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Abstract 

Production ML pipeline refers to a complete end-to-end workflow of a machine learning product 

ready for deployment. In recent years, companies have vastly invested in Machine Learning research; 

developers are developing new tools and technologies to make ML more flexible. Now, we can 

experience AI in most devices around us, from home appliances to cars. When we want to develop an 

AI-powered product, it is vital to understand the crucial workflows of the ML. Academic research to 

develop an ML model and a production ML pipeline are entirely different scenarios. From business 

problems, data collection to deploying the model is an acutely iterative process. Most of the time, 

Data scientists and Machine Learning Engineers need to deal with issues like data shift, concept shift, 

model decay, etc. Sometimes, there are need to change the complete ML architecture or how the 

features are engineered in the dataset. It will become tedious if someone is working in such an 

environment and lacks an understanding of the entire workflow of the ML pipeline. Though every ML 

project is different, a data scientist/ ML engineer/ data engineer must understand the end-to-end 

workflow of the ML pipeline for the product they are developing. The challenge starts with a business 

problem. We may face different domain problem statements that need to be solved with Machine 

Learning. How the data will be collected is also a big concern. Data pre-processing, data validation, 

data monitoring, feature engineering, Model Selection, hyperparameter tuning, model optimization, 

model performance analysis, performance evaluation, detecting bias, model deployment, post-

deployment analysis & monitoring are the crucial processes to make your model production-ready. 

The main contribution of this research paper is to present a complete picture of the end-to-end 

workflows of a production-ready ML pipeline. The process can apply to any production ML project 

though some workflow or steps may differ due to the domain or use-case's demand. A proper ML 

pipeline architecture should be easily maintainable, scalable, and reusable. Because as the machine 

learning project grows, it becomes more and more complex. So, performing regular updates and 

scaling will become easy for data scientists & ML engineers if the pipeline is well designed and 

automated.  

Index Terms: Machine Learning Pipeline, Neural Architecture Search, Principal Component 

Analysis, Model optimization, Dimensionality Reduction, Directed Acyclic Graph, Data 

Orchestrators, Model Decay 

 

Introduction 

The production ML model is about developing a service or a product using Machine Learning 

development and modern software development. A machine learning pipeline project starts with data 

ingestion and ends with an output from the trained model. Most of the academic ML research used 

prepared data, collected, cleaned & labeled with the supervision of experts. However, data is the most 

laborious and most time-consuming part of an ML project in real-world machine learning use cases. 
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Moreover, the model's performance in production depends mostly on how data is collected and 

labeled, how the dataset is feature engineered and validated, model optimizations, etc. In an ML 

research environment, static datasets are used to develop models, where datasets remain the same 

during the whole duration of the development. 

Nevertheless, in a real-world ML project, data is collected continuously from several systems and fed 

to the ML model, where data is dynamic and regularly shifting. That is why it takes frequent 

assessments and iterative training to perform well in the production environment. It starts with data 

collection, accurate labeling (supervised learning), minimizing dimensionality, feature engineering, 

handling rare conditions to maintain fairness, 

deployment for serving, and post-deployment 

model maintenance. Each of the stages of this life 

cycle is critical for the success of the ML product. 

Working in a production ML project brings many 

new challenges. Model development is only 

around 5% of the entire development process, and 

that is why production machine learning is very 

different from academic research settings. So, 

building the model is hard but moving it into a 

production setting is harder. Maintaining the data 

quality and model's performance are the new sets of challenges data scientists and engineers face. 

Selecting the right tools is also a significant challenge. Google, IBM, Databrick, and AWS offer state-

of-the-art toolsets to simplify those tasks. However, there are still enormous challenges to 

implementing the right tools and technology.  

In this paper, the research focuses on the complete workflows of a production machine learning 

pipeline to develop a data science product. A real-world ML project starts with business 

understanding, where the data science team works with domain experts to understand the problem 

statement. This process can take months sometimes but asking the right question is the key to the 

project's success. After that, the team starts working with data. In many cases, 60-70% time of the 

whole project needs to be invested in collecting, cleaning, and feature engineering the dataset. A 

dynamic dataset needs to build a data pipeline for the data lifecycle to ingest data correctly to the 

model. Then the ML model needs to be selected using Neural Architecture Search (NAS) process. 

