
Article title: Machine Learning in Production: From Experimented ML Model to System

Authors: Pritom Bhowmik[1]

Affiliations: Computer Science & Engineering, IEM, Kolkata, India[1]

Orcid ids: 0000-0003-4585-6024[1]

Contact e-mail: pritom01bh@gmail.com

License information: This work has been published open access under Creative Commons Attribution License

http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at

https://www.scienceopen.com/.

Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to

ScienceOpen Preprints for open peer review.

DOI: 10.14293/S2199-1006.1.SOR-.PPKHXND.v1

Preprint first posted online: 08 June 2022

Keywords: Machine Learning Pipeline, Neural Architecture Search, Principal Component Analysis, Model optimization,

Dimensionality Reduction, Directed Acyclic Graph, Data Orchestrators, Model Decay

1

Machine Learning in Production: From Experimented ML Model to

System

Pritom Bhowmik

B. Tech. (Computer Science & Engineering)

Institute of Engineering & Management, Kolkata, India

Email: pritom01bh@gmail.com

ORCID: 0000-0003-4585-6024

Abstract

Production ML pipeline refers to a complete end-to-end workflow of a machine learning product

ready for deployment. In recent years, companies have vastly invested in Machine Learning research;

developers are developing new tools and technologies to make ML more flexible. Now, we can

experience AI in most devices around us, from home appliances to cars. When we want to develop an

AI-powered product, it is vital to understand the crucial workflows of the ML. Academic research to

develop an ML model and a production ML pipeline are entirely different scenarios. From business

problems, data collection to deploying the model is an acutely iterative process. Most of the time,

Data scientists and Machine Learning Engineers need to deal with issues like data shift, concept shift,

model decay, etc. Sometimes, there are need to change the complete ML architecture or how the

features are engineered in the dataset. It will become tedious if someone is working in such an

environment and lacks an understanding of the entire workflow of the ML pipeline. Though every ML

project is different, a data scientist/ ML engineer/ data engineer must understand the end-to-end

workflow of the ML pipeline for the product they are developing. The challenge starts with a business

problem. We may face different domain problem statements that need to be solved with Machine

Learning. How the data will be collected is also a big concern. Data pre-processing, data validation,

data monitoring, feature engineering, Model Selection, hyperparameter tuning, model optimization,

model performance analysis, performance evaluation, detecting bias, model deployment, post-

deployment analysis & monitoring are the crucial processes to make your model production-ready.

The main contribution of this research paper is to present a complete picture of the end-to-end

workflows of a production-ready ML pipeline. The process can apply to any production ML project

though some workflow or steps may differ due to the domain or use-case's demand. A proper ML

pipeline architecture should be easily maintainable, scalable, and reusable. Because as the machine

learning project grows, it becomes more and more complex. So, performing regular updates and

scaling will become easy for data scientists & ML engineers if the pipeline is well designed and

automated.

Index Terms: Machine Learning Pipeline, Neural Architecture Search, Principal Component

Analysis, Model optimization, Dimensionality Reduction, Directed Acyclic Graph, Data

Orchestrators, Model Decay

Introduction

The production ML model is about developing a service or a product using Machine Learning

development and modern software development. A machine learning pipeline project starts with data

ingestion and ends with an output from the trained model. Most of the academic ML research used

prepared data, collected, cleaned & labeled with the supervision of experts. However, data is the most

laborious and most time-consuming part of an ML project in real-world machine learning use cases.

2

Moreover, the model's performance in production depends mostly on how data is collected and

labeled, how the dataset is feature engineered and validated, model optimizations, etc. In an ML

research environment, static datasets are used to develop models, where datasets remain the same

during the whole duration of the development.

Nevertheless, in a real-world ML project, data is collected continuously from several systems and fed

to the ML model, where data is dynamic and regularly shifting. That is why it takes frequent

assessments and iterative training to perform well in the production environment. It starts with data

collection, accurate labeling (supervised learning), minimizing dimensionality, feature engineering,

handling rare conditions to maintain fairness,

deployment for serving, and post-deployment

model maintenance. Each of the stages of this life

cycle is critical for the success of the ML product.

