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Abstract
Background: Airway remodeling in asthma is the result of increased expression of connective
tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-β1 has been
found to increase ASMC proliferation. The activation of mitogen-activated protein kinases
(MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation.
In the present study, we determined the role of phosphorylated MAPKs in TGF-β1 induced ASMC
proliferation.

Methods: Confluent and growth-arrested bovine ASMCs were treated with TGF-β1. Proliferation
was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated
p38, ERK1/2, and JNK were determined by Western analysis.

Results: In a concentration-dependent manner, TGF-β1 increased [3H]-thymidine incorporation
and cell number of ASMCs. TGF-β1 also enhanced serum-induced ASMC proliferation. Although
ASMCs cultured with TGF-β1 had a significant increase in phosphorylated p38, ERK1/2, and JNK,
the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-β1. TGF-
β1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and
MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not
inhibit the TGF-β1 induced DNA synthesis.

Conclusion: Our data indicate that ASMCs proliferate in response to TGF-β1, which is mediated
by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-β1 which is expressed in
airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC
proliferation.

Introduction
Asthma is characterized by airway inflammation, hyperre-
sponsiveness, and remodeling [1-3]. Severe asthmatics
develop irreversible airway obstruction, which may be a
consequence of persistent structural changes including
increased airway smooth muscle cell (ASMC) mass in the

airway wall that may be due to frequent stimulation of
ASMCs by contractile agonists, inflammatory mediators,
and growth factors [2,4]. Based on observations made on
the pathogenesis of hyperproliferation at other sites, it is
speculated that a number of cytokines may be important
in regulating the proliferation of ASMCs. Of these
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cytokines, transforming growth factor-beta1 (TGF-β1), a
multifunctional polypeptide, is one of the most potent
regulators of connective tissue synthesis and cell prolifer-
ation [2,5-8].

The source of TGF-β1 in the airways may be from the
inflammatory cells recruited to the airways or from the
residential airway cells themselves such as bronchial epi-
thelial cells and ASMCs [7,8]. We had previously demon-
strated that all isoforms of TGF-β, as well as TGF-β
receptor (TβR) type I and II were expressed by ASMCs in
human and rat lungs [9,10]. In addition, we had found
that in models emulating airway injury, such as in vitro
wounding of confluent monolayers [11,12], exposure to
proteases [12,13], or cells in subconfluent conditions
[12], ASMCs released biologically active TGF-β1, which in
turn led to increase in connective tissue proteins such as
collagen I and fibronectin. Recently, we had reported that
granulocyte macrophage-colony stimulating factor (GM-
CSF), another cytokine found in asthmatic airways,
increased connective tissue expression of bovine ASMCs
in response to TGF-β1 by induction of TβRs [14]. TGF-β1
is likely to play an important role in airway remodeling in
asthmatics. For example, Minshall et al [5] demonstrated
that, as compared with the control subjects, both the
expression of TGF-β1 mRNA and TGF-β1 immunoreactiv-
ity were increased in the airway submucous eosinophils,
the cell that had been confirmed the presence of active
TGF-β1, and these increases were directly related to the
severity of the disorder. In a mouse model of airway
remodeling induced by OVA sensitization and challenge,
increased TGF-β1 was demonstrated by ELISA and immu-
nohistochemistry with increased peribronchial collagen
synthesis, thickness of peribronchial smooth muscle
layer, and α-smooth muscle actin immunostaining [15].
Redington et al [6] found an increased TGF-β1 level in the
bronchoalveolar lavage fluid from asthmatic patients
compared to normal controls. Recently, McMillan et al
[16] demonstrated that anti-TGF-β antibody significantly
reduced peribronchiolar extracellular matrix deposition,
ASMC proliferation, and mucus production in an allergen
induced murine asthma model.