The next step is optimizing the model's performance to get the ML model's best accuracy. These 

processes are highly iterative and take proper development planning to implement. It is essential to 

analyze the model and data for data shift, concept shift, and fairness during these periods. Because 

data continuously collected from different sources can be changed at any time, and a feature can be 

added or removed. Then the model needs to be compressed or pruned to deploy for a particular 

platform (mobile/IoT/Web application). Post-deployment analysis needs to be performed 

continuously during the model's lifetime. Moreover, the whole process must work automatically like a 

pipeline to make it more scalable and maintainable. 

 

Business Understanding & Identify Data Sources 

Business understanding is at the top of any data science lifecycle. The data science team needs to 

work with customers and stakeholders to understand the business problem initially. Furthermore, 

formulate questions that define the business goal to be solved. Then the team works on identifying 

relevant data that help answer the questions. The type of questions defines what machine learning 

techniques need to be implemented. A Microsoft article defines these questions like this: 

 How many/ how much? – Regression Model 

 Which category? – Classification Model 

                        Figure 1 ML Workflow 
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 Which cluster/group? – Clustering Model 

 Which option should be taken? – Recommendation Model 

 Is this anomaly? – Anomaly Detection Model 

Formulating the business problem statement into questions is the first crucial task of a data science 

project, and domain research may sometimes be needed. After answering these questions, the next 

step is identifying the data sources. Data need to measure the target and features relevant to the 

questions. Dataset can be collected from different sources depending on the project domain. Data can 

be collected from an online survey, social media, government records, mechanical systems, websites, 

e-commerce, etc. Then it needs to be ingested into the analytical visualization tools to understand if 

the data quality is adequate to answer the questions. 

 

Production ML Pipelines & ML Orchestration 

ML pipelines are software architecture to automate, monitor, and maintain ML workflow, including 

data validation, data processing, model training, analysis, and deployment. Production ML pipelines 

combine ML & software development and a formalized, scalable, maintainable process with running 

sequences of tasks. A production ML majorly works on dynamic data where new data are available 

frequently, sometimes near real-time. A data scientist team needs to automate these time-consuming 

steps by implementing a machine learning pipeline so that they can focus on developing more 

accurate models. ML pipeline workflows are different from each other, depending on the architecture 

but in general, they are almost always directed acyclic graphs (DAGs). According to Apache Airflow, 
“A DAG is the core concept of Airflow, collecting Tasks together, organized with dependencies and 

relationships to say how they should run." It is only concerned with how to execute the process. In a 

pipeline, there are a lot of variables that need to account for, which makes data pipeline idempotency 

a challenging task. Data quality problems, interruptions in connectivity, late-arriving data, etc., can 

cause errors. So, data orchestrators produce DAGs (that simply rerun the DAG on the error) which 

will load the data despite any of these errors occurring. 

ML Orchestration helps implement and manage ML pipelines from beginning to end. Production ML 

pipelines comprise components (each component with the defined task) and work together to enrich 

the product for the end-users. Data featurization, model training, evaluation & deployment, and 

monitoring are the crucial ordered steps, and each step depends on its predecessor. To perform well in 

production, each step/component must coordinate reliably and regularly. Furthermore, pipeline 

orchestration performs the responsibility for scheduling the various part in an ML pipeline with the 

help of automation. Airflow, Kubeflow, and Argo are the leading solution for pipeline orchestration 

frameworks.  

 

Validate & Monitor Production ML Data 

Understanding the esoteric statistics of data, 

evaluating training datasets, and detecting 

anomalies to fix are crucial steps for data 

validation. Data Drift and Skew are the common 

issues ML engineers face regularly. Model's 

performance decay over time occurs due to 

training and serving data issues. Moreover, data 

drift and concept drift are the two reasons for that 

problem. Data can change over time due to many 

unexpected events. For example, during the 2020 

Figure 2 Validate Training & Serving Dataset 
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COVID-19 lockdown, many people started using their credit cards for online shopping so frequently 

that the ML model got drifted data. Moreover, that resulted in wrong credit card fraud warning to the 

customers. Concept drift happens more naturally with time. The data mapping can change with time 

in real-world dynamic data, and the model also needs to change. Schema skew can occur in data when 

training and serving data do not confirm the same schema (we can get a string where we are expecting 

an integer). So, Skew detection needs continuous evaluation of the data coming to the server from 

different sources once we train our ML model. That makes continuous validation and monitoring 

extremely essential. To avoid distribution skew, the numerical & categorical features of the evaluation 

data should be nearly the same range as the training data. Below is the visual representation of both 

training and evaluation dataset statistics generated by TFDV.   