Working in a production ML project brings many

new challenges. Model development is only

around 5% of the entire development process, and

that is why production machine learning is very

different from academic research settings. So,

building the model is hard but moving it into a

production setting is harder. Maintaining the data

quality and model's performance are the new sets of challenges data scientists and engineers face.

Selecting the right tools is also a significant challenge. Google, IBM, Databrick, and AWS offer state-

of-the-art toolsets to simplify those tasks. However, there are still enormous challenges to

implementing the right tools and technology.

In this paper, the research focuses on the complete workflows of a production machine learning

pipeline to develop a data science product. A real-world ML project starts with business

understanding, where the data science team works with domain experts to understand the problem

statement. This process can take months sometimes but asking the right question is the key to the

project's success. After that, the team starts working with data. In many cases, 60-70% time of the

whole project needs to be invested in collecting, cleaning, and feature engineering the dataset. A

dynamic dataset needs to build a data pipeline for the data lifecycle to ingest data correctly to the

model. Then the ML model needs to be selected using Neural Architecture Search (NAS) process.

The next step is optimizing the model's performance to get the ML model's best accuracy. These

processes are highly iterative and take proper development planning to implement. It is essential to

analyze the model and data for data shift, concept shift, and fairness during these periods. Because

data continuously collected from different sources can be changed at any time, and a feature can be

added or removed. Then the model needs to be compressed or pruned to deploy for a particular

platform (mobile/IoT/Web application). Post-deployment analysis needs to be performed

continuously during the model's lifetime. Moreover, the whole process must work automatically like a

pipeline to make it more scalable and maintainable.

Business Understanding & Identify Data Sources

Business understanding is at the top of any data science lifecycle. The data science team needs to

work with customers and stakeholders to understand the business problem initially. Furthermore,

formulate questions that define the business goal to be solved. Then the team works on identifying

relevant data that help answer the questions. The type of questions defines what machine learning

techniques need to be implemented. A Microsoft article defines these questions like this:

 How many/ how much? – Regression Model

 Which category? – Classification Model

 Figure 1 ML Workflow

3

 Which cluster/group? – Clustering Model

 Which option should be taken? – Recommendation Model

 Is this anomaly? – Anomaly Detection Model

Formulating the business problem statement into questions is the first crucial task of a data science

project, and domain research may sometimes be needed. After answering these questions, the next

step is identifying the data sources. Data need to measure the target and features relevant to the

questions. Dataset can be collected from different sources depending on the project domain. Data can

be collected from an online survey, social media, government records, mechanical systems, websites,

e-commerce, etc. Then it needs to be ingested into the analytical visualization tools to understand if

the data quality is adequate to answer the questions.

Production ML Pipelines & ML Orchestration

ML pipelines are software architecture to automate, monitor, and maintain ML workflow, including

data validation, data processing, model training, analysis, and deployment. Production ML pipelines

combine ML & software development and a formalized, scalable, maintainable process with running

sequences of tasks. A production ML majorly works on dynamic data where new data are available

frequently, sometimes near real-time. A data scientist team needs to automate these time-consuming

steps by implementing a machine learning pipeline so that they can focus on developing more

accurate models. ML pipeline workflows are different from each other, depending on the architecture

but in general, they are almost always directed acyclic graphs (DAGs). According to Apache Airflow,
“A DAG is the core concept of Airflow, collecting Tasks together, organized with dependencies and

relationships to say how they should run." It is only concerned with how to execute the process. In a

pipeline, there are a lot of variables that need to account for, which makes data pipeline idempotency

a challenging task. Data quality problems, interruptions in connectivity, late-arriving data, etc., can

cause errors. So, data orchestrators produce DAGs (that simply rerun the DAG on the error) which

will load the data despite any of these errors occurring.

ML Orchestration helps implement and manage ML pipelines from beginning to end. Production ML

pipelines comprise components (each component with the defined task) and work together to enrich

the product for the end-users. Data featurization, model training, evaluation & deployment, and

monitoring are the crucial ordered steps, and each step depends on its predecessor. To perform well in

production, each step/component must coordinate reliably and regularly. Furthermore, pipeline

orchestration performs the responsibility for scheduling the various part in an ML pipeline with the

help of automation. Airflow, Kubeflow, and Argo are the leading solution for pipeline orchestration

frameworks.

