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Epithelial cell polarity: a major gatekeeper against
cancer?

C Royer1 and X Lu*,1

The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis.
Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we
focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity.
Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation.
Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and
cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial
mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell
polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring
the progression of tumours from benign to malignancy.
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Epithelial tissues are widely distributed, lining the external and
internal surfaces of our bodies and playing a number of
specialised roles. Each specialist function is achieved by the
distinct structural organisation of epithelial cells within those
tissues. Consequently, the integrity of their architecture is
crucial. The majority of human cancers are derived from
epithelial tissues, and display loss of cell polarity and often, as
a consequence, tissue disorganisation.

Although the tumour suppressive function of polarity
complexes is well established in Drosophila, it remains
unclear whether a loss of cell polarity is a consequence or
cause of human cancers. However, it is emerging that
epithelial cell polarity may exert a tumour suppressive function
in mammals through its participation in the establishment and
maintenance of the three dimensional organisation of
epithelial tissues as a whole. This theory is supported by the
findings that polarity proteins are cellular targets of onco-
genes, and an increasing list of tumour suppressors has been
shown to regulate polarity pathways.

Functionally, apical–basal polarity has two fundamental
roles in epithelial cells that are intimately linked to tumour
suppression: (1) the regulation of asymmetric cell division and
(2) the maintenance of the apical junctional complex (AJC). In
epithelial stem cells, polarity proteins control asymmetric cell
division by regulating the polarised localisation of cell fate
determinants and the correct orientation of mitotic spindles.
As a result, asymmetric cell division has a fundamental role in
the control of progenitor or stem cell numbers and differentiation.

This is of particular interest in the context of the cancer stem
cell theory, as a shift from asymmetric division of epithelial
stem cells or cancer-initiating cells towards symmetric
divisions would result in dedifferentiation on one hand and
an increase in cancer-initiating cells on the other. Thus, a
defect in asymmetric division could contribute to the emer-
gence of tumours. As a result, over the last few years, there
has been increasing interest in the identification of core cell-
polarity mechanisms that govern the asymmetric division of
epithelial stem cells, and understanding how their disruption
may contribute to the development of cancer.

In addition to their role in the prevention of tumour initiation,
core epithelial cell polarity mechanisms may also constitute a
barrier to tumour metastasis and malignancy through their
close connection to the AJC. The AJC encompasses tight and
adherens junction complexes, and its structure is dependent
on the integrity of the apical and basolateral polarity
complexes. The loss of one of the key components of
adherens junctions, E-cadherin, often occurs in later stages
of tumourigenesis and is thought to contribute to epithelial
mesenchymal transition (EMT), which represents a crucial
step in metastasis. The importance of the AJC in suppressing
cancer malignancy is supported by cancer genome sequen-
cing data, which show that a large number of AJC components
are frequently mutated in human cancers. In this review, we
will therefore discuss whether a loss or deregulation of
epithelial cell polarity favours tumour initiation, or is respon-
sible for later stages of tumour development and malignancy.
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The Main Players in the Establishment and Maintenance
of Epithelial Cell Polarity

In order to understand how cells become disorganised in
tumours it is vital to understand the key players and regulators
that control and maintain cell polarity, which lead to epithelial
tissue organisation. As expected, the molecular complexes
involved in the establishment and maintenance of cell polarity
are largely conserved throughout the metazoa, despite the
wide range of epithelial tissue types and biological processes
that require them. Three major complexes involved in the
regulation of apical–basal cell polarity of epithelial cells have
been described: The Crumbs-Pals1 (Stardust)-Patj-Lin-7
(Crumbs complex) and Par3 (Bazooka)-Par6-aPKC (Par
complex) complexes, which are found apically, and the lethal
giant larvae (Lgl)-Scribble (Scrib)-Disc large (Dlg) proteins
(Scribble complex) that localise at the basolateral mem-
brane.1–3 Both the Par and Crumbs complexes promote apical
membrane identity, whereas the Scribble complex promotes
basolateral membrane identity by antagonising the other two
(Figure 1).