The effects of TGF-β1 on cell proliferation are more com-
plex and context dependent [17,18]. For example, TGF-β1
inhibits proliferation of epithelial and hematopoietic cells
[19]; however, TGF-β1 induces proliferation of the mesen-
chymal phenotype of cells such as fibroblasts, smooth
muscle cells, and myofibroblasts [20]. Even within mes-
enchymal cells, the cell responses to TGF-β1 are highly
variable. For example, TGF-β1 stimulates proliferation of
confluent vascular and airway smooth muscle cells, but
inhibits the proliferation of the same cells when they are
subconfluent [21-24]. A low dose of TGF-β1 stimulates
proliferation of fibroblasts, chondrocytes, and arterial

smooth muscle cells, but a high dose of TGF-β1 inhibits
the proliferation of the same cells [20,25]. The duration of
TGF-β1 treatment also affects the cellular proliferative
response to TGF-β1. For example, Incubation of ASMCs or
articular chondrocytes for 24 hours with TGF-β1 inhibited
cell proliferation, whereas 48- or 72-hour incubation
stimulates proliferation of the same cells [26,27].

The proliferation of several phenotypes of cells is medi-
ated by growth factor or cytokine induced mitogen-acti-
vated protein kinases (MAPKs), a family of serine-
threonine protein. MAPKs consist of extracellular signal-
regulated kinase (ERK), p38 MAPK (p38), and c-Jun NH2-
terminal kinase (JNK) [28]. The activation of MAPKs is a
key component in signal transduction associated with cell
proliferation [29]. Among the three MAPKs, ERK has been
well studied and proven to play a major role in the signal-
ling of ASMC proliferation [30-38]. The activation of ERK
by various substances, such as epidermal growth factor
(EGF), platelet-derived growth factor (PDGF), fibroblast
growth factor-2 (FGF-2, also called basic fibroblast growth
factor, bFGF), insulin-like growth factor-I (IGF-I),
thrombin, endothelin, phorbol esters, beta-hexosamini-
dase A (an endogenous mannosyl-rich glycoprotein), and
5-hydroxytryptamine (5-HT), increased ASMC prolifera-
tion [30-38]. The inhibitors or antisense oligonucleotide
of ERK blocked the proliferation induced by these sub-
stances [30-37]. Activated ERK stimulates numerous tran-
scription factors such as Elk-1, c-Jun, c-Fos, and c-Myc in
the nucleus. The transcription factors in turn regulate the
expression of genes required for DNA synthesis, such as
cyclin D1. It has been demonstrated that active Ras and
MAPK/ ERK kinase-1 (MEK1) (the upstream activator of
ERK) each induced cyclin D1 promoter activity [36]. Elk-
1 and activator protein-1 (c-Jun, c-Fos) reporter activation
by mitogens was reduced by inhibition of MEK in human
ASMCs [31]. In addition, inhibition of MEK attenuates
mitogen-induced increase in promoter activity, mRNA or
protein of cyclin D1 or c-Fos [30,32,38]. However, the
role of p38 and JNK in mitogen-induced ASM prolifera-
tion is not well known. In addition, little is known about
the role of MAPKs in TGF-β1 induced proliferation in
ASMCs.

This study was designed to investigate the effect of TGF-β1
on asmc proliferation and the role of mapks in the TGF-
β1 induced changes of asmc proliferation. We found that
TGF-β1 increased asmc proliferation and the proliferative
effects were mediated by phosphorylation of ERK1/2 and
p38.

