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Abstract. In this supplementary material, we include a number of results that were omitted from the
main paper for the sake of brevity. In Section A, we provide full details of how inference may be performed
for the MDI (Multiple Dataset Integration) model via a Gibbs sampler, and specify the priors used when
considering the case study examples of the main paper. In Section B, we provide some supplementary
figures for which there was insufficient room in the main text. In Section C we describe the probabilistic
models that were used for each different data type, and then provide MCMC running specifications in
Section D, together with some information on run times and the scaling of the algorithm. In Section E
we provide further details regarding GO Term Overlap and in Section F we compare MDI to some simple
clustering approaches, as well as to the integrative clustering iCluster algorithm. In Sections H and I, we
elaborate upon the results presented in Section 4.3 of the main paper. First, in Section H, we present results
for the 3 pairwise comparisons (namely, ChIP+PPI, ChIP+Expression and PPI+Expression). Then, in
Section I, we explore the effects of data normalisation upon some of our results. Finally, in Section J,
we extend the results of Section 4.2 of the main paper (the Expression+ChIP example), by additionally
integrating a protein-protein interaction dataset.

A Inference in MDI

In this section, we provide full details of how inference may be performed for our model (via a Gibbs
sampler), and specify the priors that we used in order to obtain the results presented in the main
paper. We use the notation that was introduced in the main paper.

A.1 Model

We define the general model,

p(ci1, ci2, . . . , ciK |φ) ∝
K∏
k=1

γcikk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(cik = ci`)) , (1)

where γ1k, γ2k, . . . , γNk
i.i.d.∼ Ga(αk/N, 1), where “Ga” denotes the Gamma distribution. Writing πik =

γik∑N
j=1 γjk

, we then have π1k, . . . , πNk ∼ Dirichlet(αk/N, . . . , αk/N).

Recall that k is the index on the datasets, and that we have K datasets in total. We permit αk
to be different for each dataset. It follows that the gamma priors for γ1k, . . . , γ1k will in general have
different shape parameters for each dataset, and so the Dirichlet(αk/N, . . . , αk/N) priors will have
different mass parameters.

A.2 Normalising constant

It is straightforward to write down the normalising constant, Z, for Equation (1) above, simply by
summing over all possibilities for the cik’s:

Z =

N∑
j1=1

N∑
j2=1

· · ·
N∑

jK=1

(
K∏
k=1

γjkk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(jk = j`))

)
. (2)
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The joint density for n genes is hence,

p({ci,1, ci,2, . . . ,ci,K}ni=1)

=
1

Zn

n∏
i=1

(
K∏
k=1

γcikk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(cik = ci`))

)
.

(3)

As in Nieto-Barajas et al. (2004), we introduce a strategic latent variable, v, such that,

p({ci,1, ci,2, . . . , ci,K}ni=1, v) =
vn−1 exp (−vZ)

(n− 1)!
×

n∏
i=1

(
K∏
k=1

γcikk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(cik = ci`))

)
,

(4)

where Z is as given in Equation (2).

A.3 Conditionals

We find conditionals by inspection of the joint density given in Equation (4). This enables us to
perform inference in our model via Gibbs sampling.

Conditional for v The conditional distribution for v is,

Ga(n,Z).

Conditional for γjmm The conditional is Ga(aγ , bγ), where

aγ = 1 +
n∑
i=1

I(cim = jm),

and,

bγ = v

N∑
j1=1

· · ·
N∑

jm−1=1

N∑
jm+1=1

· · ·
N∑

jK=1

 K∏
k=1;k 6=m

γjkk

K−1∏
k=1

K∏
`=k+1

(1 + φk`I(jk = j`))

 .

Conditional for φmp The conditional is Ga(aφ, bφ), where

aφ = 1 +

n∑
i=1

I(cim = cip),

and,

bφ = v
N∑

jm=jp=1

N∑
j1=1

· · ·
N∑

jm−1=1

N∑
jm+1=1

· · ·
N∑

jp−1=1

N∑
jp+1=1

· · ·
N∑

jK=1 K∏
k=1

γjkk

K−1∏
k=1

K∏
`=k+1;` 6=p

(1 + φk`I(jk = j`))

p−1∏
k=1;k 6=m

(1 + φkpI(jk = jp))

 .
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Conditional for cim Let xim be the observation for gene i in dataset m. Define xc−i,m to be the
set of all observations (not including xim) currently associated with component c in dataset m. Also
define c−i,m to be the collection of cjm for which i 6= j. Similarly, define ci,−m to be the collection of
cik for which k 6= m. The conditional for cim is then:

p(cim = c|φ, c−i,m, ci,−m, xim, xc−i,m) = bγcm×
m−1∏
k=1

(1 + φkm(I(cik = cim)))

K∏
k=m+1

(1 + φmk(I(cim = cik)))

∫
fm(xim, x

c
−i,m|θm)g(0)m (θm)dθm.

Here, fm is the likelihood model associated with dataset m, g
(0)
m is the prior density associated with

dataset m for the component parameters θm, and b is a normalising constant that ensures that,

N∑
c=1

p(cim = c|φ, c−i,m, ci,−m, xim, xc−i,m) = 1.

A.4 Priors

We assume a Ga(1, 0.2) prior for all φmp parameters. The prior on the γjmm parameters is Ga(αm/N, 1).
We infer the αm’s (the dataset-specific mass parameters) as part of our inference procedure, employ-
ing a Metropolis-Hastings step at the end of each complete Gibbs iteration. For the first and second
examples in the main paper (Sections 3.1 and 3.2), we adopt Ga(2, 4) priors for all αm’s. For the third
example (where there are more genes), we adopt Ga(2, 2) priors.

B Additional supplementary figures

B.1 Graphical model

Paul Kirk et al

The outline of this paper is as follows. In Section 2, we briefly
provide some modelling background and present our approach.
Inference in our model is performed via a Gibbs sampler, which
is provided in the Supplementary Material. In Section 3, we
describe three case study examples, in all of which we use publicly
available S. cerevisiae (baker’s yeast) datasets. We then present
results (Section 4), and provide a discussion in Section 5.

2 METHODS
In this section, we provide some background regarding Dirichlet-
multinomial allocation mixture models (Section 2.1), and consider how
these may be extended to allow us to perform integrative modelling of
multiple datasets (Section 2.2). Inference in the resulting model (which
we shall henceforth refer to as MDI) is performed using a Gibbs sampler
(see Supplementary Material). We briefly describe in Section 2.4 how the
resulting posterior samples may be effectively summarised.

2.1 Dirichlet-multinomial allocation mixture models
We model each dataset using a finite approximation to a Dirichlet process
mixture model (Ishwaran and Zarepour, 2002), known as a Dirichlet-
multinomial allocation mixture model (Green and Richardson, 2001). Such
models have the following general form:

p(x) =

N∑

c=1

πcf(x|θc). (1)

Here,N is the maximum number of mixture components, πc are the mixture
proportions, f is a parametric density (such as a Gaussian), and θc are
the parameters associated with the c-th component. Importantly, different
choices for the density f allow us to model different types of data (for
example, a normal distribution might be appropriate for continuous data,
while a multinomial might be appropriate for categorical data).