Validate & Monitor Production ML Data

Understanding the esoteric statistics of data,

evaluating training datasets, and detecting

anomalies to fix are crucial steps for data

validation. Data Drift and Skew are the common

issues ML engineers face regularly. Model's

performance decay over time occurs due to

training and serving data issues. Moreover, data

drift and concept drift are the two reasons for that

problem. Data can change over time due to many

unexpected events. For example, during the 2020

Figure 2 Validate Training & Serving Dataset

4

COVID-19 lockdown, many people started using their credit cards for online shopping so frequently

that the ML model got drifted data. Moreover, that resulted in wrong credit card fraud warning to the

customers. Concept drift happens more naturally with time. The data mapping can change with time

in real-world dynamic data, and the model also needs to change. Schema skew can occur in data when

training and serving data do not confirm the same schema (we can get a string where we are expecting

an integer). So, Skew detection needs continuous evaluation of the data coming to the server from

different sources once we train our ML model. That makes continuous validation and monitoring

extremely essential. To avoid distribution skew, the numerical & categorical features of the evaluation

data should be nearly the same range as the training data. Below is the visual representation of both

training and evaluation dataset statistics generated by TFDV.

Preprocessing & Feature Engineering at Scale

Applied machine learning often requires strict engineering of the features & pre-processing of the

dataset like data cleansing, feature tuning, data transformations, dimensionality reduction, etc. It is

crucial to improve the performance of the machine learning model. In a data science project, 80% of

time & resources are spent on data preparation. The technique of feature engineering is highly

dependent on the particular algorithm. In a real-world production environment, feature engineering on

several terabytes of data needs to be feature engineered automated. So, it is ideal to start with a subset

of the dataset, performing all the experiments, solving issues, and then scale up to the terabytes where

the model will work on the complete dataset. The real challenges we have to deal with are being

consistent with the coding approach for training and serving paths, working out on deployment

environment during developments, and detecting training-evaluating skews in an early stage.

Numerical range and grouping are the categories for feature engineering. Depending on the algorithm,

we must understand the scaling, normalizing, standardizing, and grouping used. Scaling converts

values to a standard prescribed range, e.g., rescaling an image pixel from the [0, 255] range to the [-1,

1] range so that the convolutional neural network (CNN) performs training and evaluation tasks faster.

It is important because at any typical production level computer vision model needs several terabytes

of image data, and scaling the dataset will improve the average performance of the model.

Furthermore, it helps the model learn each feature's correct weight.

Standardization is another way of scaling using standard deviation by looking at the data distribution

where the data values are centered around the mean. It is good to try standardization and

normalization in real-world use cases and compare the results. In some scenarios, we do not want to

input raw data into our model; instead, we apply some encoding techniques in a category by grouping

that into a Bin/Bucket. For example, we do not want a color name as input if we have a color category

in our dataset containing values. The One Hot Encoding technique creates several additional features

based on the categorical features' unique values (string/integer). Each unique value in the particular

category is added as a feature. This method is effective in neural network classification models.

Dimensionality reduction techniques like Principal component analysis (PCA), Kernel PCA, t-SNE,

LDA, Backward Elimination, Forward Selection, etc., are used to reduce the number of dimensions of

the dataset. In the production machine learning use case, it is crucial to perform a dimensionality

reduction technique to eliminate the unnecessary components/features so that the overall performance

of the algorithm increase, decreasing the training time, computational resources, and overfitting.

Figure 3 Normalization and Standardization

5

Neural Architecture Search (NAS) & Hyperparameter Tuning

In an experimental machine learning model architecture, we run trial & error on the model by

manually tuning the parameters like neuron’s number, learning rate, dropout pattern, holdout pattern,

hidden layers, etc., to reach a point where we get the most accurate model. And it takes much work

for a small experimented model. We need to automate this process in production machine learning to

make the model development process efficient. The Keras tuner is one of the solutions which runs the

model multiple times, collecting metrics of different parameters each time and optimizing them into

the best one. Model selection is also a tedious task if we do it entirely manually. Model selection is

the process of understanding which architecture of the model and which topology of the neural

network works best in a particular dataset. Neural Architecture Search (NAS) is the process of

automating architecture engineering to find the best architecture for the dataset. NAS is categorized

into three dimensions: Search space, search strategy, and performance estimation.

