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Abstract Next-generation sequencing (NGS) technology, with its high-throughput capacity and

low cost, has developed rapidly in recent years and become an important analytical tool for many

genomics researchers. New opportunities in the research domain of the forensic studies emerge by

harnessing the power of NGS technology, which can be applied to simultaneously analyzing multi-

ple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex

chromosomes. Furthermore, NGS technology can also have potential applications in many other

aspects of research. These include DNA database construction, ancestry and phenotypic inference,

monozygotic twin studies, body fluid and species identification, and forensic animal, plant and

microbiological analyses. Here we review the application of NGS technology in the field of forensic

science with the aim of providing a reference for future forensics studies and practice.
Introduction

Since the introduction of the Sanger sequencing method in the

1970s [1], DNA sequencing technology has enabled enormous
advances in molecular biology and genetics. Several large pro-
jects have been successfully completed using this technology,
such as the Human Genome Project, Rice Genome Project

and Swine Genome Project, as well as genome projects of many
other species. However, disadvantages of the conventional
Sanger sequencing technology, including its low throughput,
high cost and operation difficulties, have limited its use in dee-
per and more complex genome analyses [2]. The recent intro-
duction of next-generation sequencing (NGS) technology,

with its high-throughput capacity and low cost, has largely
overcome these problems, and these technologies have been
applied in various fields of life sciences, including forensics
[3], disease diagnosis [4], agrigenomics [5] and ancient DNA

analysis [6]. In this article, the use of NGS technology in foren-
sic science is reviewed with the aim of providing a reference for
future frontier research and application in forensic science.

Overview of NGS technology

NGS technology refers to non-Sanger-based high-throughput
DNA sequencing technology. Millions or billions of DNA
nces and
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molecules can be sequenced in parallel, thereby increasing the
throughput substantially and minimizing the need for the frag-
ment-cloning method often used in Sanger sequencing. It

includes second-generation sequencing technology based on
loop array sequencing, which can analyze a large number of
samples simultaneously, as well as third-generation sequencing

technology, which can determine the base composition of
single DNA molecules.

In 2005, Roche introduced the 454 Genome Sequencing

System [7], the world’s first pyrosequencing-based high-
throughput sequencing system. The first 454 Genome Sequen-
cer was capable of generating approximately 200,000 reads of
110 base pairs (bp) in length (the current maximum read length

is 1000 bp). In 2007, Applied Biosystems (ABI) introduced the
SOLiD second-generation sequencing system based on the oli-
gonucleotide ligation technique and two-base encoding system,

whereas Illumina released Solexa sequencing technology. The
Illumina and SOLiD sequencers generated much larger num-
bers of reads than the 454 system (30 and 100 million reads,

respectively); nonetheless, the reads produced were only
35 bp long. In 2010, Ion Torrent, a faster and low-cost sequen-
cer based on semiconductor technology, was introduced. This

sequencer does not rely on fluorescence, chemiluminescence, or
enzyme cascades for sequencing signal detection. Currently, a
maximum read length of up to 400 bp can be obtained using
this system.

All these new sequencing methods have led to three major
improvements from the conventional technologies. First, these
technologies do not require bacterial cloning of DNA frag-

ments; instead, they rely on the preparation of NGS libraries
in a cell-free system. Second, instead of hundreds of sequenc-
ing reactions, they can parallelize the thousands-to-many-

millions of sequencing reaction. Third, the sequencing output
is directly detected with no need for electrophoresis. The enor-
mous number of reads generated by NGS enabled the sequenc-

ing of entire genomes at an unprecedented speed and thus it
came to be widely used in various fields of life sciences. How-
ever, one drawback of second-generation sequencing technol-
ogy is its relatively short read lengths, which has resulted in

difficulties in subsequent sequence splicing, assembly, annota-
tion and bioinformatics analysis [8]. Furthermore, standard
PCR was used to randomly amplify genomic fragments during

library preparation. Due to the complex structure of genomes,
factors such as secondary structure and thermal stability will
affect the efficiency of PCR amplification. Therefore, the com-

plete genomic sequence may not be represented in the library
produced by such amplification. This can be problematic due
to the relative deviation between amplified and non-amplified
DNA molecules, resulting in potential inaccuracies in gene

expression analysis. This concern is particularly relevant for
highly-expressed genes [9]. Moreover, these shortcomings have
restricted the application and development of second-genera-

tion sequencing technology to some extent and have necessi-
tated the development of third-generation single-molecule
sequencing technology [10–12].

