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Abstract
The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologi-
cally expressed in the nervous system during embryogenesis, but its expression
decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was
identified to fuse to NPM1 in anaplastic large-cell lymphoma. Since then, ALK has
been associated with other types of cancers, including non-small-cell lung cancer
(NSCLC). More than 19 different ALK fusion partners have been discovered in
NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in
NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we
reviewed fusion partner genes with ALK, detection methods for ALK-rearrangement
(ALK-R), and the ALK-tyrosine kinase inhibitor, crizotinib, used in NSCLC patients.

The ALK gene

The ALK gene is located on the short arm of chromosome
2 (2p23), belongs to the insulin receptor superfamily, and
encodes for the ALK protein (Fig 1a). ALK is a transmem-
brane tyrosine kinase receptor, and like other receptor
tyrosine kinases, it has an extracellular domain, a

transmembrane segment, and a cytoplasmic receptor

kinase segment (Fig 1a–c).1,2 ALK expression occurs in the

nervous system during embryo genesis and decreases in

postnatal life. Therefore, in human adults, low levels of

ALK protein are produced only in rare, scattered neural

and endothelial cells and in pericytes in the brain.3,4
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Types of oncogenesis in ALK

There are three types of ALK gene mutations: rearrange-
ment (ALK-R), amplification (ALK-A), and point
mutation.
Most mutations of the ALK gene are in the form of a

translocation with another partner gene leading to a fusion
oncogene. This fusion gene then becomes overly expressed
in cancers. In 1994, ALK was originally identified in ana-
plastic large-cell lymphoma as a fusion partner of nucleo-
phosmin (NPM-ALK) resulting from a chromosomal
translocation.5 Subsequently, ALK-rearrangement (ALK-R)
was identified in many different cancers, including inflam-
matory myofibroblastic tumors, diffuse large B-cell lym-
phoma, non-small-cell lung cancer (NSCLC), and
esophageal squamous cell, colorectal, and breast carcino-
mas.6,7 ALK rearrangements create an oncogenic ALK tyro-
sine kinase that activates many downstream signaling
pathways resulting in increased cell proliferation and sur-
vival.8 Additional gene partners have been discovered in
fusion oncogenes with the ALK gene, including TPM3,
TFG, CLTCL1, and ATIC (Table 1).9

Another type of ALK gene mutation is ALK-A. The
oncogenic mechanism of ALK-A was first described in NB
cell lines in 2002. The study showed that ALK-A leads to
constitutive activation, resulting in the selective activation

of SHcC, a docking protein close to the substrate of the
ALK receptor.10 Several studies have reported extra copies
of the ALK gene in inflammatory breast cancer, NSCLC,
anaplastic large-cell lymphoma, and pulmonary sarcoma-
toid carcinoma.

Figure 1 (a) The ALK gene location in the genome; (b) structural organization of ALK protein; and (c) the domain of the fusion protein.

Table 1 ALK gene mutations and the disease they represent

ALK-R

ALK-A (disease)
Main point
mutationDisease

Partner
Gene

Anaplastic large cell
lymphoma

NPM1 Inflammatory breast
cancer

L1196M

Inflammatory
myofibroblastic
tumors

TPM3/4 Small cell lung
cancer

C1156Y

Diffuse large B-cell
lymphoma

TFG Anaplastic large cell
lymphoma

G1269A

Non-small cell lung
cancer

EML4 Pulmonary
sarcomatoid
carcinoma

F1174L

Esophageal
squamous cell
carcinoma

CLTCL1 Rhabdomyosarcoma L1152R

Colorectal
carcinoma

ATIC Carcinoma of the
esophagus

F1245C

Renal medullary
carcinoma

VCL Adult renal cell
carcinoma

G1201E
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The last type of ALK gene mutation is point mutation.
Secondary resistance is an acquired mechanism after the
tumor has been exposed to an ALK inhibitor2 and most
types of resistance are caused by mutations in the target
ALK gene, resulting in an inability to inhibit the encoded
tyrosine kinase.11 The first drug resistance point mutations
identified were C1156Y and L1196M.12 Subsequently, sev-
eral other point mutations conferring drug resistance have
been identified, including: G1269A, F1174L, 1151Tins,
L1152R, S1206Y, I1171T, G1202, D1203N, and
V1180L.11–14