 Search Space: In the AutoML context, a search space defines a collection of machine

learning pipelines from which it searches for a suitable ML solution to the given problem

statement. It incorporates prior knowledge about predefined architecture and its properties.

Though it simplifies the search, it introduces human bias, which may prevent finding novel

architecture solutions.

 Search Strategy: Search strategy is how the NAS decides which options in the search space

to try. Grid search, Random search, Bayesian optimization, Evolutionary algorithm, and

Reinforcement learning are the different search strategies that can explore the space of neural

architectures.

 Performance Estimation Strategy: The performance estimation strategy is a metric on the

search space. It returns a number that corresponds to the performance estimation of the

architecture.

Neural Architecture Search (NAS) depends on measuring the accuracy of the different architectures in

their trials. In NAS, the search strategy needs to estimate the performance & accuracy of generated

architectures to generate better performance & accurate architectures. Lower Fidelity Estimation,

Learning Curve Extrapolation, and Weight Inheritance are the different strategies.

Model Optimization: Dimensionality Reduction

To put the model into production and maintenance during its service time requires a cost. And that

heavily depends on which computing system the model will run. So, it is essential to work on model

resource management in the early phase of the production ML pipeline. Though a dataset contains

unnecessary features, a neural network can perform automation feature selection and give expected

outcomes. But it will not be an efficient, well-designed model that can be deployed for production.

Because there will remain many unwanted features (though the model ignores them), that will take up

space and computing resources as the model performs. Sometimes it is plausible that this can cause

unwanted noise in the data and degrade the overall model's performance. Each feature contains

information that may or may not help a model predict well. As we add more features, we need to

increase the number of training examples. We can use manual techniques and also algorithmic

6

dimensionality reduction techniques for dimensionality reduction. In a predictive model, features must

contain information that helps the model predict correctly. We can remove unwanted features directly

from the raw data. Sometimes, new informative features from unwanted data need to be created by

aggregating, decomposing, or combining. It is an iterative process that needs continuous data

selection and model evaluation. For example, in the NYC taxi fare prediction model, we build a

baseline model using dropoff_latitude, dropoff_longitude, passenger_count, pickup_latitude, and

pickup_longitude as input features to predict the fare of a particular ride.

So, the baseline model performed poorly. Because the dataset contains a feature about the latitude and

longitude of both pickup and dropout points, it cannot determine their distance. Furthermore, taxi fare

mainly depends on the traveling distance. We add new features to calculate the distance between each

pickup and dropout point. These processes are vastly iterative and need domain understanding to

implement.Algorithmic Dimensionality Reduction is an intuitive approach to reducing dimensionality.

Moreover, Principal Component Analysis (PCA) is a widely used unsupervised algorithm that creates

linear combinations of the original features and learns the principal components of the data. PCA aims

to find a lower-dimensional surface to project the data and minimize the squared projection error. The

first principal component is the projection direction, which maximizes the variance of the projected

data. The second principal component is the orthogonal projection direction to the first principal

component; it maximizes the remaining variance of the projected data. Both principal component-1 &

principal component-2 comprise a new orthogonal basis for feature space whose axis follows the

highest variances of the original data. PCA applies to numerical datasets. For the image dataset, we

can use Single value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF) for text

data. PCA works on eigen-decomposition, which can be done only by square metrics.

Figure 4 Model's Performance with Baseline Features

Figure 5 Model's Performance with Feature Engineered

7

Nevertheless, sometimes, we have sparse matrices, and to decompose this kind of metrics, we have

techniques like Single value Decomposition (SVD). To reduce dimensionality, SVD decomposes the

original data into constituents, which is used to reduce redundant features from the dataset. Non-

Negative Matrix Factorization (NMF) represents data as combinations of commonly occurring visual

patterns. It requires the dataset's features to be zero, more significant than zero, or non-negative.

Model Optimization: Quantization & Pruning

In a production ML project, model optimization is the phase where we have to work on model

performance optimization and resource management. We expect a real-world case study's highest

performance at the minimum cost. The model may be deployed in any embedded, IoT, or mobile

applications. It is crucial to identify possible users and the platform. We deploy the machine learning

model in the cloud in any typical situation, where a server runs inference and returns the result.