The third-generation sequencing technology not only
allows the detection of single molecules but also enables real-
time sequencing. The current leader in this field is the PacBio

RS system (Pacific Biosciences), which utilizes the single-mol-
ecule, real-time (SMRT) DNA sequencing technology. SMRT
sequencing is based on the sequencing-by-synthesis approach;
an SMRT chip contains thousands of zero-mode waveguides,
in which the DNA polymerase molecules used to synthesize
the DNA fragments of interest are attached. Compared to sec-
ond-generation sequencing, the latest SMRT technology can

achieve an average read lengths of 5500�8500 bp. Moreover,
it can also directly detect epigenetic modifications such as
4-methylctosine (mC), 5-mC and 6-methyladenine (mA) [13].

Forensic application prospects of NGS technology

The application of DNA technologies in forensic investiga-
tions has rendered DNA analysis an important tool in forensic
science. Compared to other fields of life sciences, forensic
DNA analysis is confronted with template of low copy num-

ber, highly-degraded and contaminated samples, the need for
high accuracy and reproducibility, as well as time and cost
considerations. Today, the majority of forensic DNA tests

employ PCR and capillary electrophoresis (CE)-based
fragment analysis methods to detect length variation in short
tandem repeat (STR) markers.

The CE-based Sanger sequencing has been used to analyze
specific regions of mitochondrial DNA (mtDNA) [14]. The
development of miniaturized gel electrophoresis and the auto-
mation of reaction gel loading and signal detection allowed the

Sanger methodology to become the gold standard for DNA
sequencing. However, CE-based analysis has its limitations,
for example, the inability to analyze multiple genetic

polymorphisms in a single reaction using a single workflow,
low-resolution genotyping of current markers, loss of useful
genomic information from degraded DNA samples, and low-

resolution mtDNA and mixture analysis. These limitations of
first-generation sequencing prompt the forensic scientists
worldwide to explore the usefulness of NGS technology for

forensic studies.

STR analysis

STR analysis is likely to remain the most important and
commonly-used genetic technique in forensic science for the
foreseeable future. It displays multiple advantages, such as

rapid and precise allele determination, low DNA template
requirement, multiplex amplification and fluorescence-based
detection, digitized results and utilization of the abundant

genomic element, At present, more than 60 countries world-
wide have established forensic DNA databases based on STRs,
and these databases continue to grow rapidly. For example,
China now has more than 27 million entries in its forensic

database [15]. The probability of a random match between
unrelated individuals will increase if statistical analyses were
based only on the 13 routinely-used Combined DNA Index

System (CODIS) STR markers (i.e., CSF1PO, FGA, THO1,
TPOX, VWA, D3S1358, D5S818, D7S820, D8S1179,
D13S317, D16S539, D18S51 and D21S11) or 15 markers (13

CODIS loci plus D2S1338 and D19S433). To avoid this, incor-
poration of more STR markers into the common forensic typ-
ing assay currently used has been recommended. However,

simultaneous detection of more STR markers would be very
difficult, due to the technical limitations of fluorescent-based
CE sequencers currently in use. Traditional CE-based STR
typing using CE is based on the detection of DNA fragment

size. Therefore, alleles of identical or similar length but of dif-
ferent sequences cannot be distinguished. Consequently, STR
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mutations in complex paternity cases often cannot be resolved
with traditional CE-based STR analysis. An additional
challenge for forensic DNA tests is the analysis of complex

DNA mixtures comprising DNA from more than one individ-
ual. Contemporary analyses of mixed DNA samples often
yield low detection rates, thus are not useful in crime

investigations.
When NGS technology was firstly introduced to genomics,

it was not suitable for STR testing because the read length was

generally too short. With technological advances, the average
read length has been continually increasing. Since alleles with
similar length can be easily distinguished using NGS technol-
ogy and digital read count could significantly facilitate the

identification of mixed DNA samples and analysis of complex
paternity cases, some researchers have recently started using
NGS technology for STR testing. For example, a pioneer

study was performed by Zajac and colleagues, who analyzed
three CODIS STR loci, TPOX, CSF1PO and D18S51, using
the trinucleotide threading (TnT) approach by 454 Genome