Given observed data x1, . . . , xn, we wish to perform Bayesian inference
for the unknown parameters in this model. We introduce latent component
allocation variables cj ∈ {1, . . . , N}, such that ci is the component
responsible for observation xi. We then specify the model as follows:

xi|ci,θ ∼ F (θci ),

ci|π ∼ Multinomial(π1, . . . , πN ),

π1, . . . , πN ∼ Dirichlet(α/N, . . . , α/N), (2)

θc ∼ G(0),

where F is the distribution corresponding to density f , π = (π1, . . . , πN )

is the collection of N mixture proportions, α is a mass/concentration
parameter (which may also be inferred), and G(0) is the prior for
the component parameters. Bayesian inference for such models may be
performed via Gibbs sampling (Neal, 2000). Note that a realisation of
the collection of component allocation variables, (c1, . . . , cn), defines a
clustering of the data (i.e. if ci = cj , then xi and xj are clustered together).
Since each cj is a member of the set {1, . . . , N}, it follows that the value
of N places an upper bound on the number of clusters in the data.

The Dirichlet process mixture model may be derived by considering the
limitN →∞ in Equation (1) (Neal, 1992; Rasmussen, 2000). In the present
paper, it is convenient to persist with finiteN (see Section 2.2). SinceN just
places an upper bound on the number of clusters present in the data, this is
not overly restrictive. Provided N is taken sufficiently large, the number of
clusters present in the data will be (much) less thanN , and we will retain the
ability to identify automatically the number of clusters supported by the data.
A choice of N = n states that the maximum possible number of clusters is
equal to the number of genes. As a tradeoff with computational cost, we take
N = dn/2e throughout this paper.

2.2 Dependent component allocations
We are interested in the situation where we have a collection of n genes, for
each of which we have measurements from K different data sources. One

possible modelling approach would be to fit K independent DMA mixture
models, represented graphically in Figure 1a for the case K = 3. However,
this neglects to consider (and fails to exploit) structure within the data that
may be common across some or all of the different sources. For example,
a set of co-regulated genes might be expected to have similar expression
profiles, as well as having a common collection of proteins that bind their
promoters. We therefore propose a model in which we allow dependencies
between datasets at the level of the component allocation variables, ci.
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Fig. 1: Graphical representation of K = 3 DMA mixture models.
(a) Independent case. (b) Modelling dependence between the latent
component allocation variables (the MDI model).

We consider K mixture models (one for each data set), each defined as
in Equations (1) and (2). We add right subscripts to our previous notation
in order to distinguish between the parameters of the K different models
(so that αk is the mass parameter associated with model k, etc.) and take
Nk = N in all mixture models. Note that each model is permitted to have
a different mass parameter, αk . MDI links these models together at the level
of the component allocation variables via the following conditional prior:

p(ci1, ci2, . . . , ciK |φ) ∝
K∏

k=1

πcikk

K−1∏

k=1

K∏

`=k+1

(1 + φk`I(cik = ci`)) ,

(3)
where I is the indicator function, φk` ∈ R≥0 is a parameter that controls the
strength of association between datasets k and `, and φ is the collection of
allK(K−1)/2 of the φk`’s. For clarity, note that cik ∈ {1, . . . , N} is the
component allocation variable associated with gene i in model k, and that
πcikk is the mixture proportion associated with component cik in model k.
Informally, the larger φk`, the more likely it is that cik and ci` will be the
same, and hence the greater the degree of similarity between the clustering
structure of dataset k and dataset `. In Figure 1b, we provide a graphical
representation of our model in the case K = 3. If all φk` = 0, then we
recover the case of K independent DMA mixture models (Figure 1a). Note
that (1+φk`I(cik = ci`)) ≥ 1, hence if φk` > 0 then we are up-weighting
the prior probability that cik = ci` (relative to the independent case).

Linking the mixture models at the level of the component allocation
variables provides us with a means to capture dependencies between the
datasets in a manner that avoids difficulties associated with the datasets being
of different types and/or having different noise properties. An important

2

Fig. 1: Enlarged version of Figure 1 from the main paper. Graphical representation of K = 3 DMA
mixture models. (a) Independent case. (b) Modelling dependence between the latent component
allocation variables (the MDI model).
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B.2 Illustration of the clusters formed by the genes fused over all 3 datasets in the
Expression + ChIP + PPI example
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Fig. 2: Representation of the clusters formed by the genes fused across all 3 datasets. For the ChIP
and PPI datasets, vertical black lines indicate binding.

C Probability models for different datasets

As stated in the main paper, in order to complete the specification of the model, we must provide
details of the probability models used for the various data types. In this section, we provide details of
the Gaussian process models used for the time course datasets, and the multinomial and bag-of-words
models used for the categorical datasets.

C.1 Gaussian process model

We adopted Gaussian process (GP) models for the time course datasets (see, for example Kirk and
Stumpf, 2009; Cooke et al., 2011). We employed a squared exponential covariance function,

kSE(ti, tj) = σ2f exp
(
−(ti − tj)2/2l2

)
+ σ2ε δij ,

where δij is the Kronecker delta function, ti and tj are time points, and σf , l and σε are hyperpa-
rameters. Different components of the mixture model have different hyperparameters. To infer the
hyperparameters, we employ a Metropolis-Hastings step every q-th Gibbs iteration (we take q = 1
for the synthetic example, and q = 5 for the “Expression + ChIP + PPI” example). In practice, we
perform inference for the log of each hyperparameter, to sidestep positivity constraints. We adopt
standard normal priors for each log-hyperparameter.
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C.2 Multinomial model

We adopted multinomial models as the default choice for categorical datasets (e.g. discretised gene-
expression [as in Section 3.2], ChIP-chip data [as in Sections 3.2 and 3.3], and PPI data [as in Section
3.3]). We describe the multinomial model below.

Suppose, for each gene, that we have measurements taken on Q features. Observations on each of
these features take a value r from the set {1, . . . , R}. For genes within a given cluster, we denote by
xrq the number of times we observe that the q-th feature takes value r, and we let xq = [x1q, . . . , xRq].

We denote the cluster-specific probability of getting value r for feature q by θrq, so that
∑R

r=1 θrq = 1
and,

p(xq|θ1q, . . . , θRq) =

R∏
r=1

θ
xrq
rq .

We adopt a Dirichlet(β1q, . . . , βRq) prior for θ1q, . . . , θRq. Exploiting conjugacy of the Dirichlet
and multinomial distributions, we may marginalise the unknown θrq’s to obtain:

p(xq|β1q, . . . , βRq) =
Γ (Bq)

Γ (Sq +Bq)

R∏
r=1

Γ (xrq + βrq)

Γ (βrq)

where Bq =
∑R

r=1 βrq and Sq =
∑R

r=1 xrq. Assuming independence between features, we obtain the
following (marginal) likelihood function:

f(x1, . . . ,xQ|{βrq}r=1,...,R;q=1,...,Q) =

Q∏
q=1

Γ (Bq)

Γ (Sq +Bq)

R∏
r=1

Γ (xrq + βrq)

Γ (βrq)
.

We set the Dirichlet prior hyperparameters, βrq, to be 0.5.

C.3 Bag-of-words model

In our second example (Section 3.2), we considered a bag-of-words model for the binary ChIP-chip
data (in order to facilitate comparison with the method of Savage et al., 2010) in addition to our
default multinomial model. We describe this below.