Preprocessing & Feature Engineering at Scale 

Applied machine learning often requires strict engineering of the features & pre-processing of the 

dataset like data cleansing, feature tuning, data transformations, dimensionality reduction, etc. It is 

crucial to improve the performance of the machine learning model. In a data science project, 80% of 

time & resources are spent on data preparation. The technique of feature engineering is highly 

dependent on the particular algorithm. In a real-world production environment, feature engineering on 

several terabytes of data needs to be feature engineered automated. So, it is ideal to start with a subset 

of the dataset, performing all the experiments, solving issues, and then scale up to the terabytes where 

the model will work on the complete dataset. The real challenges we have to deal with are being 

consistent with the coding approach for training and serving paths, working out on deployment 

environment during developments, and detecting training-evaluating skews in an early stage. 

Numerical range and grouping are the categories for feature engineering. Depending on the algorithm, 

we must understand the scaling, normalizing, standardizing, and grouping used. Scaling converts 

values to a standard prescribed range, e.g., rescaling an image pixel from the [0, 255] range to the [-1, 

1] range so that the convolutional neural network (CNN) performs training and evaluation tasks faster. 

It is important because at any typical production level computer vision model needs several terabytes 

of image data, and scaling the dataset will improve the average performance of the model. 

Furthermore, it helps the model learn each feature's correct weight. 

Standardization is another way of scaling using standard deviation by looking at the data distribution 

where the data values are centered around the mean. It is good to try standardization and 

normalization in real-world use cases and compare the results. In some scenarios, we do not want to 

input raw data into our model; instead, we apply some encoding techniques in a category by grouping 

that into a Bin/Bucket. For example, we do not want a color name as input if we have a color category 

in our dataset containing values. The One Hot Encoding technique creates several additional features 

based on the categorical features' unique values (string/integer). Each unique value in the particular 

category is added as a feature. This method is effective in neural network classification models. 

Dimensionality reduction techniques like Principal component analysis (PCA), Kernel PCA, t-SNE, 

LDA, Backward Elimination, Forward Selection, etc., are used to reduce the number of dimensions of 

the dataset. In the production machine learning use case, it is crucial to perform a dimensionality 

reduction technique to eliminate the unnecessary components/features so that the overall performance 

of the algorithm increase, decreasing the training time, computational resources, and overfitting. 

Figure 3 Normalization and Standardization 
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Neural Architecture Search (NAS) & Hyperparameter Tuning 

In an experimental machine learning model architecture, we run trial & error on the model by 

manually tuning the parameters like neuron’s number, learning rate, dropout pattern, holdout pattern, 

hidden layers, etc., to reach a point where we get the most accurate model. And it takes much work 

for a small experimented model. We need to automate this process in production machine learning to 

make the model development process efficient. The Keras tuner is one of the solutions which runs the 

model multiple times, collecting metrics of different parameters each time and optimizing them into 

the best one. Model selection is also a tedious task if we do it entirely manually. Model selection is 

the process of understanding which architecture of the model and which topology of the neural 

network works best in a particular dataset. Neural Architecture Search (NAS) is the process of 

automating architecture engineering to find the best architecture for the dataset. NAS is categorized 

into three dimensions: Search space, search strategy, and performance estimation. 

 Search Space: In the AutoML context, a search space defines a collection of machine 

learning pipelines from which it searches for a suitable ML solution to the given problem 

statement. It incorporates prior knowledge about predefined architecture and its properties. 

Though it simplifies the search, it introduces human bias, which may prevent finding novel 

architecture solutions. 

 

 Search Strategy: Search strategy is how the NAS decides which options in the search space 

to try. Grid search, Random search, Bayesian optimization, Evolutionary algorithm, and 

Reinforcement learning are the different search strategies that can explore the space of neural 

architectures. 

 

 Performance Estimation Strategy: The performance estimation strategy is a metric on the 

search space. It returns a number that corresponds to the performance estimation of the 

architecture. 

 

Neural Architecture Search (NAS) depends on measuring the accuracy of the different architectures in 

their trials. In NAS, the search strategy needs to estimate the performance & accuracy of generated 

architectures to generate better performance & accurate architectures. Lower Fidelity Estimation, 

Learning Curve Extrapolation, and Weight Inheritance are the different strategies. 