Sequencing System [7,16]. Subsequently, Irwin et al. [17] ana-
lyzed 13 CODIS STR loci using the 454 GS Junior system in
combination with multiplex identifier technology for single

source samples. Bornman et al. [18] went further to show that
high-throughput sequencing technology can accurately iden-
tify the 13 CODIS STR loci as well as the AMEL gene for
not only single source but also mixed samples. To process

the forensic NGS data, Warshauer et al. [19] developed STRait
Razor, a software that can analyze the NGS data for 44 STRs,
including 23 autosomal and 21 Y chromosome STRs. In addi-

tion, Van Neste et al. [20] used Illumina’s MiSeq system to
establish a reference allele database to detect single source
and mixed DNA samples; they observed that most locus geno-

typing results were stable and reliable.
NGS technology has many potential advantages for STR

analysis. These include high throughput, low cost, simulta-

neous detection of large numbers of STR loci on both auto-
somes and sex chromosomes, and the ability to distinguish
alleles with similar length or digital read count. NGS technol-
ogy would therefore significantly facilitate the identification of

mixed DNA samples and analysis of complex paternity cases,
and ultimately greatly increase the efficiency and cost-effective-
ness of legal cases.

Mitochondrial genome analysis

mtDNA has proved to be a useful forensic tool in cases
involving low amounts of DNA or wherein the maternal
lineage needs to be investigated, due to its characteristics
of small size, multiple copies, maternal inheritance, high

mutation rate and lack of recombination. Currently, forensic
mtDNA analyses usually detect only polymorphisms within
a hypervariable region. However, for mtDNA to be used

as a genetic haplotype marker, additional polymorphic loci
are required to increase the discrimination power of identifi-
cation. Therefore, NGS technology has the potential to

greatly assist in the analysis of whole mitochondrial
sequences.

With the increased application of NGS technology in vari-
ous fields, the cost of equipment and reagents has decreased

markedly. Parallel sequencing technology, which allows for
simultaneous analysis of multiple samples, has also led to
cost-effectiveness. For instance, the number of picotiter plates
used in the GS-FLX instrument has increased from 2 to 16,
and each channel can simultaneously analyze 192 samples

using multiplex identifier (MID) technology. Furthermore,
Binladen et al. [21] used a primer coding technique and
produced 256 tagged primers for use in multiple parallel

sequencing, allowing 256 samples to be sequenced in a single
run. Moreover, Gunnarsdóttir et al. [22] used NGS technology
to sequence whole mitochondrial genomes of 109 Filipino indi-

viduals at the same time and obtained on average �55 · cover-
age per sequence, with <1% missing data per sequence.

Human mtDNA heteroplasmy is common and hetero-
plasmy of cells from different tissues within a single individual

has also been observed [23]. mtDNA heteroplasmy is one of
the factors affecting the performance of forensic mitochondrial
analysis. The detection of heteroplasmy at the whole mito-

chondrial genome level has been reported [24], supporting
the advantages of using NGS to detect mitochondrial hetero-
plasmy, including high accuracy and sensitivity, high through-

put, low cost, and simple operation [25]. In a separate study,
multiple mitochondrial hypervariable regions, an autosomal
STR locus (D18S51) and a Y chromosome STR locus

(DYS389I/II) were simultaneously examined using the 454
GS Junior system. The results demonstrated that a mixing
ratio of two DNA sources as low as 1:250 can be detected,
and the authors concluded that by increasing the sequencing

coverage, a mixing ratio of 1:1000 might be detectable as well
[26]. To compare the haplotypes defined by using NGS tech-
nology at the whole mitochondrial genome level with conven-

tional Sanger sequencing, 64 whole mitochondrial genome
sequences were analyzed. The results showed differences in
<0.02 % of nucleotides using these two methods and that

approximately two-thirds of the differences were observed in
or around homopolymeric stretches, since these areas were
prone to sequencing errors [27]. To evaluate the reproducibility

between samples that were sequenced twice with NGS, Mik-
kelsen et al. [28] reported that using the 454 NGS method,
95% of the reads was sequenced correctly in homopolymers
of up to 6 bases if the results were carefully and visually

inspected. Previously-unreported heteroplasmy in the
GM9947A component of the National Institute of Standards
and Technology (NIST) human mtDNA SRM-2392 standard

reference was detected in this study.