Suppose, for each gene, we have binary observations for each of Q features. Given a cluster of
genes, we can count, for q = 1, . . . , Q, the total number of genes in the cluster for which the observed
value of feature q is a 1. Let xq be the number of genes in the cluster for which the q-th feature is 1. We

summarise the data in the cluster as a vector of counts, x = [x1, . . . , xQ]. Let S =
∑Q

q=1 xq. We make
the simplifying assumption that x was obtained via a multinomial experiment with S independent
trials and Q possible outcomes. We denote the probability of outcome q by θq, so that:

p(x|θ1, . . . , θQ) =

Q∏
q=1

θ
xq
q .

We adopt a Dirichlet(β1, . . . , βQ) prior for the unknown θq. Exploiting conjugacy of the Dirichlet and
multinomial distributions, we may marginalise the unknown θq’s to obtain the following (marginal)
likelihood function:

f(x|β1, . . . , βQ) =
Γ (B)

Γ (S +B)

Q∏
q=1

Γ (xq + βq)

Γ (βq)

where B =
∑Q

q=1 βq.

We set the Dirichlet prior hyperparameters, βq, to be 0.5.
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D MCMC running specifications

In this section, we provide the MCMC running specifications for each of the examples.

D.1 Synthetic and Expression+ChIP examples

We ran 20 chains in parallel, obtaining 10,000 samples from each. We removed the first 50% as burn-
in, and thinned the remaining samples by only retaining every 10-th sample. We then combined the
resulting 20 sets of 500 samples.

D.2 Expression+ChIP+PPI example

We ran 10 chains in parallel, obtaining 8,500 samples from each. We removed the first 6,000 as burn-
in, and thinned the remaining samples by only retaining every 5-th sample. We then combined the
resulting 10 sets of 500 samples.

D.3 Diagnostic plots I - The number of clusters at each iteration

We monitored the mixing of the MCMC chains by recording the number of clusters (i.e. the number
of occupied components) at each iteration. This information is illustrated in Figures 3 – 5. Note
that we plot only the thinned samples, and that the burn-in period is indicated in the first plot of
each figure. In all cases, mixing occurs relatively rapidly, and our burn-in appears conservative (i.e. a
shorter burn-in would usually have been acceptable).
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Fig. 3: MCMC diagnostic plots for the synthetic dataset example showing the number of clusters at
each sample. Each coloured line corresponds to a different chain.
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Expression+ChIP example
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Fig. 4: MCMC diagnostic plots for the Expression+ChIP example showing the number of clusters at
each sample. Each coloured line corresponds to a different chain.

Expression+ChIP+PPI example
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Fig. 5: MCMC diagnostic plots for theExpression+ChIP+PPI example showing the number of clusters
at each sample. Each coloured line corresponds to a different chain.

D.4 Diagnostic plots II - Posterior similarity matrices

Posterior similarity matrices (PSMs; see Fritsch and Ickstadt 2009) are 2-dimensional arrays whose
ij-entry is the posterior probability of gene i and gene j belonging to the same cluster. In this section
we use these in order to provide a visual assessment of whether or not cluster memberships are
consistent across chains.

For each chain separately, we used the samples obtained after the burn-in period in order to
calculate the posterior probability of gene i and gene j belonging to the same cluster in dataset k
(simply by calculating the proportion of the samples for which gene i and gene j were allocated to
the same component). For each dataset, we thereby obtained a PSM corresponding to each chain. If
we have reached convergence, the PSMs corresponding to different chains should be similar.

In Figures 6 and 7, we show the posterior similarity matrices associated with the cluster allocations
of genes in the expression dataset of the “Expression+ChIP” example. Each heatmap corresponds to
a different chain (as described by the figure titles). Genes are ordered along the rows and columns
to reflect the clustering structure suggested by the posterior similarity matrix derived from Chain 1
(this is just to enable easier visual comparison of the heatmaps). Similarly, in Figures 8 and 9, we
show the posterior similarity matrices associated with the cluster allocations of genes in the ChIP
dataset of the “Expression+ChIP” example. We again order the genes along the rows and columns
to reflect the clustering structure suggested by the posterior similarity matrix derived from Chain 1.
From these heatmaps we can see that there is very good agreement among the chains regarding the
allocation of genes to clusters for both datasets.

Figures 10 – 15 provide visualisations associated with the posterior similarity matrices obtained
for the “Expression+ChIP+PPI” example. First, Figures 10 and 11 provide the posterior similarity
matrices (PSMs) for the ChIP dataset; then Figures 12 and 13 show those for the PPI dataset; and
finally Figures 14 and 15 provide the PSMs for the expression dataset. In all cases, the agreement
between the PSMs across chains is again reasonable.
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Expression+ChIP example: Posterior similarity matrices for the expression dataset
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Fig. 6: Heatmap representation of the posterior similarity matrix (PSM) derived from Chain 1 in the
Expression+ChIP example for the expression dataset. The ij-element of the matrix is the estimated
posterior probability of genes i and j belonging to the same cluster. Rows and columns of the matrices
are ordered to show the clustering structure (which aids comparison with the heatmaps in Figure 7).
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Fig. 7: PSMs derived from Chains 2 – 10 for the clusters in the expression dataset. Rows and columns
have the same order as in Figure 6.
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Expression+ChIP example: Posterior similarity matrices for the ChIP dataset
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Fig. 8: Heatmap representation of the posterior similarity matrix (PSM) derived from Chain 1 in
the Expression+ChIP example for the ChIP dataset. The ij-element of the matrix is the estimated
posterior probability of genes i and j belonging to the same cluster. Rows and columns of the matrices
are ordered to show the clustering structure (which aids comparison with the heatmaps in Figure 9).
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Fig. 9: PSMs derived from Chains 2 – 10 for the clusters in the ChIP dataset. Rows and columns have
the same order as in Figure 8.
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Expression+ChIP+PPI example: Posterior similarity matrices for the ChIP dataset
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Fig. 10: Heatmap representation of the posterior similarity matrix (PSM) derived from Chain 1 in the
Expression+ChIP+PPI example for the ChIP dataset. The ij-element of the matrix is the estimated
posterior probability of genes i and j belonging to the same cluster. Rows and columns of the matrices
are ordered to show the clustering structure.
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Fig. 11: PSMs derived from Chains 2 – 10 for the clusters in the ChIP dataset. Rows and columns
have the same order as in Figure 10.
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Expression+ChIP+PPI example: Posterior similarity matrices for the PPI dataset
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Fig. 12: Heatmap representation of the posterior similarity matrix (PSM) derived from Chain 1 in the
Expression+ChIP+PPI example for the PPI dataset. The ij-element of the matrix is the estimated
posterior probability of genes i and j belonging to the same cluster. Rows and columns of the matrices
are ordered to show the clustering structure.
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Fig. 13: PSMs derived from Chains 2 – 10 for the clusters in the PPI dataset. Rows and columns have
the same order as in Figure 12.
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Expression+ChIP+PPI example: Posterior similarity matrices for the expression dataset
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Fig. 14: Heatmap representation of the posterior similarity matrix (PSM) derived from Chain 1 in
the Expression+ChIP+PPI example for the expression dataset. The ij-element of the matrix is the
estimated posterior probability of genes i and j belonging to the same cluster. Rows and columns of
the matrices are ordered to show the clustering structure.
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Fig. 15: PSMs derived from Chains 2 – 10 for the clusters in the expression dataset. Rows and columns
have the same order as in Figure 14.
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D.5 Scaling and run-times

Recall that K denotes the number of datasets, n is the number of genes, and N is the number of
components in our mixture model (which places an upper bound on the number of clusters in the
data). If n is large and K is modest, the rate determining step in the algorithm is the allocation of
genes to components (i.e. sampling from the conditional for cik), which requires us to iterate over
each gene in each dataset, and to calculate the probability of belonging to each component. In this
case, the scaling of the algorithm will be O(nNK). For larger K, the calculation of the normalising
constant, Z, will dominate. If we were to calculate Z naively (by simply iterating through all possible
cik’s – see Equation (2)), we would have a summation of NK terms. However, note that (for example)
in the K = 3 case we have,

(1 + φ12)(1 + φ13)(1 + φ23) =
∑

(b12,b13,b23)∈B
φb1212 φ

b13
13 φ

b23
23 , (5)

where B is the set of all binary strings of length 3 (so, |B| = 23). For brevity, in the general K case
we rewrite the right hand side of Equation (5) as,

∑
B

K−1∏
k=1

K∏
`=k+1

φbk`k` .