Among the three polarity complexes, the Par complex is the
best studied in the context of apical–basal polarity in epithelial
cells. Genetic screens in C. elegans have identified six Par
genes (Par1–6). Classically, the proteins considered to be the
core of the Par complex include the two Par PDZ domain-
containing proteins Par3 and Par6, with the addition of
atypical protein kinase C (aPKC), and the Par complex has
been shown to be required for the establishment and the
maintenance of apical–basal polarity and apical domain
development in epithelial cells.4–6 Phosphorylation has a
key role in controlling polarity, and this is reflected by the fact
that Par1 and Par4, homologous in mammals to microtubule
affinity regulating kinases (MARKs) and LKB1, respectively,
are serine/threonine kinases and Par5 is a member of the 14-
3-3 family of proteins that generally binds Ser/Thr phosphory-
lated proteins. Additionally, the functions of the Par complex
are regulated by phosphorylation. Par3 is phosphorylated on

Ser827 of its aPKC-binding region by aPKC itself, resulting in
decreased affinity for aPKC.7 Rho kinase also prevents the
interaction between Par3 and aPKC by phosphorylating
Thr883 of Par3, thereby suppressing the activity of the Par
complex.8

The activity of the Par complex is further regulated by the
dynamic nature of Par3’s association with the stable Par6–
aPKC complex. A compelling study in Drosophila demonstrated
that Par3 is in fact excluded from the apical domain by the Par6–
aPKC complex.9 Instead, the Drosophila Par3 homologue Baz
localised independently of aPKC and Par6 in the follicular
epithelium, and below them at the level of the apical/lateral
junction. This correlates with the observation that in many
epithelial tissues, including in mammals, Par3 and the Par6–
aPKC complex do not colocalise.10–13 However, in mammals,
the apical/lateral domain is formed by tight junctions, which are
more apical and distinct from the adherens junctions, thus Par3
is essentially localised at the level of tight junctions where it
colocalises with zonula occludens-1 (ZO-1).14,15 This model for
Par3 exclusion from the apical domain involves both the Par6–
aPKC complex and the Crumbs complex, in order to prevent the
interaction between Par3 and the Par6–aPKC complex. On one
hand, aPKC phosphorylates Par3 on Ser827 in mammalian
Par3 to decrease their affinity for each other while, on the other
hand, Crumbs and Stardust compete with Par3 to interact with
the same domain of Par6 (Figure 1). This exclusion mechanism
is crucial to restrict the extent of the apical/lateral junction and
define the border between the apical and lateral domains in
Drosophila epithelial cells. Further investigation is required, but
the existing evidence suggests that the observations outlined
above may be generalised to epithelial tissues in mammals.9

The three members of the Scribble complex have been
shown to interact genetically,16 with Dlg and Scribble
physically interacting through a protein called GUK-holder in
Drosophila neuronal synapses.17 However, there is little
evidence for their physical interaction in mammalian epithelial
cells and, as a result, the term ‘module’ is sometimes used
when referring to the Scribble complex. More recently,
Scribble and Lgl2 have been reported to interact directly in
polarised mammalian epithelial cells, although this interaction
has not yet been reported in other experimental systems.18

Lgl, by competing with Par3 for Par6–aPKC, restricts the Par
complex to the apical domain.5,19 Furthermore, phosphoryla-
tion and inactivation of Lgl at the apical domain by aPKC
restricts the Par and Scribble complex apically and baso-
laterally in epithelial cells, respectively.20 Interestingly, in
Drosophila, aPKC is also able to phosphorylate Crumbs to
promote the apical localisation of the Crumbs complex.21 Key
phosphorylation events and protein/protein interactions there-
fore result in the exclusion of Scribble from the apical domain,
and of the Crumbs and Par complexes from the basolateral
domain. These membrane domains consequently acquire
unique identities that set the basis for the establishment of
apical–basal polarity in epithelial cells.

Cell Polarity and Asymmetric Cell Division

Asymmetric cell division is pivotal for the maintenance of
epithelial tissue homeostasis. When a stem cell divides
asymmetrically, it generates two daughter cells: one with an

Figure 1 Diagram representing the core polarity components involved in the
maintenance of apical–basal polarity in epithelial cells and the establishment of
membrane domain identity. AJ, adherens junctions; ALJ, apical/lateral junction;
TJ, tight junctions
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identical cell fate and the other with a different one.
Asymmetric cell division relies on the asymmetric distribution
of cell fate determinants (Numb, Pros, Brat, Pon and Mira)
and, as a result, core polarity proteins and the correct
orientation of mitotic spindles.2,22 Emerging evidence, in
particular from studies of neuroblasts in Drosophila, indicates
that asymmetric division functions as a mechanism of tumour
suppression.23 When polarity genes or cell fate determinants
are deleted or mutated, neuroblasts divide symmetrically,
leading to tissue overgrowth and transplantable tumours that
are similar to mammalian cancers (Figure 2). For example,
Dlg/Scrib/Lgl mutant neuroblasts have defects in basal protein
targeting, a reduced apical cortical domain and reduced apical
spindle size, which is thought to lead to symmetric divisions
and, as a result, to the accumulation of cells and the
development of tumours.24 In Drosophila, a number of
proteins such as Pins, Mud and the mitotic kinases Aurora-A
and Polo have been shown to have a major role in regulating
mitotic spindle orientation and asymmetric cell division.25