Y chromosome analysis

Genetic markers on the Y chromosome have assumed a valu-
able role within forensic molecular biology. Most commonly,
Y-STRs are used to unambiguously resolve the male compo-

nent of DNA mixtures when a high female background is pres-
ent, or to reconstruct paternal relationships between male
individuals. Using NGS technology, more than 10 million

nucleotides of the Y chromosome were compared between
two male individuals who shared the same ancestor 13 gener-
ations ago [29]. Four genetic differences were detected, sug-

gesting that Y chromosome sequencing could solve the
problem of distinguishing between mixed male samples from
the same parent. In addition, Van Geystelen et al. [30,31]
developed AMY-tree using Y chromosome single nucleotide

polymorphisms (SNPs) and successfully verified the differences
between 118 unrelated male individuals from 109 different geo-
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graphical regions. This study demonstrated that AMY-tree can
determine Y chromosome pedigrees and identify unknown
Y-SNPs from different geographical regions.

Forensic microbiological analysis

Microbial forensics is a new discipline developed by the Fed-
eral Bureau of Investigation (FBI) after the Anthrax attack
on 18 September 2001 in the USA. It is based on the fast

and accurate detection and identification of microorganisms
founded at biological crime, with the aim of tracing the
source of the microbe [32]. Because microbiological terrorist
attack could lead to serious consequences, forensic microbio-

logical analysis has been attracting considerable attention
[33]. Using whole-genome sequencing by the SOLiD system
in a real investigative case, Cummings et al. [34] identified

suspects by sequencing four strains each of Bacillus anthracis
and Yersinia pestis at a cost of only $1000 and reported that
this would be reduced to less than $50 if the HiSeq 2000 sys-

tem were used.
Brenig et al. [35] used the 454 sequencing system to identify

biological traces using deep sequencing and metagenomic anal-
ysis and indicated that the method can be used for the forensic

identification of biological traces. Fierer et al. [36] examined
the bacteria left by human skin on the surface of contact
objects by using an NGS-based metagenomic method and

showed that the bacteria left by human skin possess sufficient
DNA information for forensic analysis.

A study by Lilje et al. [37] investigated the criteria for soil

metagenome data management and database searching. Eleven
samples collected from different environments (forests, fields,
grasslands and an urban park) with different microbial flora

were sequenced using the Roche/454 platform. The results
demonstrated that 18S rRNA gene marker analysis could be
used to create and run a filtered database, which was very com-
putationally efficient and flexible. Similarly, Giampaoli et al.

[38] successfully applied a metabarcoding approach to forensic
and environmental soil samples, allowing accurate and sensi-
tive analysis of the DNA of microflora, plants, metazoa and

protozoa.
All the studies described above demonstrate that NGS has

the advantages of high throughput, multiplexing capability

and accuracy, which makes it suitable for rapid whole-genome
typing of microbial pathogens during forensic or epidemiolog-
ical investigation. Rare polymorphisms can be reliably

detected by analyzing every base of the genome, thus giving
forensic data higher resolution and greater accuracy. It is
expected that a high-quality forensic microbial database will
soon become a reality and aid in the fast and accurate identi-

fication of criminals and biological terrorists.

Animal and plant DNA analysis

Species identification is one of most important components of
forensic practice. For example, in some cases of poaching [39]

and trading of endangered species [40], it has been used to pro-
vide important information and assist in police investigations.
In the food industry, identification of the species present in
meat products can be achieved [41], and in archeology, human

remains can be distinguished from non-human remains [42]. At
present, most DNA typing methods for species determination
are based on PCR amplification using species-specific primers
for single species. However, forensic scientists are often faced

with situations in which no a priori species information is
available. The development of NGS technology has allowed
DNA typing to be used in more projects involving species iden-

tification [43,44]. For example, Cheng et al. recently identified
plants and animals in traditional Chinese medicines using a
cost-effective and efficient next-generation deep sequencing

method [45].

Ancestry studies and phenotypic inferences

Information embedded within the human genome may pro-
vide insights into personal characteristics such as ethnicity
[46], physical and physiological characteristics and age

[47,48]. In forensic studies, characteristics inferred from
DNA analysis make it possible for criminal investigations
to evolve from the ‘‘passive comparison’’ into the ‘‘active

search’’ stages. In criminal cases where a possible suspect
and database information are unavailable, it is possible to
rapidly narrow down the potential suspects by using ances-
try studies and phenotypic inference derived from a DNA

sample. For example, in the 2004 Madrid train bombings,
source population of the suspects was inferred by using 34
autosomal SNPs related to the ancestry of population [49].