It is then possible to rewrite Equation (2) as follows:

Z =
∑
B

K−1∏
k=1

K∏
`=k+1

φbk`k`

N∑
j1=1

N∑
j2=1

· · ·
N∑

jK=1

(
K∏
k=1

γjkk

K−1∏
k=1

K∏
`=k+1

I(jk = j`)
bk`

)
, (6)

where we define I(jk = j`)
bk` = 1 whenever bk` = 0 (even if I(jk = j`) = 0). Although we still have

the unpleasant multiple summation (
∑N

j1=1

∑N
j2=1 · · ·

∑N
jK=1{· · · }), the number of terms is massively

reduced, thanks to the presence of the indicator function. To provide an example, consider K = 3. In
this case, we have:

Z =φ01,2φ
0
1,3φ

0
2,3

 N∑
j=1

γj,1

 N∑
j=1

γj,2

 N∑
j=1

γj,3

+ φ01,2φ
0
1,3φ

1
2,3

 N∑
j=1

γj,1

 N∑
j=1

γj,2γj,3


+ φ01,2φ

1
1,3φ

0
2,3

 N∑
j=1

γj,2

 N∑
j=1

γj,1γj,3

+ φ01,2φ
1
1,3φ

1
2,3

 N∑
j=1

γj,1γj,2γj,3


+ φ11,2φ

0
1,3φ

0
2,3

 N∑
j=1

γj,3

 N∑
j=1

γj,1γj,2

+ φ11,2φ
0
1,3φ

1
2,3

 N∑
j=1

γj,1γj,2γj,3


+ φ11,2φ

1
1,3φ

0
2,3

 N∑
j=1

γj,1γj,2γj,3

+ φ11,2φ
1
1,3φ

1
2,3

 N∑
j=1

γj,1γj,2γj,3

 .

Associated with each of the
∏K−1
k=1

∏K
`=k+1 φ

bk`
k` terms is a coefficient involving sums and products

of γ’s. The calculation of each of these coefficients is O(NK), while the number of terms is equal to
the number of binary strings of length m, where m = K(K− 1)/2 is the number of φk`’s. Calculation
of the normalising constant therefore scales as 2mNK.

It follows that, for n ≈ 1,000, the scaling of the algorithm will be O(nNK) for K ≤ 5 and
O(2mNK) for larger K. It is important to note that, in practice, the wall clock time required by the
algorithm is also affected by the choice of probability model assumed for the data. For example, ex-
amples employing Gaussian process models will generally be slower than examples employing simpler
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bag-of-words models. For this reason, we also report the actual run-times for the examples considered
in the main paper.

The method was implemented in Matlab and run on a 2.40GHz Intel Xeon CPU. The “Expres-
sion+ChIP” example (205 genes) took a little under 2 hours to run in the MDI (bag-of-words) case,
and a little over 4 hours to run in the MDI (multinomial) case. The 6-dataset synthetic example
(100 genes) generated approximately 500 samples per chain per hour. The “Expression+ChIP+PPI”
example (551 genes) generated approximately 90 samples per chain per hour.

E GOTO scores

While the BHI is a useful means by which to assess the biological homogeneity of gene clusters, we
found it to be both less sensitive and less informative than the GO Term Overlap (GOTO) similarity
score of Mistry and Pavlidis (2008). If gi and gj are two distinct genes, then the GOTO score is
calculated by first finding the set of all annotations, annoti, for gi (i.e. from the “leaves” of the
hierarchy up to – but excluding – the root of the hierarchy), then doing the same for gj , and finally
calculating the Term Overlap, GOTO(gi, gj) = |annoti ∩ annotj |. This similarity score is useful even
if many of the genes have high-level GO terms in common, since a pair of genes that share lower-level,
more specific GO terms will be scored more highly than a pair of genes that share high-level, less
specific GO terms. Since we can calculate GOTO scores associated with each of the biological process,
molecular function, and cellular component ontologies, we may therefore define GOTO (bp), GOTO
(mf) and GOTO (cc).

The mean GOTO score associated with the (non-singleton) cluster Cq is calculated in the usual
way, by taking the average of the GOTO scores associated with pairs of genes that appear in Cq, i.e.

GOTO(Cq) =
2

nq(nq − 1)

∑
gi,gj∈Cq

GOTO(gi, gj), (7)

where nq is the number of genes in cluster Cq, and hence there are nq(nq − 1)/2 distinct pairwise
comparisons.

In order to provide an overall summary for the clustering of the dataset, we may then calculate
the weighted average,

GOTOoverall =

Q∑
q=1

{(nq
n

)
GOTO(Cq)

}
, (8)

where Q is the total number of non-singleton clusters and n =
∑Q

q=1 nq.

E.1 GOTO scores for the Expression + ChIP example of Section 4.2

In addition to the BHI scores shown in Table 1 of the main paper, we also include GOTO scores for
the example of Section 4.2 in the table below.

Table 1: GOTO scores for the Expression + ChIP example of Section 4.2.
GOTO GOTO GOTO Number

(bp) (mf) (cc) of genes

Savage et al. (2010) 18.74 2.63 16.73 72
MDI (bag-of-words) 18.14 2.37 16.04 172
MDI (multinomial) 19.61 2.61 18.75 52

As in the BHI case, the GOTO scores show that the three methods are all performing similarly
well. There is again evidence to suggest that the fused clusters identified by MDI (multinomial) have
greater specificity (in the sense that the GOTO scores are generally higher), but lower sensitivity
(since there are fewer fused genes) than the two bag-of-words methods.
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F BHI scores for the Expression + ChIP + PPI example of Section 4.3

We found the BHI scores to be much less informative than the GO Term Overlap scores in the case of
the Expression + ChIP + PPI example, largely as a result of the pre-filtering step that included only
genes found to have periodic expression profiles over the cell cycle. Some high-level GO terms were
particularly prevalent amongst the genes in our dataset (e.g. 48% of the genes were annotated with
the “nucleus” GO term), which makes it quite likely that 2 genes will have at least one high-level GO
term in common just by chance (regardless of how the genes are clustered). However, for completeness,
we include the BHI scores for the Expression + ChIP + PPI example in the table below.

Table 2: BHI scores for combinations of expression, ChIP and PPI datasets.
BHI BHI BHI BHI Number
(all) (bp) (mf) (cc) of genes

ChIP only 0.50 0.12 0.23 0.32 551
PPI only 0.81 0.47 0.43 0.72 551

Expression only 0.57 0.19 0.21 0.43 551

ChIP+PPI 0.92 0.80 0.64 0.89 31
ChIP+Expression 0.81 0.45 0.39 0.76 48

PPI+Expression 0.90 0.62 0.53 0.89 32

ChIP+PPI+Expression 1.00 0.90 0.43 1.00 16

G Comparison of MDI to iCluster and simple clustering methods

G.1 6-dataset synthetic example

To illustrate the differences between MDI, iCluster and a simple clustering method, we briefly sum-
marise the results of applying each of these methods to the synthetic data example of Section 3.1 of
the paper.