Materials and methods
Cell culture
Bovine trachea was obtained from a local slaughterhouse.
An explanted culture of the smooth muscle tissue was
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established as described previously with some modifica-
tion [14]. Briefly, the associated fat and connective tissues
were removed in cold phosphate buffered saline (PBS)
with antibiotic reagents (penicillin G 100 U/ml, strepto-
mycin 100 µg/ml) and antimycotic reagent (amphotericin
B 0.25 µg /ml). Then, the smooth muscle was isolated, cut
into 1–2 mm cubic size, and placed on culture dishes with
Dulbecco's modified Eagle's Medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS) and antibi-
otic-antimycotic reagents. In an incubator at 37°C with a
humidified atmosphere (5% CO2-balanced air), ASMCs
migrated from the tissue explants and approached conflu-
ence around the explants. The explanted tissue was
removed, and the ASMCs remaining in the culture were
passaged with 0.05% trypsin/0.53 mM EDTA. Smooth
muscle cell identity was verified by phase contrast micro-
scopy for appearance of "hill and valley formation" and
by immunocytochemistry staining for α-smooth muscle
actin and smooth muscle-specific myosin heavy chain
(SM1 and SM2). For the experiments, the ASMCs in pas-
sage 1–5 were plated at density of 10000 cells/cm2 in
DMEM with 10% FBS and antibiotic reagents. All reagents
above were from GIBCO BRL (Burlington, ON, Canada).
The cell viability was determined with trypan blue (Sigma,
St. Louis, Missouri) exclusion.

Since previous studies reported varied responses of TGF-
β1 on ASMCs, we first determined an optimal culture con-
dition for conducting the experiments. ASMCs were cul-
tured in 24-well plates in DMEM with 10% FBS to
confluence. After being washed with DMEM, the ASMCs
were cultured for three days in one of following three

media: DMEM with 0.2% bovine serum albumin (BSA,
from Fisher Scientific, Fair Lawn, NJ), DMEM with 0.5%
FBS, and DMEM with 10% FBS. Then, the cells were
treated with 5 ng/ml of TGF-β1 (R&D Systems, Minneap-
olis, MN) or 10% FBS in the same fresh medium for 1 day
followed by [3H]-thymidine incorporation and cell count-
ing. As shown in Figure 1, increases in [3H]-thymidine
incorporation occurred in all three conditions, but TGF-
β1 and 10% FBS induced the strongest response in ASMCs
cultured in 0.2% BSA/DMEM. Similar results were also
seen in the number of cells (data not shown). Therefore,
we chose 0.2% BSA/DMEM as the serum-free medium
culture condition in which all further experiments were
performed.

Cell proliferation study
This study was performed by [3H]-thymidine incorpora-
tion and cell counting. Growth-arrested ASMCs were
treated in serum-free medium in 24-well plates. Then, for
some plates, [3H]-thymidine (1 µCi/ml, from ICN, Irvine,
CA) was added for the final 4 hours and the incorporation
was terminated by washing the cells with PBS twice. The
cells were lysed with 0.2 N NaOH and the radioactivity
was counted with a scintillation counter (Beckman
LS5000CE). For other plates, the cells were washed with
PBS, trypsinized and counted with a hemacytometer. To
confirm the involvement of MAPKs in TGF-β1 induced
proliferation of ASMCs, the cells were pretreated for one
hour with 10 µM of SB 203580, 50 µM of PD 98059, or
10 µM of SP 600125, selective inhibitors of p38, MAP
kinase kinase (MEK, which is upstream from ERK) and
JNK, respectively (all from Calbiochem, San Diego, CA).
Then 1 ng/ml of TGF-β1 was added to the medium and
the cells were cultured for 24 hours, followed by [3H]-thy-
midine incorporation assay.

Western blotting and immune detection
After treatment, ASMCs were washed with cold PBS and
detached by trypsin. Whole cell protein was extracted on
ice with lysis buffer (50 mM Tris-HCl pH 8.0, 0.15 M
NaCl, 1% Triton-X-100, 0.1% SDS, 5 mg/ml sodium
deoxycholate) in the presence of the protease inhibitors
(as mentioned above) as well as phosphatase inhibitors
including 1 mM NaF and 1 mM Na3VO4 (Sigma). Protein
concentration was measured using the Bradford method
with a BioRad Protein Assay Reagent (BioRad; Hercules,
CA). Protein extracts were separated by SDS-PAGE on
polyacrylamide SDS gels and then transferred onto a
PVDF membrane (BioRad) as per Laemmli's method.
After blockade with 5% milk in Tris-buffered saline con-
taining 0.05% Tween-20, the membranes were incubated
overnight at 4°C with following primary antibodies (from
Cell Signaling, Beverly, MA): anti-total or anti-phosphor-
ylated p38, ERK1/2 (which recognizes p42 and p44
MAPK), and JNK (which recognizes p46 and p54 JNK).