 

 

Model Optimization: Dimensionality Reduction 

To put the model into production and maintenance during its service time requires a cost. And that 

heavily depends on which computing system the model will run. So, it is essential to work on model 

resource management in the early phase of the production ML pipeline. Though a dataset contains 

unnecessary features, a neural network can perform automation feature selection and give expected 

outcomes. But it will not be an efficient, well-designed model that can be deployed for production. 

Because there will remain many unwanted features (though the model ignores them), that will take up 

space and computing resources as the model performs. Sometimes it is plausible that this can cause 

unwanted noise in the data and degrade the overall model's performance. Each feature contains 

information that may or may not help a model predict well. As we add more features, we need to 

increase the number of training examples. We can use manual techniques and also algorithmic 
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dimensionality reduction techniques for dimensionality reduction. In a predictive model, features must 

contain information that helps the model predict correctly. We can remove unwanted features directly 

from the raw data. Sometimes, new informative features from unwanted data need to be created by 

aggregating, decomposing, or combining. It is an iterative process that needs continuous data 

selection and model evaluation. For example, in the NYC taxi fare prediction model, we build a 

baseline model using dropoff_latitude, dropoff_longitude, passenger_count, pickup_latitude, and 

pickup_longitude as input features to predict the fare of a particular ride. 

So, the baseline model performed poorly. Because the dataset contains a feature about the latitude and 

longitude of both pickup and dropout points, it cannot determine their distance. Furthermore, taxi fare 

mainly depends on the traveling distance. We add new features to calculate the distance between each 

pickup and dropout point. These processes are vastly iterative and need domain understanding to 

implement.Algorithmic Dimensionality Reduction is an intuitive approach to reducing dimensionality. 

Moreover, Principal Component Analysis (PCA) is a widely used unsupervised algorithm that creates 

linear combinations of the original features and learns the principal components of the data. PCA aims 

to find a lower-dimensional surface to project the data and minimize the squared projection error. The 

first principal component is the projection direction, which maximizes the variance of the projected 

data. The second principal component is the orthogonal projection direction to the first principal 

component; it maximizes the remaining variance of the projected data. Both principal component-1 & 

principal component-2 comprise a new orthogonal basis for feature space whose axis follows the 

highest variances of the original data. PCA applies to numerical datasets. For the image dataset, we 

can use Single value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF) for text 

data. PCA works on eigen-decomposition, which can be done only by square metrics. 

Figure 4 Model's Performance with Baseline Features 

Figure 5 Model's Performance with Feature Engineered 
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Nevertheless, sometimes, we have sparse matrices, and to decompose this kind of metrics, we have 

techniques like Single value Decomposition (SVD). To reduce dimensionality, SVD decomposes the 

original data into constituents, which is used to reduce redundant features from the dataset. Non-

Negative Matrix Factorization (NMF) represents data as combinations of commonly occurring visual 

patterns. It requires the dataset's features to be zero, more significant than zero, or non-negative. 

 

Model Optimization: Quantization & Pruning 

In a production ML project, model optimization is the phase where we have to work on model 

performance optimization and resource management. We expect a real-world case study's highest 

performance at the minimum cost. The model may be deployed in any embedded, IoT, or mobile 

applications. It is crucial to identify possible users and the platform. We deploy the machine learning 

model in the cloud in any typical situation, where a server runs inference and returns the result. 

However, in some use-case, it is required to perform the ML model locally as part of the device's core 

functionality. The model needs to be 

embedded directly into devices that are 

not connected to the server to serve the 

model's output. Most of the time, IoT 

and mobile devices' computing 

capabilities and storages are very 

limited. Quantization and Pruning are 

the techniques used to reduce the 

compute resources required to serve 

the ML model. Quantization is a 

technique that transforms a model into 

an equivalent model, using lower 

precision parameters and computation 

power. Quantization of neural 

networks is crucial because regular 

neural networks have millions of 

connections and take a considerable 

amount of space and computational 

resources. So, the quantization model 

can compute faster, take less space, 

and run with lower computation 

power. When quantizing a neural network, the weight parameters and activation nodes computations 

need to be quantized. This process compresses a small range of floating-point values into a fixed 

number of information buckets. It reduces the requirement to store a range of the same data type and 

save bits by saving the range within a smaller range. It is a trade-off process because it may change 

model accuracy. Quantization can be performed during training or after the model has been trained. 