ALK rearrangement in non-small cell
lung cancer (NSCLC)

Non-small-cell lung cancer accounts for approximately
80–85% of lung cancers and is a leading cause of cancer-
related mortality in both men and women worldwide.15–18

ALK gene rearrangement is a driving mutation underlying the
development of NSCLC, and has been identified in 5–6% of
NSCLC cases.19 Notwithstanding the substantial evidence link-
ing activated ALK to tumor genesis in these rare tumors, it is
fair to say that the considerable current enthusiasm for ALK
as a target for cancer therapy is largely driven by the relatively
recent finding of a recurring ALK gene translocation in a sig-
nificant subset of NSCLC.20,21 ALK rearrangement appears to
be more common in younger patients and never or light
smokers diagnosed with adenocarcinoma. Data from several
patient series has shown that the median age of ALK positive
NSCLC patients is 55 years and approximately 70% of these
patients are never smokers. The incidence of ALK positive
NSCLC among men and women is similar across the
world.22,23

ALK mutations were first described in NSCLC in 2007
when a subset (7%) of Japanese patients were found to have
EML4 rearrangement with ALK leading to the fusion onco-
gene EML4-ALK.24 This rearrangement was an inversion rear-
rangement from inv.(2) (p21;p23) that results in EML4
replacing the extracellular and intramembranous parts of ALK
and fusing with the juxtamembrane domain. The EML4-ALK
fusion gene represents a new molecular target. It has been
reported that the incidence of ALK rearrangement ranges from
approximately 3% to 13% in unselected or selected patients
with NSCLC.23,25–27 Because of the different breakpoints on
EML4, several variants of the EML4-ALK mutation have been
described (Table 2).27–29 EML4-ALK variants with differing fre-
quencies are V1 (54.5%), V2 (10%), V3a/V3b (34%), and V5a
(1.5%).28,29

EML4-ALK translocation can result in constitutive ALK
kinase activity and represents an oncogenic addiction path-
way in lung cancer. The EML4-ALK gene induced tumor
formation in nude mice.24,30 EML4-ALK possesses potent
oncogenic activity both in vitro and in vivo, and the tumor

can quickly be reduced after the administration of ALK-
tyrosine kinase inhibitors (TKIs).24,31

EML4-ALK fusion protein serves as a therapeutic target
for an ALK-TKI, and has shown promising results when
used to treat NSCLC patients carrying ALK
rearrangement.32–35 Over the last few years, ALK inhibitors
have shown significant benefits in the management of ALK-
positive NSCLC compared to conventional
chemotherapy.21,34,36

Rearrangements of the ALK gene with partner genes
other than EML4 have been described, namely, KIF5B,
KLC1, TFG, TPR, HIP1, STRN, DCTN1, SQSTM1, NPM1,
BCL11A, and BIRC6 (Table 3).37–50 Targeted therapeutic
agents, including the TKI crizotinib, have shown clinical
efficacy in treating NSCLC patients harboring EML4-ALK
gene fusion.34 Furthermore, a previous study demon-
strated that crizotinib is also effective at treating tumors
harboring ALK fused with other partner genes, including
NPM1 and BCL11A.34 In addition, other not-yet-
characterized fusions may also exist in solid tumors,
including lung cancer.51

Table 2 EML4-ALK variant fusions

Variants EML4-ALK Fusion Types
Number
of types

Frequency
(%)

E13;A20 E13;A20(variant 1), E13;
ins69A20, E13;ins69A20,
E13;exoc6bA20

4 33

E6;A20 E6;A20(variant 3a), E6ins33;A20
(variant 3b), E6;ins18A20

3 29

E20;A20 E20;A20(variant 2), E20;
ins18A20

2 9

E18;A20 E18;A20(variant 50) 1 2
E14;A20 E14;ins11del49A20 (variant 4),

E14del12A20 (variant 7), E14;
del14A20, E14;
del36A20,E14;del38A20,
E14ins21;del113A20