Intriguingly, adenomatous polyposis coli 2 (APC2) was
discovered to be part of the centrosome complex of
Drosophila germline cells, where it functions in establishing
the correct orientation of the mitotic spindles. Moreover,
deletion of both Drosophila APC genes results in asymmetric
stem cell division defects as a result of mitotic spindle
misorientation.26 Interestingly, Johnston et al.27 have
developed an ‘induced cortical polarity’ assay in Drosophila
S2 cells that should facilitate the identification of further
proteins, domains and amino acids that regulate spindle
orientation.

In mammals, probably as a consequence of their redun-
dancy, the function of core polarity proteins in the regulation of
asymmetric cell division has been harder to elucidate.
However, Lgl1 knockout mice present some defects in the

asymmetric division of neural progenitors, that may result in
overproliferation and a lack of differentiation.28 Recently, in a
compelling study using in vivo electroporation of mouse
embryos and cortical slice cultures, Par3 has been shown to
regulate the asymmetric division of neural progenitor cells via
the control of the Notch signalling pathway in the developing
neocortex.29 This study has also shown that Par3 is
distributed and inherited asymmetrically as cells divide,
suggesting that its subcellular distribution regulates the mode
of progenitor cell division and daughter cell fate specification.

Polarity and EMT

The transition from an epithelial to mesenchymal phenotype
that occurs during EMT has been associated with metastatic
progression; apical–basal polarity is lost during this process
and cell–cell junctions are weakened and disrupted. Several
lines of evidence suggest that core polarity proteins are
important for the formation and maintenance of the AJC,
suggesting that their loss could induce or at least contribute to
EMT (Figure 3). For example, it has been shown that Par3
depletion in mammalian epithelial cells disrupts the formation
of tight junctions.30 Moreover, it has been suggested that the
Par6–aPKC complex, together with Cdc42, can control
adherens junction remodelling through the regulation of
Arp2/3-dependent endocytosis.31 Another example comes
from knock-down experiments showing that PATJ is important
for the proper polarisation of mammalian epithelial cells and
the formation of tight junctions.32 SiRNA-mediated knock-
down of Scrib in SK-CO15 cells inhibits tight junction
reassembly.33

TGFb, in cooperation with the Ras pathway, is a key inducer
of EMT and promotes invasion and metastasis. Several
studies suggest that disrupting cell polarity may work in

Figure 2 Loss of cell polarity in epithelial stem cells can lead to asymmetric division defects, thereby favouring tumour initiation. Apical–basal polarity is fundamental to the
asymmetric segregation of cell fate determinants. Thick yellow and green lines represent cell fate determinants. Red dots represent centrosomes. In the absence of apical–
basal polarity, this segregation is defective, potentially leading to an excess in symmetric divisions and an accumulation of cells with proliferative potential
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concert with TGFb signalling or facilitate TGFb-mediated
EMT. For instance, it has recently been shown that disruption
of the Crumbs complex predisposes to EMT in Eph4 cells, a
cell line normally insensitive to TGFb-mediated EMT.34

Another study shows that TGFb signalling is able to down-
regulate the expression of Par-3 through the induction of miR-
491-5p in rat proximal tubular epithelial cells, suggesting that
TGFb may induce the disruption of cell polarity.35 Probably,
one of the most direct links between the disruption of cell
polarity and EMT comes from the finding that TGFb receptors
directly interact with Par6 at the level of adherens junctions.36

TGFb is able to induce phosphorylation of Par6 at Ser345,
enabling the recruitment of the E3 ubiquitin ligase Smurf1,
which is required for localised TGFb-induced degradation of
the actin regulator RhoA. Importantly, this phosphorylation
event is required for TGFb-dependent EMT in mammary
gland epithelial cells, as mutation of this residue blocks EMT
and tight junction disruption. Furthermore, in a mammary fat

pad assay, over-expression of Par6/S345A in EMT-6 cells
reduced their ability to induce metastasis to the lung, further
demonstrating the importance of TGFb/Par6 signalling in
EMT and the development of metastasis.37 Taken together,
these studies show that polarity proteins are important EMT
regulators in epithelial cells.