ASMC responses to TGF-β1 and serum in different culture conditionsFigure 1
ASMC responses to TGF-β1 and serum in different 
culture conditions. ASMCs were cultured with DMEM/
10% FBS to confluence and then changed to DMEM/0.2% 
BSA, DMEM/0.5% FBS, or DMEM/10% FBS for 72 hours, fol-
lowed by treatment with 5 ng/ml of TGF-β1 or 10% FBS for 
24 hours prior to [3H]-thymidine incorporation assay. * p < 
0.05, *** p < 0.001 compared to control of the same condi-
tion. n = 4–6.
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This was followed by incubating the blot with a HRP-con-
jugated secondary antibody (Santa Cruz) for 1 hour at
room temperature. The target proteins on the membrane
were then immunodetected by the ECL system (Amer-
sham, Arlington Heights, IL) according to the manufac-
turer's instruction. The equal loading of proteins was
confirmed by immunodetecting the blots with anti-β-
actin antibody (Sigma). Relative absorbance of the result-
ant bands was determined using the Quantity One imag-
ing system (BioRad).

Statistical analysis
The results were expressed as mean ± standard error of the
mean (SEM). Student's t test and Kruskal-Wallis test com-
bined with Dwass-Steel-Chritchlow-Fligner test were used
for the data analysis. Differences were considered statisti-
cally significant when p < 0.05.

Results
TGF-β1 increased ASMC proliferation
All concentrations of TGF-β1 (0.1, 1 and 5 ng/ml)
induced significant increase in [3H]-thymidine incorpora-
tion by the ASMCs. Incubation of ASMCs with TGF-β1 for
48 hours induced more proliferation than 24 hours of
incubation (Figure 2A). The TGF-β1 induced DNA synthe-
sis was blocked by the addition of anti-TGF-β1 antibody
(data not shown). TGF-β1 also induced a significant con-
centration-dependent increase in cell numbers (Figure
2B); however, the magnitude of the increased cell number
was lower than the increased [3H]-thymidine incorpora-
tion, suggesting that as a parameter of cell proliferation,
[3H]-thymidine incorporation is more sensitive than cell
number.

TGF-β1 augmented serum-induced proliferation
Serum contains a variety of mitogenic substances that may
enter the airways as protein exudates during airway
inflammation. ASMCs can respond synergistically to a
wide variety of mitogen combinations [39]. TGF-β may
interact with these substances and affect ASMC prolifera-
tion. To determine this, we treated confluent, serum-free
ASMCs with 10% FBS in the absence or presence of TGF-
β1 (1 ng/ml) for 48 hours and measured the changes of
thymidine incorporation and cell number. DNA synthesis
and cell number were significantly increased after treat-
ment with 10% FBS compared to the cells cultured in
serum-free medium (Figure 3). The serum-induced
increases in thymidine incorporation and cell number
were further enhanced by addition of 1 ng/ml TGF-β1
(Figure 3). Similar changes, to a lesser extent, were
observed when 1% FBS was used (data not shown).