Other studies reported SNPs closely related to colors of
the iris [50] and hair [51] with an accuracy of 90%. Klimen-
tidis et al. [52] investigated facial features using DNA test

and association analysis and validated their results using
facial reconstruction (molecular photo fitting). The results
demonstrated that there is a relationship between social

and biological measures of race/ethnicity but that it is far
from perfect. In all these studies, only commercial SNP chip
scanning were used. If NGS technology for whole-genome
sequencing were applied in these cases, more information

and accuracy would be obtained.

Epigenetic analysis

DNA sequencing analysis is a powerful tool in forensic identi-
fication [53]. Recently, a number of studies have suggested that

epigenetic markers can also have various applications in foren-
sic science. For example, evidence supports that epigenetic
markers can be used to distinguish monozygotic (MZ) twins
[54], predict tissue type [55] and accurately determine the age

of a DNA donor [56]. Epigenetic approaches based on NGS
technology include whole-genome bisulfite sequencing [57],
methylation beadchips, reduced representation bisulfite

sequencing [58] and methylated DNA immunoprecipitation
sequencing [59]. These sequencing methods require large
amounts of DNA; their ability to use trace DNA samples will

therefore be crucial to the success of forensic epigenetic analy-
sis. Interestingly, extremely low amounts of starting DNA
(100 pg) were successfully analyzed through genome-wide

amplification of a bisulfite-modified DNA template, followed
by quantitative methylation detection using pyrosequencing
[60]. Additionally, another encouraging study performed bisul-
fite genomic DNA sequencing with micro-volume blood spot

samples [61].
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MZ twin studies continue to be a hot topic in the field of
forensic science. As both individuals have exactly the same
DNA sequence, conventional genotyping approaches such as

STR, SNP, sex chromosome STR, and mtDNA analyses can-
not tell them apart. In 2014, Weber-Lehmann et al. [62]
described how identification of extremely-rare mutations by

ultra-deep NGS can differentiate between MZ twins, suggest-
ing a solution to paternity and forensic cases involving MZ
twins. Li et al. [54] used Illumina Human Methylation Bead-

Chip technology to examine the DNA methylation status of
27,578 CpG sites from 22 MZ twins. As a result, they filtered
92 significantly-methylated CpG sites, representing potential
targets for epigenetic studies aimed at distinguishing between

MZ twins. In 2010, the BGI and twin research group Twin-
sUK at King’s College, London, co-sponsored epigenetic
research projects using NGS technology to conduct an

in-depth study aimed at capturing the subtle differences in epi-
genetic signals from 5000 pairs of twins [63]. The research out-
comes are likely to be highly applicable in the forensic

identification of MZ twins.
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MicroRNA analysis
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miRNAs were identified, which could serve as potential candi-
dates for body fluid identification. Using NGS technology,
millions of miRNA sequences can be rapidly analyzed to iden-

tify organ- and developmental stage-specific expression, as well
as miRNA expression in different disease states, thus provid-
ing a powerful tool for forensic analysis.

Conclusion

In practical forensic science, DNA samples are usually limited
and often cannot fulfill the requirements of simultaneously
analyzing multiple loci on different chromosomes in mitochon-
drial genome [67–69]. This may result in difficulties in provid-

ing sufficient information and can limit their use as legal
evidence. In addition, mixed stain identification and complex
paternity cases cannot be solved with traditional STR genotyp-

ing strategies. NGS technology not only meets these require-
ments but can also potentially be applied in many areas of
research, including DNA database construction, ancestry

and phenotypic inference, MZ twin studies, body fluid and
species identification, and forensic microbiological analysis
(Figure 1).

In forensic science, standard STR typing provides sufficient

discrimination power for most applications, and most
countries have already established large-scale forensic DNA
databases for resolving crimes based on STR technology.

Although the use of whole-exome or whole-genome
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samples might provide valuable clues regarding the phenotype

of the offender, who may be out of custody and at risk of re-

offending.

Although NGS technology appears to have an important

role in future forensic studies, more work is required to fully
achieve this goal, which includes overcoming problems with
low-template library preparation, error rate, type estimations

and issues with NGS data processing and mining. Guidelines
NGS

utosome

ochondrial 

Sex 
romosome

pigenetic

Likelihood ratio = 

logical evidence samples collected from crime scenes

simultaneously from biological evidence samples collected from

autosomes, sex chromosomes and mitochondrial genomes, as well

ce samples can be used not only for suspect identification but also

phical characteristics, as well as the source population.
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for the application of NGS in forensic science also need to be
generated. With the technical advances of NGS technology
and continuous translational efforts of forensic scientists, we

believe that NGS technology is likely to become an easily
accessible routine method in forensic practice.
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