A simple clustering method: k-means
Simple clustering methods such as k-means are unable to perform true integrative clustering of a

collection datasets. We are instead forced either to cluster each of the datasets independently, or to
concatenate the datasets to form a single data matrix. For the present example, it is most appropriate
to cluster the datasets independently (since we know that the datasets were constructed in such a way
that some genes switch between clusters in different datasets, so enforcing a single clustering structure
would be undesirable). The results of applying Matlab’s kmeans function (using the default squared
Euclidean distance) to each of our 6 datasets independently are shown in Figure 16. In contrast to
MDI, the number of clusters in each dataset is not determined automatically. Since we here know
that the true number of clusters is 7, we set k = 7. We can see from Figure 16 that the clustering
quality is reasonable. For datasets 1, 4 and 5, the clusterings are perfect, but for the other datasets the
algorithm converges to a suboptimal local minimum. More importantly, however, is that there is no
correspondence between the cluster labels for the different datasets, meaning that we would require a
subsequent (possibly manual) processing step in order to “match up” the clusters between datasets.
The algorithm moreover provides no way in which to detect “fused” genes (see Section 2.4 of the
main paper) that cluster together across several of the datasets, and is unable to share information
across datasets.
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Fig. 16: Clusters obtained by (independent) k-means clustering of each of the synthetic datasets
(k = 7). Genes are coloured as in Figure 2 of the main paper, so that the colours should appear
coherent (i.e. should match up perfectly with the clusters) in dataset 1.
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Integrative clustering using iCluster We next apply the integrative clustering (iCluster)
method of Shen et al. (2009), which uses a joint latent variable model in order to perform clus-
tering of collections of datasets. We use the iCluster2 function in the iCluster package in R. Again,
the number of clusters must be specified before running the function, so must either be known a pri-
ori, or else the function must be run multiple times for different values of k (and then an “optimal”
k can be selected by choosing the one which minimises the authors’ proportion of deviation (POD)
score). Since we know that the true number of clusters in this case, we set k = 7. The results are
shown in Figure 17 below. We can see that the clustering quality is quite poor, but that the algorithm
successfully matches up clusters across the datasets. The reason for the poor clustering performance
is due to iCluster seeking a common clustering structure for all datasets. This is inappropriate, since
we know that some genes switch between clusters in different datasets. In order to compensate for
this, we could take a larger value for k, which would allow iCluster to allocate problematic genes
to singleton clusters. We therefore reran the algorithm for values of k between 2 and 70, and used
the compute.pod function in the iCluster package in order to calculate POD scores for each. We
found the minimal POD score to occur for k = 60 (see Figure 18). However, given that each dataset
comprises only 100 genes, 60 clusters would seem undesirable.
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Fig. 17: Clusters obtained using iCluster with k = 7. The λ parameter required by the algorithm was
set to 0.4, which was determined by considering a grid {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} of λ values,
and selecting the value found to minimise the POD score.
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Fig. 18: POD scores for different values of k and λ.

MDI In Figure 19 below, we show the clusters obtained using MDI (we show results corresponding
to a single representative sample from the posterior). MDI is able to infer the correct number of
clusters for each dataset automatically, permits each dataset to have its own clustering structure, and
automatically “matches up” corresponding clusters across datasets. As a result of this, MDI is able
to identify the correct cluster allocations for all genes in all datasets.
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Fig. 19: Clusters obtained using MDI.



19

G.2 3-dataset example of Section 4.3

We applied iCluster to the collection of all 3 datasets and to all pairwise dataset combinations, and
applied k-means clustering and 2 agglomerative hierarchical clustering approaches (single linkage and
average linkage) to each of the datasets considered individually. For the simple clustering algorithms
we set the number of clusters, k, to be equal to the number determined by MDI (namely: 74 for the
expression dataset; 93 for the PPI dataset; and 42 for the ChIP dataset). We used squared Euclidean
distances for the continuous data, and Hamming distances for the binary data. For iCluster, we tried
both k = 2 (which minimised the POD score for each combination of datasets that we considered) and
k = 93 (the number of clusters determined by MDI for the PPI dataset). In each case we determined
the GOTO scores for the resulting clusters. Results are shown in Table 3, with the MDI results
included for convenience.

The results show that – if k is chosen correctly – the iCluster method (which performs integrative
clustering of all datasets) can yield better results than any of the simple clustering results. This
is what we might hope: by sharing information across the datasets, we can find more biologically
meaningful and specific clusters than if we consider each of the datasets independently. The results
obtained by applying iCluster (k = 93) to all 3 datasets are worse than the results obtained using
the MDI output to identify a clustering for the PPI dataset, but better than the results for the MDI
clusterings of the ChIP and Expression datasets. Notably, however, the choice of k (the number of
clusters) is very important: if we take k = 2, the iCluster results are comparable with the simple
hierarchical clustering methods.

For all single datasets, MDI yields higher GOTO scores than the simple clustering methods,
particularly for the PPI dataset. This seems to be because MDI is more robust to the noise in the
PPI dataset, as a result of borrowing information from the other 2 datasets via the φk` parameters.
The main benefit of MDI is that we are able to identify “fused” clusters, for which the gene-to-cluster
allocations agree across all datasets. This enables us to identify increasingly specific gene groups, as
reflected in the generally increasing GOTO scores.
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Table 3: GOTO scores for the simple clustering methods (applied to each of the 3 datasets indepen-
dently), iCluster (applied to the collection of all 3 datasets and to all pairwise dataset combinations),
and MDI. Colours are used to group clusterings of the same datasets/dataset combinations. For the
simple clustering approaches, the number of clusters, k, is set to be equal to the number in the MDI
summary clustering. For iCluster, we tried both k = 2 (which minimised the POD score) and k = 93
(the number of clusters determined by MDI for the PPI dataset). For the simple clustering methods,
we highlight in bold font the highest GOTO scores for each dataset.

GOTO GOTO GOTO Number
(bp) (mf) (cc) of genes

Simple methods:

ChIP (hclust, single linkage) 5.77 0.88 8.21 551
ChIP (hclust, average linkage) 5.73 0.91 8.23 551
ChIP (kmeans) 6.24 0.90 8.38 551

PPI (hclust, single linkage) 4.57 0.78 7.29 551
PPI (hclust, average linkage) 5.46 0.88 7.87 551
PPI (kmeans) 7.37 1.02 8.82 551

Expression (hclust, single linkage) 6.20 0.95 8.81 551
Expression (hclust, average linkage) 7.54 1.13 9.34 551
Expression (kmeans) 7.59 1.11 9.43 551

iCluster:

ChIP+PPI (k = 2) 6.25 0.91 8.37 551
ChIP+PPI (k = 93) 8.00 1.07 9.48 551
ChIP+Expression (k = 2) 5.90 0.89 8.18 551
ChIP+Expression (k = 93) 7.14 1.06 9.00 551
PPI+Expression (k = 2) 5.87 0.89 8.16 551
PPI+Expression (k = 93) 8.80 1.33 9.74 551
ChIP+PPI+Expression (k = 2) 5.86 0.89 8.17 551
ChIP+PPI+Expression (k = 93) 9.05 1.31 10.00 551