Roles of MAPKs in TGF-β1 induced proliferation
Next, we determined if MAPKs play any role in TGF-β1
induced increase in proliferation. ASMCs were treated
with 1 ng/ml of TGF-β1 for 1, 5, 30 minutes, 24 and 48
hours, followed by extraction of the cellular protein. The
expressions of total and phosphorylated p38, ERK1/2,
and JNK were determined by Western analysis. TGF-β1
induced rapid increases in phospho-p38 (Figure 4A) and
phospho-JNK (Figure 4C), beginning as early as 1 minute
after addition of TGF-β1 and lasting up to 24 hours for
phospho-p38. However, the phosphorylation of JNK was
early and brief in duration (Figure 4C). Longer treatment
(48 hours) with TGF-β1 led to a decrease in both phos-
pho-p38 and phospho-JNK. The TGF-β1 induced
increases in phospho-ERK1/2 occurred only after 24-hour
treatment and this was not decreased by 48-hour treat-
ment (Figure 4B). There was no change in the expression
of total p38, ERK1/2, and JNK. In addition, to confirm
that the TGF-β1 induced induction of phosphorylated
p38, JNK, or ERK1/2 regulated cell proliferation, ASMCs
were pretreated for one hour with SB 203580, PD 98059,

TGF-β1 concentration-dependently increased proliferation of ASMCsFigure 2
TGF-β1 concentration-dependently increased prolif-
eration of ASMCs. Confluent and growth-arrested ASMCs 
were incubated with various concentrations of TGF-β1 for 
24 or 48 hours prior to [3H]-thymidine incorporation assay 
(A) or cell counting (B). Significant differences were detected 
at all concentrations of TGF-β1 treatment compared to the 
untreated control, p < 0.05 to p < 0.0001, n = 4–18.
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or SP 600125, followed by 24-hour TGF-β1 treatment and
[3H]-thymidine incorporation assay. The TGF-β1 induced
DNA synthesis was attenuated by SB 203580 or PD
98059, but not SP 600125 (Figure 5). Furthermore, total
and phosphorylated p38, ERK1/2, and JNK were deter-
mined using the cellular protein of ASMCs treated with
TGF-β1 for 24 hours in the presence or absence of SB
203580, PD 98059, or SP 600125. Western analysis
revealed that TGF-β1 induced phosphorylation of p38
and ERK1/2 were inhibited by SB 203580, PD 98059,
respectively (Figure 6). There were no changes in phos-
phorylation of JNK between cells of control, TGF-β1, and
SP 600125 plus TGF-β1 treatment (Figure 6). These data
suggest that TGF-β1 induced increase in proliferation may
be mediated by the activation of p38 and ERK1/2.

Roles of FGF-2, PDGF, EGF and IGF-I in TGF-β1 induced 
proliferation
To examine if the TGF-β1 induced proliferation of ASMCs
is a secondary effect mediated by other growth factors that
had been reported to be induced by TGF-β1 [20,23,40-
42], ASMCs were treated with TGF-β1 in the absence or
presence of neutralizing antibodies against FGF-2, PDGF,
EGF, and IGF-I (all from R&D Systems). [3H]-thymidine
incorporation was performed after 48-hour treatment
with TGF-β1. As shown in Figure 7, there were no signifi-
cant differences in the DNA synthesis between TGF-β1
treated ASMCs with and without these antibodies. The
data suggest that TGF-β1 induced ASMC proliferation may
not be mediated by these previously described TGF-β1
inducible growth factors.