TensorFlow-Lite quantizes the baseline model in the 

example to make it deployable in a mobile device. The 

model's accuracy decreases from 96% to 93%, and the 

model size shrinks from 99144 bytes to 24112 bytes. 

Pruning is another method to reduce the unnecessary 

nodes and layers in the neural network to reduce the 

storage and computational cost. The main focus of 

Pruning is to reduce the number of parameters and 

operations that have less contribution to the prediction 

of the neural network. This process makes the training 

Figure 6 Model Quantization 

Figure 7 Pruning 
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faster and uses less storage and computational power. In a limited hardware situation, this is very 

crucial. This process may cause a decrease in the model accuracy and become a trade-off situation 

between complexity and performance. The prune_low_magnitude() is a TensorFlow Model 

Optimization packages method that uses wrappers in a Keras model and prunes it during the training. 

 

Distributed Training & High-Performance Modeling 

The model training phase may be simple and fast in research and prototype development. However, 

training a real-world model for production is a tediously 

time-consuming task. Furthermore, dynamic datasets are 

continuously updated and increase with time. The model is 

also becoming more and more complex. The number of 

epochs in the model also increases as a result. Because the 

model development is highly iterative, spending a 

tremendous amount of time in training is not sufficient. 

Distributed training allows to speed up the training of a vast 

and complicated model. Data parallelism and model 

parallelism are the two types of performing distributed 

training. In data parallelism, the data is divided into many 

partitions and given to many workers. Each worker operates 

on a partition and a copy of the model. Then the model 

updates are synchronized across the workers. Synchronous training and Asynchronous training are the 

two ways to perform distributed training using data 

parallelism. In synchronized training, each node 

(worker) trains on its current mini-batch of the dataset. 

This method divides the model into partitions and 

assigns different accelerators like GPUs and TPUs. 

However, in this process, only one accelerator is active 

during the computation, making it inefficient because 

accelerators are essential for high such high-

performance modeling, but they are also expensive. To 

overcome this issue, GPipe can be used. Gpipe partitions 

a model across different accelerators and splits a mini-

batch of the training set into smaller micro-batches. In this way, accelerators can operate parallel by 

pipelining the execution process across the mini-batches.  

 

Model’s Performance Analysis & Identifying Bias 

Model debugging and model robustness are essential to understanding adversarial attacks on CNN 

and sensitivity analysis. In production ML, there needs to be a deeper model's performance analysis 

after the development of the model. Model analysis on individual subsets of the entire dataset is 

crucial to improve the model's performance after deployment. This process allows further model 

improvement because the model's performance can decay due to data changes or concept shifts. Black 

Box evaluation and model introspection are the two ways to analyze the model's performance. In 

black-box evaluation, the internal structure of the model is not examined but quantifying the model's 

performance through different metrics and losses. Model introspection methods are used to 

understand the model's internal structure and improve efficiency and performance by adjusting and 

iterating the model's architecture. TensorFlow's visualization tool TensorBoard is often used by data 

scientists and engineers to perform such tasks. A scalable framework like TensorFlow Model 

Figure 8 Distributed Training 

Figure 9 Distributed Training 
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Analysis (TFMA) is often used to deeply analyze the model's performance. It can be integrated with 

the TFX pipeline so that, before deploying a newly trained or updated version of the model, engineers 

can perform deep analysis. This can also examine the model’s performance against different subsets 

of the dataset. 

 

Production-Grade Model Serving 

Model serving means hosting a machine learning model on-premises or on the cloud and making the 

model's functionality available via API. We need a production infrastructure and process to put an ML 

model into production and use it as a service or product. The process is very similar to a production 

software deployment and DevOps principle; best practices apply to production MLOps. It requires 

pre-planning from the beginning of the 

project, or it can lead to serious issues 

when deploying. So, the data team and 

engineers should invest proper time and 

resources in the deployment process 

from the early stage of Model 

Development. Model serving means 

making the trained model available for 

the end-user by accessing the server or 

application. It can be deployed on the 

local storage of a mobile or IoT device 

as an offline application or an API-based 

online application/service. So, Batch and online are two types of models serving. A production-grade 

API has traffic management, access points, pre-processing and post-processing requests, and 

monitoring model draft functions. There are several ML serving tools like TensorFlow Serving, 

Amazon SageMaker, Amazon's ML API, IBM Watson, Google Prediction API, etc., for deploying 

machine learning models in a secure environment with scale. 