5 3

E15;A20 E15del19;del20A20 (variant 40),
E15del60;del71A20

2 2

E2;A20 E2;A20(variant 5a), E2;
ins117A20(variant 5a/b)

2 2

E17;A20 E17;ins68A20, E17ins65;A20,
E17;ins30A20 (variant 8a),
E17del58;ins39A20,
E17ins61;ins34A20
(variant 8b)

5 1

E3;A20 E3;ins69A20(variant 6), E3;
ins53A20

2 1

E6;A19 E6;A19 1 < 1
E21;A20 E21;A20 1 < 1
E10del54E13;
A20

E10del54E13;A20 1 < 1

E6;A17 E6;A17 1 < 1
Total 30
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ALK rearrangement detection
methods in NSCLC patients

ALK rearrangements may involve distinct break points and
multiple fusion partners. Therefore, routine ALK testing
presents a significant technical challenge. There are four
primary methods of detecting ALK rearrangement: fluores-
cence in situ hybridization (FISH), immunohistochemical
(IHC), reverse transcriptase-PCR (RT-PCR) and next gen-
eration sequencing (NGS). Each of these methods has both
advantages and limitations.
Fluorescence in situ hybridization break-apart assay is con-

sidered the gold standard for the evaluation of ALK status and
is the first approved diagnostic test for ALK rearrangement to
detect break-apart signals, although IHC and RT-PCR have
also been evaluated for this purpose, with the former approved
by the United States Food and Drug Administration (US FDA)
in June 2015 (Table 4).19,52 FISH relies on a spatial separation
of the 50- and 30- portions of the ALK gene upon rearrange-
ment, and produces characteristic spilt ALK-specific signals in
case of the translocation. The FISH break-apart assay is cur-
rently the most reliable approach to ALK testing, but has a
number of critical disadvantages. In particular, FISH requires
significant time input of extensively trained personnel and can-
not be subjected to reasonable automation; furthermore, it
demonstrates relatively high failure rates in some sample series

and may provide poorly interpretable results in a noticeable
fraction of NSCLC cases.53–55 Despite these challenges, FISH is
still regarded as the gold standard assay for the detection of
ALK rearrangements and a comparator for the other ALK
detection methods.
The development of highly sensitive ALK diagnostic anti-

bodies has offered an opportunity to detect ALK-driven tumors
by a standard IHC method. One of the main advantages of
IHC in comparison to FISH and RT-PCR is the detection of
the ALK protein, which is the target of ALK inhibitors. Other
advantages of IHC are its low cost, short turnaround time, and
ease of operation for users. The principle of IHC is based on
the fact that activating ALK rearrangements are accompanied
by significant overexpression of the catalytic portion of this
tyrosine kinase. IHC is generally capable of producing highly
reliable results when performed in reference laboratories; how-
ever, it requires the standardization of reagents and protocols
across pathology laboratories.55–58 The Ventana ALK assay used
D5F3 antibody is a resultful method of detecting ALK rearran-
gement. The Ventana ALK (D5F3) CDx Assay (Ventana Medi-
cal Systems, Tucson, AZ, USA) was approved by the US FDA
in 2015 as a companion detection test for the use of crizoti-
nib.59 Several studies have found that there is high concordance
between Ventana IHC and FISH.60,61 A research analysis of
46 ALK-positive patients reported sensitivity and specificity of

Table 3 Fusion details of ALK partner genes

Fusion
partner gene

Reported
year

Oncogenetic
driver TKI PFS Variants FISH result IHC result

First
report (ref )

EML4 2007 Yes — > 30 types — — 24
TFG 2007 — — T6;A20 — — 39
KIF5B 2009 Yes — K24;A20/K15:A20 Positive Positive 40
KLC1 2012 Yes — K9:A20 Positive Positive 41
PTPN3 2012 — Unknown P2;A10–11;P3 — — 45
HIP1 2014 Yes 5M H21;A20/H28;A20/