Discussion
In this study we have demonstrated that TGF-β1 increases
proliferation in serum-free condition and enhances
serum-induced proliferation of confluent ASMCs. This
observation is consistent with the reports of others in
which confluent ASMCs were treated with TGF-β1 in the
presence of 0.5 – 5% FBS [24,26,43]. These findings have
important clinical significance, because over expression of
TGF-β1 mRNA and protein was found in bronchial biop-
sies from severe and moderate asthmatics [5,7,44,45]. In
addition, it was reported that basal TGF-β1 levels in the
airways were elevated in atopic asthma and that these lev-
els increased further in response to allergen exposure [6].
Most recently, it was found that C-509T SNP of the TGF-
β1 gene is an important susceptibility locus for asthma
[46]. Our previous data also demonstrated that wounded
ASMCs released biologically active TGF-β1, which in turn
induced collagen and fibronectin synthesis [11,12].
Therefore, it is conceivable that in chronic asthmatics with
repeated episode of injury and inflammation, TGF-β1 is
synthesized and released into the airways or within the
smooth muscle cells of the airways. The release and per-
sistent presence of TGF-β1 in asthmatic airways may grad-
ually induce airway smooth muscle hypertrophy and
hyperplasia. Moreover, our finding that TGF-β1 enhances
serum-induced ASMC proliferation may occur in asth-
matic airways where there is inflammation leading to
increase in vascular permeability and leakage of plasma
that contains cytokines mitogenic for ASMCs. Our results
suggest that the mitogenic effects of the cytokines would
be enhanced by TGF-β1, and augment the ASMC hyper-
plasia and remodeling changes. The proliferative changes,
combined with TGF-β1 induced connective tissue synthe-
sis in ASMCs [11,12,14], would thicken the airway wall,
reduce baseline airway caliber and exaggerate airway nar-
rowing. Unlike Black and co-workers' finding that TGF-β1
treatment for 24 hours and 48 hours led to inhibition and
promotion, respectively, of ASMC growth, in our present
study, both 24-hour and 48-hour treatment with TGF-β1
induced increases in ASMC proliferation. The difference
for the cell response after 24-hour TGF-β1 treatment may
be due to the different culture condition. Black et al
treated ASMCs in the presence of 2% serum in the culture
medium, while we did not use any serum when we treated
the cells. Therefore, the different extent of serum-depriva-
tion may affect the cell response to mitogens.

Little is known about the mechanisms by which TGF-β1
affects ASMC proliferation. In human ASMCs, it was
found that TGF-β1 induced a 10–20 fold increase in insu-
lin-like growth factor binding protein-3 (IGFBP-3) mRNA
and protein and a 2-fold increase in cell proliferation,
which was blocked by IGFBP-3 antisense or IGFBP-3 neu-
tralizing antibody, suggesting IGFBP-3 mediates TGF-β1
induced proliferation [43]. In cells other than ASMCs, it

TGF-β1 enhanced serum-induced proliferation of ASMCsFigure 3
TGF-β1 enhanced serum-induced proliferation of 
ASMCs. Confluent and growth-arrested ASMCs were 
treated with 10% FBS in the absence or presence of TGF-β1 
(1 ng/ml) for 48 hours and the changes of [3H]-thymidine 
incorporation (n = 9) and cell number (n = 6) were deter-
mined. All values are % of untreated control cultured in 0.2% 
BSA/DMEM. p values indicated were compared to control 
(10% FBS only).
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was suggested that release of PDGF mediated by TGF-β1
induces mesenchymal cells proliferation [20,42,23]. For
example, Battegay and co-workers found that TGF-β1
induced human dermal fibroblasts, chondrocytes, and

arterial smooth muscle cell proliferation at low concentra-
tions by stimulating autocrine PDGF-AA secretion [20].
Other studies showed that TGF-β1 induced marked
growth responses, alone or in combination with EGF,

TGF-β1 increased expression of phosphorylated MAPKs in ASMCsFigure 4
TGF-β1 increased expression of phosphorylated MAPKs in ASMCs. Confluent and growth-arrested ASMCs were 
incubated with 1 ng/ml of TGF-β1 for 1, 5, 30 minutes, 24 or 48 hours prior to protein extraction and Western analysis for 
phosphorylated or total p38 (Panel A), ERK1/2 (Panel B), and JNK (Panel C). * p < 0.05, ** p < 0.01, ** p < 0.001 compared to 
control, n = 4–10, C = control.
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FGF-2, or PDGF-BB, that were largely independent of
PDGF-AA [41]. We had recently demonstrated that treat-
ment of primary interstitial pulmonary fibroblasts with
TGF-β1 released large quantity of FGF-2, which led to pro-
liferation. This TGF-β1 induced proliferation of the
fibroblasts was mediated by FGF-2, but not EGF, IGF-I or
PDGF [[47] and our unpublished data). In our present
study, we used neutralizing antibodies against EGF, FGF-
2, IGF-I or PDGF to examine the possible role of these
growth factors in TGF-β1 induced ASMC proliferation.
However, these antibodies did not block the TGF-β1
induced DNA synthesis. Our data suggest that the TGF-β1
induced proliferation of ASMCs in our model might be
independent of the growth factors previously reported to
mediate the proliferative effects of TGF-β1 in mesenchy-
mal cells.