However, in some use-case, it is required to perform the ML model locally as part of the device's core

functionality. The model needs to be

embedded directly into devices that are

not connected to the server to serve the

model's output. Most of the time, IoT

and mobile devices' computing

capabilities and storages are very

limited. Quantization and Pruning are

the techniques used to reduce the

compute resources required to serve

the ML model. Quantization is a

technique that transforms a model into

an equivalent model, using lower

precision parameters and computation

power. Quantization of neural

networks is crucial because regular

neural networks have millions of

connections and take a considerable

amount of space and computational

resources. So, the quantization model

can compute faster, take less space,

and run with lower computation

power. When quantizing a neural network, the weight parameters and activation nodes computations

need to be quantized. This process compresses a small range of floating-point values into a fixed

number of information buckets. It reduces the requirement to store a range of the same data type and

save bits by saving the range within a smaller range. It is a trade-off process because it may change

model accuracy. Quantization can be performed during training or after the model has been trained.

TensorFlow-Lite quantizes the baseline model in the

example to make it deployable in a mobile device. The

model's accuracy decreases from 96% to 93%, and the

model size shrinks from 99144 bytes to 24112 bytes.

Pruning is another method to reduce the unnecessary

nodes and layers in the neural network to reduce the

storage and computational cost. The main focus of

Pruning is to reduce the number of parameters and

operations that have less contribution to the prediction

of the neural network. This process makes the training

Figure 6 Model Quantization

Figure 7 Pruning

8

faster and uses less storage and computational power. In a limited hardware situation, this is very

crucial. This process may cause a decrease in the model accuracy and become a trade-off situation

between complexity and performance. The prune_low_magnitude() is a TensorFlow Model

Optimization packages method that uses wrappers in a Keras model and prunes it during the training.

Distributed Training & High-Performance Modeling

The model training phase may be simple and fast in research and prototype development. However,

training a real-world model for production is a tediously

time-consuming task. Furthermore, dynamic datasets are

continuously updated and increase with time. The model is

also becoming more and more complex. The number of

epochs in the model also increases as a result. Because the

model development is highly iterative, spending a

tremendous amount of time in training is not sufficient.

Distributed training allows to speed up the training of a vast

and complicated model. Data parallelism and model

parallelism are the two types of performing distributed

training. In data parallelism, the data is divided into many

partitions and given to many workers. Each worker operates

on a partition and a copy of the model. Then the model

updates are synchronized across the workers. Synchronous training and Asynchronous training are the

two ways to perform distributed training using data

parallelism. In synchronized training, each node

(worker) trains on its current mini-batch of the dataset.

This method divides the model into partitions and

assigns different accelerators like GPUs and TPUs.

However, in this process, only one accelerator is active

during the computation, making it inefficient because

accelerators are essential for high such high-

performance modeling, but they are also expensive. To

overcome this issue, GPipe can be used. Gpipe partitions

a model across different accelerators and splits a mini-

batch of the training set into smaller micro-batches. In this way, accelerators can operate parallel by

pipelining the execution process across the mini-batches.

Model’s Performance Analysis & Identifying Bias

Model debugging and model robustness are essential to understanding adversarial attacks on CNN

and sensitivity analysis. In production ML, there needs to be a deeper model's performance analysis

after the development of the model. Model analysis on individual subsets of the entire dataset is

crucial to improve the model's performance after deployment. This process allows further model

improvement because the model's performance can decay due to data changes or concept shifts. Black

Box evaluation and model introspection are the two ways to analyze the model's performance. In

black-box evaluation, the internal structure of the model is not examined but quantifying the model's

performance through different metrics and losses. Model introspection methods are used to

understand the model's internal structure and improve efficiency and performance by adjusting and

iterating the model's architecture. TensorFlow's visualization tool TensorBoard is often used by data

scientists and engineers to perform such tasks. A scalable framework like TensorFlow Model

Figure 8 Distributed Training

Figure 9 Distributed Training

9

Analysis (TFMA) is often used to deeply analyze the model's performance. It can be integrated with

the TFX pipeline so that, before deploying a newly trained or updated version of the model, engineers

can perform deep analysis. This can also examine the model’s performance against different subsets

of the dataset.