Is Epithelial Cell Polarity a Gate Keeper Against Cancer?

Disruption of polarity by activated oncogenes. Underlying
their potential role as tumour suppressors, core polarity proteins
are often targeted and disrupted by oncogenic signalling.
Polarity defects could collaborate with oncogenic pathways to
induce tumour formation. For example, Scrib-deficient mutants
cooperate with oncogenes to mediate transformation in
Drosophila. Normally, Scrib-deficient mutant clones in the eye
imaginal discs are eliminated by JNK-dependent apoptosis.

Figure 3 Epithelial cell polarity represents a barrier to the later stages of tumour development. Apical–basal polarity is involved in the formation and maintenance of the
AJC. Decreased expression of core polarity proteins is linked to weakening or disruption of the AJC, thereby leading to EMT and potential malignancy. Recent evidence
suggests that TGFb, under certain conditions, can induce EMT in epithelial cells in conjunction with loss of cell polarity
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However, in the presence of activated oncogenic pathways
such as Ras or Notch, apoptosis is inhibited and neoplastic
tumours occur.38 In addition, in support of these data, loss of
hScrib has been shown to cooperate with H-Ras to promote cell
invasion through deregulation of MAPK signalling in an
organotypic culture system.39

A number of viral oncogenes have been found to directly
interact with polarity proteins, suggesting that disruption of
polarity is important.40 For example, the human T-cell
leukemia virus type 1 tax protein binds to hScrib and alters
its subcellular localisation in infected T-cells.41,42 In addition to
Scrib, Tax and the oncoprotein 9ORF1 have been shown to
interact with Dlg.43–45 The interaction of Tax and hDlg was
shown to affect the function of hDlg in controlling cell growth,
and Tax disrupted the interaction between hDlg and APC.46

However, it remains to be shown whether disruption of the
hDlg/APC complex is the critical event that leads to
deregulated cell growth. E6 oncogenes in human papilloma
virus (HPV) have also been found to interact with PDZ-
containing polarity proteins. For example, E6 proteins from
HPV-16 and HPV-18 have the ability to interact with, and
induce the proteasomal degradation of, Dlg and hScrib.47

Intriguingly, E6 has also been shown to target phosphorylated
forms of Dlg, and Patj of the Crumbs polarity complex, for
degradation.48,49 These findings suggest that key PDZ-
containing polarity proteins are common cellular targets of
viral oncoproteins. Moreover, it seems that viral proteins have
evolved additional ways to target cell polarity, strongly
suggesting that its disruption is necessary for malignant
transformation.40

In addition to viral oncogenes, core cell polarity mechan-
isms are targeted by abnormally activated growth factor
signalling pathways. Both the ErbB2 and TGFb signalling
pathways have been shown to be directly involved in the
regulation of polarity independently of their transcriptional
response.36,50 In conclusion, many activated oncogenic
pathways target and disrupt epithelial polarity in order to
achieve malignant transformation, supporting the importance
of cell polarity in suppressing tumour formation.

The core polarity proteins as tumour suppressors in
mammals. Scrib, dlg and lgl were identified as tumour
suppressors in Drosophila, in screens for mutations causing
cancerous overgrowth of the larval imaginal discs and
brain.51.Interestingly, the phenotypes of these mutants can
be rescued by the mammalian homologues of these genes,
showing that they are functionally conserved and suggesting
that they may have a tumour suppressive function in human
cells.52–55 A growing amount of data showing mislocalisation,
decreased expression or complete loss of the products of
these genes in primary tumours from human patients further
indicate their involvement in mammalian tumourigenesis.56

Over the past few years, there has been an increasing body
of evidence that the deregulation of these core polarity
complexes, both in terms of expression level and subcellular
localisation, may have a causal link to disease and cancer in
particular (for an exhaustive list of changes in expression and
localisation of polarity proteins in carcinoma cell lines and
primary tissues see Huang and Muthuswamy56).