Phosphorylation of ERK1/2 has been reported to mediate
mitogen-induced proliferation, while the phosphoryla-
tion of JNK and p38 are activated by a variety of non-spe-
cific stimuli such as changes in oxidation, osmolarity, and
inflammatory cytokines [28,48]. The important roles of
MAPKs activation in ASMC proliferation induced by
endothelin-1, thrombin, FGF-2, PDGF, EGF, IGF-I, 5-HT
and so on have been reported [29,49,30-37]. However, it
is not known if MAPKs mediate TGF-β1 induced ASMC
proliferation. In this study, for the first time, we have
demonstrated that TGF-β1 induced proliferation of
ASMCs is associated with increased expression of phos-
phorylated ERK1/2, p38, and JNK with different kinetics

of induction. Since the inhibitors of p38 and ERK blocked
TGF-β1 induced proliferation, our data suggest that the
activation of p38 and ERK is important for the TGF-β1
induced increase in ASMC proliferation. Our results are
partly supported by another study using tracheal smooth
muscle cells, which demonstrated that activation of p38
pathway by TGF-β modulated smooth muscle migration
and remodeling [50]. In our study, there are some differ-
ences in the time required for activation of MAPKs after
TGF-β1 stimulation amongst the 3 MAPKs. P38 and JNK
were rapidly activated by TGF-β1, which was as early as 1
minute. However, the activation of ERK1/2 required pro-
longed treatment with TGF-β1 (24 hours). The activation
of JNK lasted only 5 min, and the blockade of JNK activa-
tion failed to inhibit the ASMC proliferation induced by
24-hour of TGF-β1 treatment, indicating that the activa-
tion of JNK may not be important in mediating TGF-β1
induced proliferation of ASMCs. Interestingly, our finding
is similar to a previous report using human lung fibrob-
lasts, in which TGF-β1 activated ERK and p38 but not JNK
[40]. The authors used 30-minute, 2-, 6-, 16-, and 24-hour
TGF-β1 treatment and found that phosphorylation of p38
began within 30 minutes, while ERK1/2 activation began
at 2 hour with maximal induction by 16 hour. They also
found that activator protein-1(AP-1) binding depended
on ERK1/2 but not p38 activation. However, using fibrob-
lasts, we and others reported that TGF-β1 activated JNK
and p38, but not ERK1/2 [47,51]. In another study, an
interaction between ERK and p38 in macrophages was
proposed in which TGF-β1 activated ERK, which in turn
up-regulated MAPK phosphatase-1, thereby inactivating
p38 [52]. A recent study using selective inhibitors of the
three MAPKs [53] showed that inhibition of one of the
intracellular pathway was sufficient to inhibit IL-1β
induced ASMC proliferation and simultaneous inhibition
did not lead to further reduction in the proliferation, sug-
gesting the three major MAPK pathways are independent
regulators of IL-1β dependent proliferation of rat ASMCs.
Taken together, the above data indicate that one or more
MAPK can be activated by TGF-β1 and the different
MAPKs may act through different pathways in TGF-β1
induced proliferation of mesenchymal cells.

Our findings differ from a study by Cohen et al [54] in
which TGF-β1 alone had no effect on human ASMC pro-
liferation, but TGF-β1 inhibited EGF- and thrombin-
induced DNA synthesis, which was independent of ERK
activation. However, it is somewhat incomparable with
our data, because in addition to the species difference, the
cells they used had no proliferative response to TGF-β1
alone, and they did not show whether TGF-β1 affected the
activation of MAPKs. In addition, they used 5 µg/ml of
insulin in their serum-free medium, which may affect the
cell's response to growth factors or downstream media-
tors.