MDI:

ChIP 6.36 0.97 8.53 551
PPI 11.04 1.51 11.11 551
Expression 7.66 1.15 9.48 551

ChIP+PPI 27.04 3.47 18.99 31
ChIP+Expression 24.46 2.93 16.87 48
PPI+Expression 26.04 3.69 22.35 32

ChIP+PPI+Expression 34.81 2.46 26.70 16

H Further analyses for the Expression + ChIP + PPI example

In Section 4.3 of the main paper, we only presented results for one of the three possible pairwise
comparisons (namely, genes fused across ChIP+PPI). In this section, we additionally consider the
remaining pairwise comparisons (Expression+ChIP and Expression+PPI). We start in Section H.1
by providing the descriptions of the genes that were found to be fused across the ChIP and PPI
datasets. We then provide summaries in Sections H.2 and H.3 of the clusters formed by the genes
fused across the Expression+ChIP and Expression+PPI datasets (respectively). Where informative,
we include figures illustrating the clusters.
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H.1 ChIP + PPI

In Table 4 below, we list the genes that were found to be fused across the ChIP and PPI datasets,
together with their cluster labels. Note that the cluster labels used here correspond to those used
in Figure 4 in the main paper. In this case, the clusters correspond to groups of (putatively) co-
regulated genes, whose protein products share common binding partners (which may be due to them
being members of the same protein complex).

Table 4: Genes fused across ChIP and PPI datasets
Cluster Name Description

1 SCW11 Cell wall protein with similarity to glucanases; may play a role in conjugation during mating
based on its regulation by Ste12p

1 ELO1 Elongase I, medium-chain acyl elongase, catalyzes carboxy-terminal elongation of unsatu-
rated C12-C16 fatty acyl-CoAs to C16-C18 fatty acids

1 BUD9 Protein involved in bud-site selection
1 PRY2 Protein of unknown function
1 SVS1 Cell wall and vacuolar protein, required for wild-type resistance to vanadate
1 SCW10 Cell wall protein with similarity to glucanases
1 MSB2 Mucin family member involved in the Cdc42p- and MAP kinase-dependent filamentous

growth signaling pathway; also functions as an osmosensor
1 WSC2 Sensor-transducer of the stress-activated PKC1-MPK1 pathway
1 TOS1 Covalently-bound cell wall protein of unknown function
1 BUD8 Protein involved in bud-site selection
1 SUT1 Transcription factor of the Zn[II]2Cys6 family involved in sterol uptake

2 NOB1 Involved in synthesis of 40S ribosomal subunits
2 ENP2 Required for biogenesis of the small ribosomal subunit
2 RPF2 Involved in the assembly of the 60S ribosomal subunit
2 IMP3 Component of the SSU processome
2 DBP9 Involved in biogenesis of the 60S ribosomal subunit

3 HHF2 Histone H4, core histone protein
3 HTB2 Histone H2B, core histone protein
3 HTA1 Histone H2A, core histone protein
3 HHT1 Histone H3, core histone protein
3 HTB1 Histone H2B, core histone protein
3 HHT2 Histone H3, core histone protein
3 HHF1 Histone H4, core histone protein
3 HTZ1 Histone variant H2AZ, exchanged for histone H2A in nucleosomes by the SWR1 complex

4 MCM3 Component of the Mcm2-7 hexameric complex
4 MCM5 Component of the hexameric MCM complex

5 SMC3 Subunit of the multiprotein cohesin complex
5 MCD1 Essential subunit of the cohesin complex
5 IRR1 Subunit of the cohesin complex

6 PCL2 Cyclin, involved in the regulation of polarised growth and morphogenesis and progression
through the cell cycle

6 PCL1 Cyclin, involved in the regulation of polarised growth and morphogenesis and progression
through the cell cycle



22

H.2 Expression + ChIP

In Figure 20 below, we provide an illustration of the clusters formed by the 48 genes fused across the
Expression+ChIP datasets. In Table 5, we provide descriptions of the genes within each cluster. In
this case, the clusters correspond to groups of genes that have correlated expression profiles due to
co-regulation.
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Fig. 20: Clusters formed by the genes fused across the expression and ChIP datasets. The time course
data are shown on the left, with the ChIP data depicted on the right. We provide labels for some of
the important transcription factors, with vertical red guidelines to improve readability.
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Table 5: Genes fused across the Expression and ChIP datasets
Cluster Gene Brief description

a NOB1 Involved in synthesis of 40S ribosomal subunits
a TRM11 Catalytic subunit of an adoMet-dependent tRNA methyltransferase complex
a ENP2 Required for biogenesis of the small ribosomal subunit
a DHR2 Required for 18S rRNA synthesis
a RPF2 Involved in the assembly of the 60S ribosomal subunit
a IMP3 Component of the SSU processome
a DBP9 Involved in biogenesis of the 60S ribosomal subunit
a MAK16 Constituent of 66S pre-ribosomal particles

b SVS1 Cell wall and vacuolar protein, required for wild-type resistance to vanadate
b MSB2 Mucin family member involved in the Cdc42p- and MAP kinase-dependent filamentous

growth signaling pathway; also functions as an osmosensor
b WSC2 Partially redundant sensor-transducer of the stress-activated PKC1-MPK1 signaling pathway

c SWD1 Subunit of the COMPASS (Set1C) complex, which methylates histone H3 on lysine 4
c RTT109 Histone acetyltransferase; acetylates H3-K56 and H3-K9
c RKM1 SET-domain lysine-N-methyltransferase

d HHF2 Histone H4, core histone protein
d HTB2 Histone H2B, core histone protein
d HTA1 Histone H2A, core histone protein
d HHT1 Histone H3, core histone protein
d HTB1 Histone H2B, core histone protein
d HHT2 Histone H3, core histone protein
d HTA2 Histone H2A, core histone protein
d HHF1 Histone H4, core histone protein

e KRI1 Required for 40S ribosome biogenesis

f ALK1 Protein kinase; accumulation and phosphorylation are periodic during the cell cycle
f BUD4 Involved in bud-site selection; potential Cdc28p substrate
f SWI5 Transcription factor that activates transcription of genes expressed at the M/G1 phase

boundary and in G1 phase; appears to be regulated by phosphorylation by Cdc28p kinase
f CDC5 Polo-like kinase with multiple functions in mitosis and cytokinesis; possible Cdc28p substrate

g SPC24 Involved in chromosome segregation, spindle checkpoint activity and kinetochore clustering
g TEL2 Required for telomere length regulation and telomere position effect
g HOS3 Histone deacetylase (HDAC) with specificity in vitro for histones H3, H4, H2A, and H2B
g CLB4 B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M

transition; may be involved in DNA replication and spindle assembly
g TDA7 Cell cycle-regulated gene of unknown function

h POL12 B subunit of DNA polymerase alpha-primase complex
h TOF1 Subunit of a replication-pausing checkpoint complex (Tof1p-Mrc1p-Csm3p)
h DPB2 Second largest subunit of DNA polymerase II (DNA polymerase epsilon)
h SEN34 Subunit of the tRNA splicing endonuclease
h SMC3 Subunit of the multiprotein cohesin complex
h MSH6 Protein required for mismatch repair in mitosis and meiosis
h ASF1 Nucleosome assembly factor
h RFA1 Subunit of heterotrimeric Replication Protein A (RPA)
h MRC1 S-phase checkpoint protein required for DNA replication
h CDC45 DNA replication initiation factor
h POL1 Required for the initiation of DNA replication during mitotic DNA synthesis and premeiotic

DNA synthesis
h RAD53 Protein kinase, required for cell-cycle arrest in response to DNA damage
h RAD27 5’ to 3’ exonuclease, 5’ flap endonuclease
h IRR1 Subunit of the cohesin complex

i HST4 Involved in silencing at telomeres, cell cycle progression, radiation resistance, genomic sta-
bility and short-chain fatty acid metabolism

i MCM3 Component of the Mcm2-7 hexameric complex
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H.3 Expression + PPI

In Table 6 below, we provide descriptions of the genes fused across the Expression+PPI datasets,
and indicate the clustering obtained for these genes. In this case, the clusters correspond to groups
of genes that have correlated expression profiles (which may or may not indicate co-regulation) and
whose protein products share common binding partners (which may be due to them being members
of the same protein complex).