Production-Grade Model Serving

Model serving means hosting a machine learning model on-premises or on the cloud and making the

model's functionality available via API. We need a production infrastructure and process to put an ML

model into production and use it as a service or product. The process is very similar to a production

software deployment and DevOps principle; best practices apply to production MLOps. It requires

pre-planning from the beginning of the

project, or it can lead to serious issues

when deploying. So, the data team and

engineers should invest proper time and

resources in the deployment process

from the early stage of Model

Development. Model serving means

making the trained model available for

the end-user by accessing the server or

application. It can be deployed on the

local storage of a mobile or IoT device

as an offline application or an API-based

online application/service. So, Batch and online are two types of models serving. A production-grade

API has traffic management, access points, pre-processing and post-processing requests, and

monitoring model draft functions. There are several ML serving tools like TensorFlow Serving,

Amazon SageMaker, Amazon's ML API, IBM Watson, Google Prediction API, etc., for deploying

machine learning models in a secure environment with scale.

Continuous Performance Evaluation & Monitoring

In an ML pipeline's workflows, model training is performed either offline (batch/static learning),

where the model is trained on previously collected data, or online learning, where regularly new data

is collected as a data stream. When a model is trained on static data deployed in production, it remains

constant until it is retrained. As the model encounter real-world data, it becomes stale, which means

model decay. The model trained on steam data can also face such model decay because of data/feature

change or concept shifts. Such a

phenomenon needs to be monitored

regularly after deployment to maintain the

model's performance in production. The

below graph represents data change

during the national lockdown (Covid-19,

2020) because a significant amount of

online shopping was increased within a

few days. The MIT Technology Review

published an article that showed how our

sudden online activities change during the

pandemic were messed with Artificial

Intelligence models. Production ML models can respond to some changes, but if the changes are too

Figure 10 Model Serving

Figure 11 Model Performance Decay

10

much different from the data the model was trained on, the model will treat the input data as

anomalies. The credit card fraud detection model is the perfect example; during the 2020 lockdown,

the number of online shopping increased sharply. In the meantime, the use of credit cards also

increased. That sudden change of data made the AI model behave strangely, and the system started

sending fraud alerts to many credit card users with valid transactions. Sometimes, the change may not

be that significant but still cause model decay. Because of that, continuous model performance

evaluation and data monitoring after the ML model’s deployment in production are crucial.

Monitoring the machine learning model refers to how the data team tracks and understands the

model's production performance. Inadequate model monitoring causes incorrect

predictions/classification that can affect the business poorly. Data Skews, Model Staleness, and

Negative Feedback Loops are the issues an ML model can encounter, and the monitoring system

should be able to detect them. Data skew when the training data is not representative of the

stream/live data. This can happen if the training data features do not match the features of the live

data. Model staleness may occur if we choose the wrong training data set for the model's training. A

car manufacturing company's sales prediction model should be trained with regular sales data. If we

used the data from the recession when car sales were abnormally low, then the model does not serve

well during the healthy economic time. Negative Feedback Loops arise when a model is automatically

trained on collected data. But if the data is corrupted or wrongly formatted, the overall model will

perform very poorly.

Conclusion

Machine Learning Model deployment and MLOps pipeline implementation can be challenging. But

understanding the business problem statement to effectively put an ML in production does not have to

be hard if all stages of the development are appropriately planned and executed. Each process of

development is highly iterative and time-consuming. But still, in the real world, developing an ML

production pipeline that delivers actual business value is extremely challenging. Around 20-25% of

the pipeline can deliver business value. Building a successful production ML pipeline needs a diverse

set of skills, experience, domain knowledge, and teamwork. Commonly, the first ML pipeline does

not meet the business objectives. But as it is an iterative process, proper plans and experimentation

will always help meet the expected results. Misalignment between actual business needs and machine

learning objectives, testing & validation issues, and non-generalized model training is the top reason

machine learning models fail in production. But several tactics can help to make an ML project a

success.