 

Continuous Performance Evaluation & Monitoring 

In an ML pipeline's workflows, model training is performed either offline (batch/static learning), 

where the model is trained on previously collected data, or online learning, where regularly new data 

is collected as a data stream. When a model is trained on static data deployed in production, it remains 

constant until it is retrained. As the model encounter real-world data, it becomes stale, which means 

model decay. The model trained on steam data can also face such model decay because of data/feature 

change or concept shifts. Such a 

phenomenon needs to be monitored 

regularly after deployment to maintain the 

model's performance in production. The 

below graph represents data change 

during the national lockdown (Covid-19, 

2020) because a significant amount of 

online shopping was increased within a 

few days. The MIT Technology Review 

published an article that showed how our 

sudden online activities change during the 

pandemic were messed with Artificial 

Intelligence models. Production ML models can respond to some changes, but if the changes are too 

Figure 10 Model Serving 

Figure 11 Model Performance Decay 
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much different from the data the model was trained on, the model will treat the input data as 

anomalies. The credit card fraud detection model is the perfect example; during the 2020 lockdown, 

the number of online shopping increased sharply. In the meantime, the use of credit cards also 

increased. That sudden change of data made the AI model behave strangely, and the system started 

sending fraud alerts to many credit card users with valid transactions. Sometimes, the change may not 

be that significant but still cause model decay. Because of that, continuous model performance 

evaluation and data monitoring after the ML model’s deployment in production are crucial.  

Monitoring the machine learning model refers to how the data team tracks and understands the 

model's production performance. Inadequate model monitoring causes incorrect 

predictions/classification that can affect the business poorly. Data Skews, Model Staleness, and 

Negative Feedback Loops are the issues an ML model can encounter, and the monitoring system 

should be able to detect them. Data skew when the training data is not representative of the 

stream/live data. This can happen if the training data features do not match the features of the live 

data. Model staleness may occur if we choose the wrong training data set for the model's training. A 

car manufacturing company's sales prediction model should be trained with regular sales data. If we 

used the data from the recession when car sales were abnormally low, then the model does not serve 

well during the healthy economic time. Negative Feedback Loops arise when a model is automatically 

trained on collected data. But if the data is corrupted or wrongly formatted, the overall model will 

perform very poorly.   

 

Conclusion 

Machine Learning Model deployment and MLOps pipeline implementation can be challenging. But 

understanding the business problem statement to effectively put an ML in production does not have to 

be hard if all stages of the development are appropriately planned and executed. Each process of 

development is highly iterative and time-consuming. But still, in the real world, developing an ML 

production pipeline that delivers actual business value is extremely challenging. Around 20-25% of 

the pipeline can deliver business value. Building a successful production ML pipeline needs a diverse 

set of skills, experience, domain knowledge, and teamwork. Commonly, the first ML pipeline does 

not meet the business objectives. But as it is an iterative process, proper plans and experimentation 

will always help meet the expected results. Misalignment between actual business needs and machine 

learning objectives, testing & validation issues, and non-generalized model training is the top reason 

machine learning models fail in production. But several tactics can help to make an ML project a 

success. 

 Dependency on Cloud: ML development is a highly iterative process; it needs efficient 

communication and teamwork. If the team works locally instead of in the cloud, it will slow 

the whole development process. And it will be harder to implement automation as well. 

That's why most ML open-source tools are developed for the cloud so that testing, training, 

validation, and model development become automated and easy to control.  

 Leverage a DevOps Approach: A MLOps approach is similar to the DevOps approach. So, 

ML teams can follow in DevOps approach by implementing the continuous integration (CI) 

and continuous delivery (CD) model. The ML team can update, change and iterate any part 

of the development process. 

 Investment in monitoring and observability: Healthy data is necessary for a Machine learning 

model. Without proper clean data and working pipelines, models can perform well. Data 

changes can occur in the real-world ML scenario and can cause model decay. So, continuous 

monitoring is the key to a successful production machine learning model. 
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Machine Learning models do not work like magic, but it is powerful enough to change any 

industry. So, with proper strategy, processes, planning, and technology, a production machine 

learning model can deliver competitive advantage and fuel growth across every industry. 
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