Table 6: Genes fused across the Expression and PPI datasets
Cluster Gene Brief description

A WSC2 Sensor-transducer of the stress-activated PKC1-MPK1 pathway

B NOB1 Involved in synthesis of 40S ribosomal subunits
B ENP2 Required for biogenesis of the small ribosomal subunit
B RPF2 Involved in the assembly of the 60S ribosomal subunit
B IMP3 Component of the SSU processome
B KRI1 Required for 40S ribosome biogenesis
B DBP9 Involved in biogenesis of the 60S ribosomal subunit
B MAK16 Constituent of 66S pre-ribosomal particles

C RKM1 SET-domain lysine-N-methyltransferase

D PMT1 Involved in ER quality control
D ERP2 Member of the p24 family involved in ER to Golgi transport
D EMP24 Component of the p24 complex; binds to GPI anchor proteins and mediates their efficient

transport from the ER to the Golgi; integral membrane protein that associates with endo-
plasmic reticulum-derived COPII-coated vesicles

E HHF2 Histone H4, core histone protein
E HTB2 Histone H2B, core histone protein
E HTA1 Histone H2A, core histone protein
E HHT1 Histone H3, core histone protein
E HTB1 Histone H2B, core histone protein
E HHT2 Histone H3, core histone protein
E HHF1 Histone H4, core histone protein

F MCM6 Component of the Mcm2-7 hexameric complex; forms a subcomplex with Mcm4p and Mcm7p
F MCM2 Component of the Mcm2-7 hexameric complex
F MCM3 Component of the Mcm2-7 hexameric complex

G PDR3 Transcriptional activator of the pleiotropic drug resistance network, regulates expression
of ATP-binding cassette (ABC) transporters through binding to cis-acting sites known as
PDREs (PDR responsive elements); post-translationally up-regulated in cells lacking a func-
tional mitochondrial genome

G ALY1 Alpha arrestin that controls nutrient-mediated intracellular sorting of permease Gap1p; may
regulate endocytosis of plasma membrane proteins by recruiting ubiquitin ligase Rsp5p to
plasma membrane targets

G YPT31 Involved in the exocytic pathway; mediates intra-Golgi traffic or the budding of post-Golgi
vesicles from the trans-Golgi

G ART5 Protein proposed to regulate the endocytosis of plasma membrane proteins
G UBP13 Putative ubiquitin carboxyl-terminal hydrolase, ubiquitin-specific protease that cleaves

ubiquitin-protein fusions

H SMC3 Subunit of the cohesin complex
H IRR1 Subunit of the cohesin complex

J SPC110 Inner plaque spindle pole body (SPB) component
J NUD1 Component of the spindle pole body outer plaque
J SPC97 Component of the microtubule-nucleating Tub4p (gamma-tubulin) complex
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I Effects of gene expression data normalisation

In Figure 4c of the main paper, we showed the expression profiles for the 31 genes identified as fused
across the ChIP and PPI datasets. We can see that, despite being clustered together on the strength
of the ChIP data and the PPI data, the genes in Cluster 1 (green) have very different expression
profiles to one another. It is therefore unsurprising that this cluster is effectively removed when we
consider genes that are fused across all 3 datasets. We also lose genes from Clusters 3, 4, 5 and 6.
However, for these, the expression profiles of the genes that are lost are in some cases quite similar to
those of the genes that remain in the cluster. For example, in Cluster 4, we can see that the expression
profiles of MCM3 (pink) and MCM5 (grey) are actually quite similar. However, they are not clustered
together on the strength of the expression data, since the two signals have different amplitudes. We
investigate in this section whether or not this occurs as a result of the normalisation of the expression
data.

I.1 Cluster 4

The genes in Cluster 4 are MCM3 and MCM5. In order to determine why MCM3 and MCM5 do not
cluster together on the strength of their expression profiles, it is necessary to consider the expression
profiles of the genes that do cluster together with each of them. In Figure 21a below, we show the
expression profiles for the genes that are found to cluster together with MCM3 on the strength of
the expression data only. Figure 21b shows the same, but for MCM5. Within these two clusters, the
expression profiles are very similar to one another. Across clusters, we can see that the expression
profiles shown in Figure 21b appear to be noisier than those in Figure 21a, and also have a greater
amplitude. Recall that our Gaussian process models include hyperparameters that capture the noise
and signal variance of the gene expression profiles within each cluster, and hence it is to be expected
that these two clusters are distinct. The similarities and differences between the two clusters are
perhaps clearer in Figure 21c, where we superimpose the two plots. However, it is possible that these
apparent differences might be resolved with an additional or alternative normalisation of the data.
One common additional normalisation step performed when considering time courses is to standardise
the data, so that — for each gene — the standard deviation across time points is 1 and the mean is
0. We apply this normalisation to the genes in the two clusters, and then superimpose the resulting
expression profiles in Figure 21d. We can see that the two clusters now coincide. This provides
evidence to suggest that perhaps MCM3 and MCM5 should be clustered together on the strength of
the expression as well as the ChIP and PPI data.
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Fig. 21: (a) Genes that cluster with MCM3 on the basis of the expression data only (including MCM3);
(b) Genes that cluster with MCM5 on the basis of the expression data only (including MCM5); (c)
A plot showing Figure 21a overlaid on Figure 21b; (d) Repeat of Figure 21c, after an additional
normalisation step has been applied to the data.
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I.2 Cluster 5

We perform a similar analysis for Cluster 5. This cluster contains SMC3 and IRR1 (purple) and
also MCD1 (grey). SMC3 and IRR1 are found to cluster together across all 3 datasets, while MCD1
clusters together with the other two across the ChIP and PPI datasets, but not the expression dataset.
Figure 22a shows the expression profiles for all of the genes that are clustered with SMC3 and IRR1
(on the strength of the expression data only), while Figure 22b shows the expression profiles for the
genes clustered with MCD1. Figure 22c shows these two plots superimposed. Similar to the case for
Cluster 4, we can see that the expression profiles in Figure 22b have greater amplitude than those in
Figure 22a. Again, however, if we standardise the data as before, the two clusters coincide.
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Fig. 22: (a) Genes that cluster with SMC3 and IRR1 on the basis of the expression data only (including
SMC3 and IRR1); (b) Genes that cluster with MCD1 on the basis of the expression data only
(including MCD1); (c) A plot showing Figure 22a overlaid on Figure 22b; (d) Repeat of Figure 22c,
after an additional normalisation step has been applied to the data.