 Dependency on Cloud: ML development is a highly iterative process; it needs efficient

communication and teamwork. If the team works locally instead of in the cloud, it will slow

the whole development process. And it will be harder to implement automation as well.

That's why most ML open-source tools are developed for the cloud so that testing, training,

validation, and model development become automated and easy to control.

 Leverage a DevOps Approach: A MLOps approach is similar to the DevOps approach. So,

ML teams can follow in DevOps approach by implementing the continuous integration (CI)

and continuous delivery (CD) model. The ML team can update, change and iterate any part

of the development process.

 Investment in monitoring and observability: Healthy data is necessary for a Machine learning

model. Without proper clean data and working pipelines, models can perform well. Data

changes can occur in the real-world ML scenario and can cause model decay. So, continuous

monitoring is the key to a successful production machine learning model.

11

Machine Learning models do not work like magic, but it is powerful enough to change any

industry. So, with proper strategy, processes, planning, and technology, a production machine

learning model can deliver competitive advantage and fuel growth across every industry.

References:

1. https://www.jeremyjordan.me/evaluating-a-machine-learning-model/

2. https://www.analyticsvidhya.com/blog/2021/05/machine-learning-model-evaluation/

3. https://madewithml.com/courses/mlops/pipelines/

4. Behrouz Derakhshan, Volker Markl. Continuous Deployment of Machine Learning

Pipelines.

5. Doris Xin, Hui Miao, Aditya Parameswaran, Neoklis Polyzotis. Production Machine

Learning Pipelines: Empirical Analysis and Optimization Opportunities.

6. Anida Sarajlić, Noël Malod-Dognin, Ömer Nebil Yaveroğlu & Nataša Pržulj. Graphlet-based

Characterization of Directed Networks.

7. Xutong Liu, Yu-Zhen Janice Chen, John Chi Shing Lui, Konstantin Avrachenkov. Learning

to count: A deep learning framework for graphlet count estimation. 2020

8. https://www.mathworks.com/help/deeplearning/quantization.html?searchHighlight=C&s_tid

=doc_srchtitle

9. Software Engineering for Machine Learning: A Case Study (2019) Amershi et al.

(Microsoft)

10. A Machine Learning Pipeline to Optimally Utilize Limited Samples in Predictive Modeling

11. TensorFlow-Serving: Flexible, High-Performance ML Serving

12. Wei Jin, 2020. Research on Machine Learning and Its Algorithms and Development

13. J. Schoenberg. Metric spaces and completely monotone functions. The Annals of

Mathematics, 39(4):811, 1938

14. https://www.mathworks.com/help/deeplearning/ug/quantization-of-deep-neural-

networks.html

15. https://www.mathworks.com/help/deeplearning/ug/quantization-workflow-prerequisites.html

16. https://www.mathworks.com/help/gpucoder/ug/code-generation-for-quantized-deep-

learning-networks.html

12

Funding Acknowledgements

This research did not receive any specific grants from any funding agencies or

organizations or company in the public, commercial or not-for-profit sectors.

Pritom Bhowmik

04/06/2022

13

Statements and Declarations

I wish to draw the attention of the Editor to the following facts which may be considered as

potential conflicts of interest and to significant financial contributions to this work. I wish to

confirm that there are no known conflicts of interest associated with this publication and

there has been no significant financial support for this work that could have influenced its

outcome.

I confirm that the manuscript has been read and approved by me (only authors) and that

there are no other persons who satisfied the criteria for authorship but are not listed.

I also confirm that I have given due consideration to the protection of intellectual property

associated with this work and that there are no impediments to publication, including the

timing of publication, with respect to intellectual property. In so doing we confirm that I

have followed the regulations of our institutions concerning intellectual property.

I confirm that I have provided a current, correct email address which is accessible by the

me.

Pritom Bhowmik

04/06/2022

pritom01dev@gmail.com

pritom01bh@gmail.com

14

Competing Interests Statement

There is no potential competing interest to report.

Pritom Bhowmik

04/06/2022

15

Author’s Details

Pritom Bhowmik

B. Tech. (Computer Science & Engineering)

Institute of Engineering & Management, Kolkata, India

Email: pritom01bh@gmail.com

 pritom01dev@gmail.com

ORCID: 0000-0003-4585-6024