H30:A20
— — 50

TPR 2014 — Unknown T15;A20 Positive Positive 49
BIRC6 2015 Yes > 9M B10;A20 Negative Positive 48
DCTN1 2015 — Unknown D26;A20 Negative — 37
SQSTM1 2015 — Unknown S5;A20 Negative — 37
PRKAR1A 2016 Yes 7M P5;A20 Positive Positive 44
PPM1B 2016 Yes Sensitivity P1;A20 Negative — 44
EIF2AK3 2016 Yes 28M E2;A20 Negative Negative (D5F3

and 5A4)
44

BCL11A 2017 Yes > 6M B4;A20 — — 43
CEBPZ 2017 Yes Unknown C3;A20 Negative/fused

signals
Positive 42

PICALM 2017 Yes Unknown P19;A20 Negative/fused
signals

Positive 42

GCC2 2017 — — G12;A20 Positive Positive 47
LMO7 2017 — — L15;A20 Positive Positive 47
PHACTR1 2017 — — PH7;A20 Positive Positive 47
CMTR1 2017 No Drug

resistant
C2;A20 Negative Positive Under review

FISH, fluorescence in situ hybridization IHC, immunohistochemical.
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the Ventana IHC of 100% and 98.2%, respectively, and the
concordance rate between FISH and Ventana IHC was
98.4%.62 Although the sensitivity of IHC is high for detecting
ALK fusion, FISH-positive/IHC-negative cases responding to
ALK inhibitors have been reported in the literature.63

Reverse transcriptase-PCR based assays have not been as
widely used as FISH and IHC for ALK testing in NSCLC.
However, conventional RT-PCR has significant advantages
compared to FISH and IHC. First of all, while FISH and
IHC detect relatively indirect signs of the presence of ALK
translocation, RT-PCR usually reveals the exact variant of
the rearrangement and therefore provides definitive evi-
dence of ALK fusion. Furthermore, RT-PCR has high sen-
sitivity and specificity, with a rapid turnaround time and
ease of analysis, and can detect a small number (1%) of
ALK-driven NSCLC cells in the presence of normal
tissues.64–66 In addition, RT-PCR analysis utilizes the same
technical platform as other kinds of molecular NSCLC
diagnosis, for example EGFR testing. Finally, a number of
commercial RT-PCR kits for detection of ALK rearrange-
ments have been developed recently, including: the ALK
RGQ RT-PCR Kit (Qiagen, Valencia, CA, USA); the
EML4-ALK Fusion Gene Detection Kit (Amoy Diagnostics,
Xiamen, China); and EML4 ALK Gene Fusion, PCR
(Quest Diagnostics, Secaucus, NJ, USA).37,67 However, there
are some disadvantages of this platform. First, this method
of analysis of RNA samples yields a poor quality of RNA
obtained from formalin fixed paraffin-embedded specimens
and can only detect known fusion variants. Second, the
high sensitivity may lead to a false-positive result. In a pre-
vious study, the sensitivity and specificity of RT-PCR were
95.5% and 87.0%, respectively, and the concordance rate
between FISH and RT-PCR was 89.0%.62

Next generation sequencing is a promising method for
detecting ALK gene rearrangements. The great advantage
of the NGS platform is the detection of known ALK gene

fusions. NGS is also superior to other methods because it
allows for simultaneous screening of novel ALK fusion
partners as well as other lung cancer related gene muta-
tions, fusions, and amplifications. However, there are still
many challenges to overcome before this method can be
applied to normal laboratory diagnosis of pathology. For
example, expertise is needed to analyze and interpret the
results, and the cost and turnaround time are high.68 As
NGS has not yet been approved by the US FDA, it can
only be used in conjunction with other methods.
All four methodologies show good sensitivity, specificity,

and concordance when artifacts were characterized and
excluded. However, the choice of diagnostic methodology
for ALK rearrangement detection in clinical practice
remains a matter of debate. In ambiguous cases at least
two of the four methods should be used to confirm ALK
rearrangement.

