoxin
that occurs in wild-type mice, underlining the importance of
iNOS control in sepsis [57]. In recent studies in septic pigs,
fluid combined with iNOS inhibition but not fluid alone, was
successful in recruiting vulnerable microcirculatory beds in
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Figure 2

Sidestream dark-field (SDF) imaging. This imaging technique is an
improved method of observing the human microcirculation at the
bedside. (a) SDF imaging consists of a light guide surrounded by
green light-emitting diodes (LEDs; wavelength 530 nm) whose light
penetrates the tissue and illuminates the microcirculation. The light is
absorbed by hemoglobin of the red blood cells and scattered by
leukocytes. A magnifying lens projects the image onto a video camera.
Placed on organ surfaces, SDF imaging provides crisp images of the
red blood cells and leukocytes flowing through the microcirculation 
(for real-time films, see www.sdfimaging.net). (b) As an example of the
improved image quality provided by SDF imaging, the sublingual
microcirculation of a volunteer is shown, with a magnified inset
showing several leukocytes.
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the intestine [50,58]. Inhibition of iNOS also protects the
barrier function of the microcirculation and can be regarded
as a microcirculatory recruitment measure [59]. Anti-inflam-
matory agents such as steroids are highly effective at
inhibiting iNOS and can prevent endotoxin-induced
hypotension. Late timing of administration, however, does not
have the beneficial inhibition of iNOS due to sepsis-evoked
NO inhibition of the glucocorticoid receptor [60]. Such
studies show the rationale of applying therapy early on.
Steroids also improve autoregulatory function as observed in
a rat model study of the autoregulatory properties of an
isolated septic heart [55]. Most such experimental studies,
however, use relatively high amounts of steroids, and clinical
guidelines advise against the use of high levels of steroids in
the treatment of sepsis [61]. Nevertheless, these studies
indicate that reducing iNOS expression can be regarded as
an important step in controlling the distributive hemodynamic
defects of sepsis.

Vasodilators and vasopressors
Recruitment of microcirculatory perfusion under normo-
volemia can be achieved by vasodilator therapy because this
increases the driving pressure of blood flow at the entrance
of the microcirculation [62]. In a porcine model of sepsis, NO
donors in combination with fluids improved gut micro-
circulatory oxygenation and corrected gastric partial pressure
of CO2 (pCO2) whereas fluids alone did not [63]. In a clinical
study in septic shock patients, where sublingual micro-
circulation was observed with OPS imaging, pressure-guided
resuscitation resulted in attainment of flow in the larger
vessels but not in the capillaries, where flow remained either
sluggish or stagnant. This scenario directly visualizes the
action of shunting pathways and identifies the micro-
circulation as the location of the distributive defect
associated with sepsis. Vasodilator therapy by administration
of nitroglycerin with adequate volume support, however, was
able to recruit these stationary-flow capillaries and restore
sublingual microcirculation [10]. De Backer and colleagues
reported similar microcirculatory abnormalities in septic
patients [7]. They further showed that the endothelial
vasodilatory response was intact in septic patients by demon-
strating that topical application of acetylcholine was effective
in recruiting the shut-down capillaries. Sublingual OPS
imaging studies in septic patients consistently found that,
while pressure-guided resuscitation was effective in restoring
systemic blood pressure, it did not by definition have such a
correcting effect on microcirculatory perfusion [2].

From a microcirculatory perspective, vasopressors should be
applied with caution and under conditions of microcirculatory
monitoring. A study by Dubois and colleagues [34] reported
that systemic blood pressure was restored by vasopressin in
a distributive shock patient. Here, direct observation of
sublingual microcirculation by OPS imaging showed no
detrimental effect on microcirculatory perfusion. However, in
another case–study of a septic shock patient, vasopressin,

although effective in increasing blood pressure and urine
output, caused a complete cessation of sublingual micro-
circulatory flow, constriction of the regional circulation, and
death [64]. Animal experiments have also shown conflicting
results: some studies have shown that vasopressin has
beneficial effects on the renal microcirculation [65], while
others have shown that vasopressin causes intestinal
microcirculatory shutdown [66].

Multiple-action therapy
Fluid resuscitation in combination with vasoactive and
inotropic support is indeed effective in recruiting the micro-
circulation, although its effect on the microcirculation cannot
be concluded on the measurement of systemic variables alone
[2,38]. Patients whose microcirculation is not responsive to
such resuscitation, however, have a poor prognosis [2].
Recruitment of the microcirculation can be accomplished via
different pathways and combination therapies can be
expected to be beneficial. In this way, an NO donor agent can
open the microcirculation and thereby perfuse weak micro-
circulatory units, while an anti-inflammatory agent or specific
iNOS inhibitor can reduce pathological shunting and redirect
blood flow to recruit weak microcirculatory units. This may
appear paradoxical from a mechanistic stance, but both
therapies are effective microcirculatory recruiting maneuvers
[50,65] and could theoretically be combined. It is clear that
when applying such combinational therapies, their effective-
ness in recruiting the microcirculation needs to be verified for
the different organ systems.

Taking into consideration that resuscitated sepsis forms a
multifactorial hit resulting in microcirculatory distress, drugs
with multiple sites of action might provide an effective
treatment strategy for recruiting microcirculatory function
during sepsis. Activated protein C (APC) [67] provides just
such an integrated approach by acting on different
mechanisms involved in microcirculatory distress. It has been
shown, for example, that APC inhibits iNOS expression and
protects against endotoxin-induced hypotension [68].
Furthermore, through its action on nuclear factor-κB levels,
APC also reduces the level of tumor necrosis factor, an effect
not seen when iNOS inhibitors are administered alone [69].
In addition, APC reduces leukocyte activation and the release
of reactive oxygen species, as well as acting on coagulatory
pathways [70]. Several studies have shown by direct intravital
observation that these multifactorial actions improve the
microcirculation in septic animals [71,72]. APC initiates a
number of effects that, collectively, can be regarded as a
rescue strategy for microcirculatory dysfunction in sepsis.
However, several questions remain in respect to the mode of
action of APC. What effect does the timing and dosage of
APC have on the variables known to be beneficial to the
microcirculation? How do different organs react to APC?
How does the presence of other therapeutic agents affect
the efficacy of APC to rescue the microcirculation? Direct
observation and monitoring of the microcirculation should
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provide an insight into these issues and may even provide
endpoints for the treatment of sepsis [73].

Conclusions
In this review, we discuss the role of microcirculatory
dysfunction in the development and treatment of the
circulatory distributive defect associated with sepsis leading
to organ failure. Conventional systemic hemodynamic- and
oxygen-derived variables fail to detect such microcirculatory
dysfunction and its response to the therapy. If left uncorrected,
microcirculatory dysfunction can fuel cellular distress of the
parenchymal cells and lead to organ dysfunction. From this
perspective the microcirculation can indeed be regarded as
the motor of sepsis. Recruitment maneuvers and monitoring of
microcirculatory function are expected to contribute to the
diagnosis and treatment of sepsis.
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