Perhaps the best-studied polarity complex in human
tumours is the Scrib/Lgl/Dlg complex. In particular, the
deregulation of Scrib has been reported to promote the
transformation of mammary epithelial cells in vitro and in vivo,
by disrupting morphogenesis and cell polarity and by inhibiting
myc-induced apoptosis, thus providing novel insight into how
core polarity proteins regulate cell transformation.57 In this
study, loss of Scrib was shown to cooperate with Myc to
induce mammary tumours, correlating with a Drosophila study
that showed that lgl requires Myc to promote clonal
malignancy.58 In human keratinocytes, Scrib loss has been
shown to result in ERK activation which might contribute to
cancer progression.59 Scrib was found to be mislocalised or
downregulated in several cancer types including cervical,60

colon adenocarcinoma61 and endometrial.62 Scrib, as well as
Dlg1 and Lgl1, was also mislocalised and downregulated in a
transgenic mouse model of cancer.63 In a screen of 60 tumour
samples, Hugl-1 (the human homologue of Lgl) transcripts
were often reduced or lost in tumour tissues of the breast
(76%), prostate (53%), lung (63%), ovarian (50%) and colon
carcinoma (75%).53 However, the numbers in this study are
relatively small and it will be important to verify these data on a
larger scale. Hugl-1 was lost in 75% of tumour samples in a
cohort of 94 patients undergoing surgery for colorectal cancer,
and was associated with advanced stage and lymph node
metastases.64 Loss or downregulation of Hugl-1 expression
was also observed in malignant melanoma and associated
with an advanced stage of the disease.54 A study of 80
hepatocellular carcinomas showed that Hugl-1 mRNA is
frequently mutated by aberrant splicing, and that two of the
variants were able to promote hepatocellular carcinoma in
nude mice.65 Dlg expression levels and localisation have also
been shown to be affected in high-grade premalignant cervical
neoplasia, invasive squamous cell carcinoma66 and colon
adenocarcinoma.61

The deregulation of core polarity proteins in cancer is not
limited to Scrib, Dlg and Lgl, however, as almost every protein
involved in the core apical–basal polarity machinery of
epithelial cells has been shown to be affected in some
way.56 For example, the par3 gene is deleted in 15% of
primary oesophageal squamous cell carcinomas and down-
regulated in a number of tumour tissues.67 A recent study
identified homozygous intragenic microdeletions, involving
genes encoding components of the core polarity complexes in
a genome-wide screen of 684 cell lines.68 Interestingly,
among these genes, Par3 was found to be the most commonly
targeted and was disrupted in both cell lines and some primary
tumours. This study will undoubtedly be complemented by
data from ongoing cancer genome sequencing efforts such as
the Cancer Genome Atlas. The Par6–aPKC complex has also
been shown to be deregulated in cancer. For example,
deregulation of Par6 was observed in ER-positive breast
tumours.69 Taken together, these data strongly underline the
causal link between the deregulation of core polarity proteins
and human cancer.

Tumour suppressors that regulate epithelial cell
polarity. Over the past decade, a number of tumour
suppressor pathways have been directly linked to epithelial
cell polarity, suggesting that the integrity of apical–basal
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polarity is crucial for the prevention of tumour development.
Importantly, one such tumour suppressor is Par4/LKB1.
Although LKB1 deficiency does not cause a gross defect in
cell polarity in the intestine, for example,70 it may regulate cell
polarity through its ability to phosphorylate members of the
AMPK-related kinase (ARK) family in other tissues.71,72 Hence,
Par4/LKB1 is able to activate Par1/MARK in the Drosophila
oocyte and, in epithelial cells, may have its role through Par1/
MARK activation.73 Alternatively, Par4/LKB1 may regulate
polarity through the activation of AMPK (AMP-dependent
activated protein kinase), which in turn activates Myosin II.73

Among all of the Par genes identified in model organisms, Par4/
LKB1 is the most well-established tumour suppressor. Germline
mutations in the LKB1 gene cause Peutz–Jeghers syndrome
and predispose patients to develop colon cancer.74,75 All of
these factors suggest that regulators of cell polarity may have an
important role in suppressing tumours. In agreement with this, a
growing list of tumour suppressors has been identified that
regulate cell polarity. For example, the tumour suppressor von
Hippel-Lindau exerts its regulation on polarity at several levels: it
is able to directly interact with aPKC and mediate its
ubiquitination and subsequent degradation, and its interaction
with the Par complex is involved in the regulation of polarised
microtubule growth and formation of primary cilia.76,77 Another
tumour suppressor that regulates cell polarity is phosphatase
and tensin homolog (PTEN), which is likely to be involved in
different aspects of epithelial cell polarity. However, as apical
accumulation of phosphatidylinositol 4,5 biphosphate is
dependent on apical targeting of PTEN, and as membrane
targeting of Par3 is mediated by direct binding to
phosphoinositide lipids, PTEN may be instrumental in the
apical localisation of Par3.78–80 Interestingly, APC has been
shown to interact with several core polarity proteins. For
example, hDlg can interact with the APC tumour suppressor,
and their interaction negatively regulates cell cycle
progression.81 APC was also found to interact with hScrib and
it has been suggested that Scrib controls its localisation at the
level of the adherens junctions in epithelial cells.82