I.3 Cluster 6

We again perform a similar analysis. Figure 23a shows the expression profiles for genes that cluster
together with PCL1, while Figure 23b shows those for genes that cluster together with PCL2 (on the
strength of the expression data only). Figure 23c shows the two plots superimposed, while Figure 23d
shows the standardised expression profiles. We can see that, in this case, standardising the data does
not cause the two clusters to align. There appears to be a lag between the expression of PCL2 and
the expression of PCL1, which cannot be removed by a simple rescaling of the data.
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Fig. 23: (a) Genes that cluster with PCL1 on the basis of the expression data only (including PCL1);
(b) Genes that cluster with PCL2 on the basis of the expression data only (including PCL2); (c)
A plot showing Figure 23a overlaid on Figure 23b; (d) Repeat of Figure 23c, after an additional
normalisation step has been applied to the data.
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J Extension to Section 4.2

In Sections 3.2 and 4.2, we considered a 205-gene example in which we integrated the galactose
utilisation data of Ideker et al. (2001) with ChIP-chip data from Harbisonet al. (2004). This example
was chosen since it was also considered by Savage et al. (2010). However, since MDI permits more than
2 datasets to be integrated, we can extend this example by additionally including a protein-protein
interaction dataset in our analysis. We use the same PPI dataset as considered in Sections 3.3 and
4.3. After restricting our analysis to genes for which all 3 datasets provided measurements, we were
left with 199 genes. In this section, we provide the results of running MDI on this 3-dataset example,
focusing solely on the clusters formed by the genes fused across all 3 datasets.

First, in Tables 7 and 8, we provide the BHI and GOTO scores for the fused clusters. We can see
that the additional inclusion of the PPI dataset improves the BHI (bp) and BHI (mf) scores. The
remaining BHI scores are maximal in both this analysis and the previous (Section 4.2) analysis. The
GOTO scores provide a more detailed view of the results: while there is a modest increase in the
average number of shared terms for genes in the same cluster in the case of the biological process
and cellular component ontologies, there is a more pronounced increase in the case of the molecular
function ontology.

Table 7: BHI scores for the clusters formed by the genes fused across all 3 datasets in the Galac-
tose+Harbison+PPI comparison using MDI (multinomial). For comparison, we also include the re-
sults from the main paper for the Galactose+Harbison comparison.

BHI BHI BHI BHI Number
(all) (bp) (mf) (cc) of genes

Galactose+Harbison+PPI 1.00 1.00 0.85 1.00 42
MDI+Harbison 1.00 0.89 0.77 1.00 52

Table 8: GOTO scores for the clusters formed by the genes fused across all 3 datasets in the Galac-
tose+Harbison+PPI comparison using MDI (multinomial). For comparison, we also include the results
from Supplementary Section E.1 for the Galactose+Harbison comparison.

GOTO GOTO GOTO Number
(bp) (mf) (cc) of genes

Galactose+Harbison+PPI 19.75 3.85 19.18 42
Galactose+Harbison 19.61 2.61 18.75 52

In Figure 24, we provide a representation of the clusters formed by the genes fused across all 3
datasets. Finally, in Table 9, we provide brief descriptions of the genes in each of the 5 clusters.

We can see from Table 9 that the genes in each cluster correspond to meaningful groups. Cluster
I comprises key enzymes involved in glycolysis and gluconeogenesis; Cluster II is composed of genes
coding for proteins that are components of the 40S and 60S ribosomal subunits; Cluster III corresponds
to proteins involved in the formation of RNA polymerase II; Cluster IV contains the genes that encode
the alpha and beta subunits of phosphofructokinase; and Cluster V comprises hexose transporter
genes.
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Fig. 24: Illustration of clusters fused across all three datasets in the Galactose+Harbison+PPI compar-
ison. The datasets represented are (from left to right): the galactose utilisation (expression) dataset;
the ChIP-chip dataset; and the PPI dataset. For the galactose utilisation dataset, the 3 colours (blue,
white, red), correspond to the 3 discretised expression levels.
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Table 9
Cluster Name Description

I CDC19 Pyruvate kinase, functions as a homotetramer in glycolysis to convert phosphoenolpyruvate
to pyruvate

I PGK1 3-phosphoglycerate kinase; key enzyme in glycolysis and gluconeogenesis
I TDH3 Glyceraldehyde-3-phosphate dehydrogenase, isozyme 3, involved in glycolysis and gluconeo-

genesis
I ENO2 Enolase II, a phosphopyruvate hydratase that catalyzes the conversion of 2-phosphoglycerate

to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis
I FBA1 Fructose 1,6-bisphosphate aldolase, required for glycolysis and gluconeogenesis

II RPS8A Protein component of the small (40S) ribosomal subunit
II RPS6B Protein component of the small (40S) ribosomal subunit
II RPS9B Protein component of the small (40S) ribosomal subunit
II RPL21A Protein component of the large (60S) ribosomal subunit
II RPL31A Protein component of the large (60S) ribosomal subunit
II RPL13A Protein component of the large (60S) ribosomal subunit
II RPS16B Protein component of the small (40S) ribosomal subunit
II RPS13 Protein component of the small (40S) ribosomal subunit
II RPS18A Protein component of the small (40S) ribosomal subunit
II RPS24A Protein component of the small (40S) ribosomal subunit
II RPS8B Protein component of the small (40S) ribosomal subunit
II RPL28 Ribosomal protein of the large (60S) ribosomal subunit
II RPS2 Protein component of the small (40S) subunit
II RPL1B N-terminally acetylated protein component of the large (60S) ribosomal subunit
II RPL9A Protein component of the large (60S) ribosomal subunit
II RPL26B Protein component of the large (60S) ribosomal subunit
II RPL8A Ribosomal protein L4 of the large (60S) ribosomal subunit
II RPS4B Protein component of the small (40S) ribosomal subunit
II RPL2B Protein component of the large (60S) ribosomal subunit
II RPL16A N-terminally acetylated protein component of the large (60S) ribosomal subunit
II RPL17B Protein component of the large (60S) ribosomal subunit
II RPS5 Protein component of the small (40S) ribosomal subunit
II RPL20A Protein component of the large (60S) ribosomal subunit
II RPL16B N-terminally acetylated protein component of the large (60S) ribosomal subunit
II RPS7B Protein component of the small (40S) ribosomal subunit
II RPL18A Protein component of the large (60S) ribosomal subunit
II RPS7A Protein component of the small (40S) ribosomal subunit
II RPL20B Protein component of the large (60S) ribosomal subunit
II RPS6A Protein component of the small (40S) ribosomal subunit

III MED8 Subunit of the RNA polymerase II mediator complex; associates with core polymerase sub-
units to form the RNA polymerase II holoenzyme

III TFG2 TFIIF (Transcription Factor II) middle subunit; involved in both transcription initiation
and elongation of RNA polymerase II

III RPB3 RNA polymerase II third largest subunit B44, part of central core
III MED7 Subunit of the RNA polymerase II mediator complex; associates with core polymerase sub-

units to form the RNA polymerase II holoenzyme

IV PFK1 Alpha subunit of heterooctameric phosphofructokinase involved in glycolysis
IV PFK2 Beta subunit of heterooctameric phosphofructokinase involved in glycolysis

V HXT1 Low-affinity glucose transporter of the major facilitator superfamily
V HXT2 High-affinity glucose transporter of the major facilitator superfamily
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