ALK inhibitors

Crizotinib

ALK rearrangements in NSCLC have introduced new treat-
ment options for advanced NSCLC with the use of ALK-
TKIs.24 ALK fusion proteins can activate many different inter-
connected and overlapping pathways, such as Ras/Raf/MEK/
ERK1/2, JAK/STAT, PI3K/Akt, and PLC-γ pathways, all of
which are involved in cell migration, proliferation, and sur-
vival.8 In addition, several ALK fusion partners have been iden-
tified. However, regardless of the involved partners, all
chimeras retain the ALK gene kinase domain responsible for
the constitutive activation of ALK signaling pathways.8

Crizotinib is the first ALK inhibitor to enter clinical tri-
als. Crizotinib is a multi-targeted TKI69 with activity
against MET, ALK, and ROS1, and was approved by the
US FDA in 2011 for metastatic NSCLC positive for ALK

Table 4 Comparison of the four methods used to detect ALK fusion

FISH IHC RT-PCR NGS

Fusion types detectable No fusion specification No fusion specification Only EML4-ALK fusion All kinds of fusion
Sensitivity 10–15% 5–10% 1–5% 1–5%
Time used for analysis 2–3 days 0.5 days 1 days 5–7 days
Cost Medium (~$349) Low (~$31.5) Medium (~$879) High (~$945)
Is FFPE material applicable? Yes Yes Yes Yes
Is fresh tissue material applicable? No No Yes Yes
Amount of material required One tissue section (3 μm thick) One tissue section (3 μm thick) 0.1–0.5 μg of RNA 2–3 μg of DNA
Possibility to see large range of other
gene mutations in one analysis

No No No Yes

Requirement for technical skill Medium Low Medium High
Requirement for diagnostician High Medium Medium High
Applicability to average pathology
laboratory

Most laboratories All laboratories Some laboratories Some laboratories

FFPE, formalin fixed paraffin-embedded; FISH, fluorescence in situ hybridization IHC, immunohistochemical; NGS, next generation sequencing; RT,
reverse transcriptase.
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rearrangements.34,70,71 Crizotinib has a reported response
rate of over 60% and a disease control rate of up to 90%.34

Furthermore, median progression-free survival (PFS)
exceeds nine months, and median overall survival is almost
75% after one year in ALK-rearranged NSCLC.72 Compari-
son of crizotinib treatment with a historical control is
instructive.38 Therefore, from identification to inhibitor
approval, the story of ALK in NSCLC stands as a testament
of the promises of targeted molecular medicine.22

Next generation ALK inhibitors

Unfortunately, almost all patients treated with crizotinib
develop tumor progression. As such, potent inhibitors of
ALK that can overcome resistance to crizotinib are needed.
Several agents have been evaluated in patients with crizotinib
refractory NSCLC. Ceritinib and alectinib are currently
approved in the US, and brigatinib has received break-
through designation by the US FDA. The response rates with
these agents in patients with crizotinib drug resistance are
50–55%, and the median PFS rates are 6.9 for ceritinib, 8.9
for alectinib, and 15.6 months for brigatinib.73–75 Ensartinib
is another next generation ALK inhibitor. Ensartinib activity
was not only observed in crizotinib-resistant patients but also
yielded results in patients who had previously been adminis-
tered more than two alternate ALK inhibitors.76

The ASCEND-4 trial evaluated the effects of ceritinib or
chemotherapy in randomized ALK-positive treatment
naïve patients.77 The median PFS with ceritinib was 16.6
versus 8.1 months in patients treated with chemotherapy.
In the ASCEND-5 trial, patients who initially received che-
motherapy and crizotinib were randomized for further
treatment of ceritinib or chemotherapy. Results demon-
strated a significant improvement in PFS, with a median of
5.4 months after the administration of ceritinib compared
to 1.6 months with chemotherapy.78 These data reveal that
ceritinib is the preferred treatment for ALK-positive
NSCLC patients.
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