Effects of MAPKs inhibitors on TGF-β1 induced increase of proliferation in ASMCsFigure 5
Effects of MAPKs inhibitors on TGF-β1 induced 
increase of proliferation in ASMCs. Confluent and 
growth-arrested ASMCs were pretreated for 1 hour with SB 
203580, PD 98059, or SP 600125, prior to 24-hour treat-
ment with 1 ng/ml of TGF-β1 (T). DNA synthesis was meas-
ured by [3H]-thymidine incorporation assay. Inhibition of 
phosphorylated p38 and ERK1/2 reduced TGF-β1 induced 
DNA synthesis. ## p < 0.01 compared to untreated control 
(C), ** p < 0.01, *** p < 0.001 compared to T, n = 7–8.
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The effects of TGF-β are mediated by TβR I and TβR II,
which phosphorylate Smad 2 and Smad 3. The phospho-
rylated Smad 2 and Smad 3 bind Smad 4. The resultant
complex translocates to the nucleus and activates the
expression of target genes. It was demonstrated that Ras/
MEK/ERK pathway is partially required in order for TGF-β
to activate Smad , and is also required for the Smad-medi-
ated induction of connective tissue growth factor (CTGF)
by TGF-β2 . In addition, it was reported that constitutive
activation of p38 pathway-induced transcriptional activa-
tion was enhanced synergistically by coexpression of
Smad2 and Smad 4, and was inhibited by expression of C-
terminal truncated, dominant negative Smad 4 . Zhang
and coworkers demonstrated a direct interaction between
Smad 3/4 and two transcriptional factors (c-Jun and c-

Fos) among the targets of the MARK pathways . Most
recently, in cultured airway smooth muscle cells, Xie and
coworkers  found that TGF-β1 induced a significant acti-
vation of Smad 2/3 and translocation of phospho-Smad
2/3 and Smad 4 from cytosol to nucleus, as well as a time-
and concentration-dependent expression of CTGF gene
and protein. The TGF-β1 induced phosphorylation of
Smad 2/3 and the expression of CTGF mRNA and protein
were all blocked by the inhibition of ERK and JNK, but
not by the inhibition of p38 and phosphatidylinositol 3-
kinase (PI3K). The evidences given emphasize that there is
a stimulatory interaction between MAPK pathway and
Smad pathway in the context of TGF-β signaling. This
interaction may play an important role in the airway
remodeling. For example, CTGF is a downstream media-

Effects of MAPKs inhibitors on TGF-β1 induced activation of MAPKsFigure 6
Effects of MAPKs inhibitors on TGF-β1 induced activation of MAPKs. Confluent and growth-arrested ASMCs were 
pretreated for 1 hour with SB 203580, PD 98059, or SP 600125, prior to 24-hour treatment with 1 ng/ml of TGF-β1 (T), fol-
lowed by protein extraction and Western analysis for phosphorylated or total p38 (Panel A), ERK1/2 (Panel B), and JNK (Panel 
C). The blots are representatives of 3 independent experiments. C = control. ** p < 0.01 *** p < 0.001 compared to T.
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tor of TGF-β fibrotic effects and is constitutively overex-
pressed in fibrotic airways. It is not clear whether this
interaction is involved in the ASMC proliferation, how-
ever, it is possible in our present work that the TGF-β1
induced expression of MAPKs cross-talks with Smad path-
way, and they act together which results in proliferation
and fibrosis.

Conclusion
In conclusion, our results demonstrate that TGF-β1
increases ASMC proliferation, and also enhances serum-
induced ASMC proliferation. In addition, the activation of
p38 and ERK play an important role in mediating the
TGF-β1 induced proliferation by ASMCs. These findings
suggest that TGF-β1 which is expressed in airways of asth-
matics may contribute to irreversible airway remodeling
by enhancing ASMC proliferation.
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