Recently, apical–basal polarity in epithelial cells has been
linked to another tumour suppressor, with the discovery that
ASPP2 is a new binding partner of Par3.83,84 ASPP2 is critical
for the localisation of Par3 at the level of tight junctions in
epithelial cells and, therefore, has a crucial role in the
establishment and maintenance of apical–basal polarity in
epithelial cells in culture. In vivo, ASPP2 deficiency results in
defects arising during the development of the central nervous
system, characterised by a loss of apical–basal polarity and
an expansion of neural progenitor cells.84 ASPP2 colocalises
with Par3 at the level of tight junctions in a variety of epithelial
cells and tissues, suggesting that its role in controlling apical–
basal polarity is common to other epithelia.83,84 ASPP2 is a
transcriptional target of E2F185 and was first identified as a
p53 regulator that specifically promotes its apoptotic func-
tion.86 Tumour studies in mice have identified ASPP2 as a
haploinsufficient tumour suppressor gene,87,88 and ASPP2
levels have been shown to be deregulated in human tumours
and tumour cell lines, suggesting that its tumour suppressive
role is conserved in humans.89–91 Studies in Drosophila have
shown that dASPP, the unique ASPP protein in Drosophila,
localises at adherens junctions. These studies suggest that

dASPP regulates retinal morphogenesis by acting in concert
with dRASSF8 to promote dCSK activity, thus, the function of
ASPP2 in the establishment and maintenance of apical–basal
polarity in epithelial cells appears to have been conserved
from Drosophila to humans.92,93 However, it remains unclear
whether the function of ASPP2 in regulating apical–basal
polarity is linked to its ability to regulate p53 and its family
members, p63 and p73. One possibility is that ASPP2, upon
external stimuli, may be able to shuttle from tight junctions to
the nucleus to have its transcriptional role, in a similar way to
other junctional proteins such as b-catenin or ZO-1. There-
fore, it will be of great interest to investigate the extent to which
ASPP2’s regulation of the localisation of Par3 and the apical–
basal polarity of epithelial cells contributes to its tumour
suppressive function, and how this interplays with its role in
regulating p53, the most mutated tumour suppressor in
human cancers, and p63, a key regulator of epithelial
stratification.

There are a number of studies that also suggest that mitotic
spindle orientation is crucial for asymmetric cell division in
mammals. For instance, p63 has been shown to be important
for mitotic spindle orientation during asymmetric cell division of
epidermal stem cells.94 Finally, emerging evidence suggests
that there is also a direct relationship between loss of cell
polarity of stem cells and asymmetric division and tumour
initiation in mammals. For example, the tumour suppressor
p53 has recently been linked with the regulation of asymmetric
divisions of mammary stem cells.95 In the future, due to their
redundancy in mammals, the real challenge will be to
investigate whether core polarity proteins regulate asymmetric
stem cell division in mammalian epithelia, and whether their
deregulation consequently drives tumour initiation as a result
of asymmetric stem cell division defects.

Taken together, these studies emphasise the role and
importance of known tumour suppressors in the control of
epithelial cell polarity. Many of those tumour suppressors
regulate the functions of core polarity proteins through direct
interactions suggesting that, in addition to their better-known
roles in the control of cellular proliferation, these roles are
crucial for the prevention of tumour development.

Conclusion

In this review, we have highlighted how epithelial cell polarity
may contribute to tumour suppression (Figure 4), through its
role in controlling asymmetric cell division and the integrity of
the AJC. Loss of cell polarity is a hallmark of cancer, however,
studies in transgenic mouse models have so far been unable
to clearly answer the question of whether core polarity
proteins are tumour suppressors or not. Future studies using
multiple and/or conditional knockout mouse models will be
essential to finally demonstrate their direct role in tumour
suppression. Due to the vital importance of core polarity
proteins in maintaining tissue homeostasis, redundancy
mechanisms have evolved in mammals that may make this
issue too complex to address. Nonetheless, it is emerging that
an increasing number of well-known tumour suppressors
have a pivotal role in regulating cell polarity. Hence, regulators
of polarity may themselves represent a new class of tumour
suppressors.
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