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Abstract

Hepatic encephalopathy (HE) represents a dysfunctional gut-liver-brain axis in cirrhosis which can negatively impact
outcomes. This altered gut-brain relationship has been treated using gut-selective antibiotics such as rifaximin, that improve
cognitive function in HE, especially its subclinical form, minimal HE (MHE). However, the precise mechanism of the action of
rifaximin in MHE is unclear. We hypothesized that modulation of gut microbiota and their end-products by rifaximin would
affect the gut-brain axis and improve cognitive performance in cirrhosis. Aim To perform a systems biology analysis of the
microbiome, metabolome and cognitive change after rifaximin in MHE.

Methods: Twenty cirrhotics with MHE underwent cognitive testing, endotoxin analysis, urine/serum metabolomics (GC and
LC-MS) and fecal microbiome assessment (multi-tagged pyrosequencing) at baseline and 8 weeks post-rifaximin 550 mg
BID. Changes in cognition, endotoxin, serum/urine metabolites (and microbiome were analyzed using recommended
systems biology techniques. Specifically, correlation networks between microbiota and metabolome were analyzed before
and after rifaximin.

Results: There was a significant improvement in cognition(six of seven tests improved,p,0.01) and endotoxemia (0.55 to
0.48 Eu/ml, p = 0.02) after rifaximin. There was a significant increase in serum saturated (myristic, caprylic, palmitic,
palmitoleic, oleic and eicosanoic) and unsaturated (linoleic, linolenic, gamma-linolenic and arachnidonic) fatty acids post-
rifaximin. No significant microbial change apart from a modest decrease in Veillonellaceae and increase in Eubacteriaceae
was observed. Rifaximin resulted in a significant reduction in network connectivity and clustering on the correlation
networks. The networks centered on Enterobacteriaceae, Porphyromonadaceae and Bacteroidaceae indicated a shift from
pathogenic to beneficial metabolite linkages and better cognition while those centered on autochthonous taxa remained
similar.

Conclusions: Rifaximin is associated with improved cognitive function and endotoxemia in MHE, which is accompanied by
alteration of gut bacterial linkages with metabolites without significant change in microbial abundance.
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Introduction

Dysfunction of the gut-liver-brain axis in cirrhosis can manifest

as hepatic encephalopathy, the subclinical form of which is

minimal hepatic encephalopathy (MHE) [1]. MHE affects several

cognitive domains that can adversely impact patients in their daily

function [2,3]. The treatment of MHE using gut-selective

strategies can improve cognitive function and quality of life in

patients; however the precise mechanisms of their action are not

clear [4–6]. Rifaximin is a gut-selective antibiotic that has efficacy

in the therapy of HE, traveler’s diarrhea and irritable bowel

syndrome [7,8]. The mechanism of action of rifaximin is

presumed to modulate the concentration of gut microbiota, which

has only been investigated in cirrhosis using culture-based

techniques. However the effect of rifaximin on gut flora using

culture-independent techniques and its effect on gut-derived
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metabolites in the improvement of MHE has not been investigat-

ed.

With the advent of the Human Microbiome project, there has

been substantial focus on characterization of the microbial taxa in

the human gut in disease states [9]. It is now apparent that the gut

microbiome is highly individualized and is influenced by diet and

environmental factors [10]. The resulting taxa abundance data is

non-parametric and sparse, that is there are many taxa that are

present in one individual that are not present in another. From an

ecological perspective, one can hypothesize that this observation

could be explained by the proposition that different taxa perform

the same function in the gut ecosystem [11]. Thus, there are many

discrepancies and confounding observation seen in the current

microbiome literature that tries to correlate microbial taxa with

clinical conditions such as obesity and inflammatory bowel disease

[12,13]. We propose that one needs to take a systems biology

approach to correlate the complex functional dynamic in the gut

ecosystem as a modulator of the gut-brain axis in the human host

[14].

Thus, the aim of this study was to use a systems biology

approach to evaluate the effect of rifaximin therapy on the

metabiome which we define as the interaction between the

phenome (cognition, liver disease severity and endotoxin),

microbiome (stool microbial community) and metabolome (serum

and urine metabolites) in patients with cirrhosis and MHE [15].

The a priori hypothesis was that rifaximin therapy would improve

cognition, reduce endotoxemia, dysbiosis and gut-derived systemic

products in patients with MHE.

Methods

Overall Trial Design
This trial was conducted at the Hunter Holmes McGuire VA

Medical Center between April 2010 through March 2012. Patients

for this trial were recruited after obtaining written informed

consent and underwent all study procedures (Figure 1). The

protocol and checklist for this trial are available as supporting

information; see SI Protocol and Checklist. We screened 31

patients for this study; five were previously on lactulose/rifaximin

and six did not have MHE based on their cognitive performance.

We included twenty patients with cirrhosis who had been

diagnosed with MHE using our pre-defined criteria [two of the

following abnormal compared to our healthy controls, number

connection test A/B (NCT-A/B), Digit symbol (DST) and Block

Design (BDT)] at least 2 months prior to the start of this trial [1] as

has been used and recommended in cirrhosis [16]. We only

included patients with cirrhosis between 18–65 years of age,

without a prior TIPS placement, without prior overt HE and on

treatment for it and those who are able to give written informed

consent. Patients were diagnosed with cirrhosis if they had biopsy

evidence, radiological evidence or endoscopic evidence of varices).

We excluded patients with prior overt HE, who had a recent mini-

mental status exam result of ,25, those who scored better than the

inclusion criteria on the cognitive tests and those with prior TIPS

or overt HE. For the first visit, we gave the patients the tests again

to confirm the MHE status and to account for any learning effect.

The patients were prescribed open-label rifaximin 550 mg PO

BID for 8 weeks and the tests were repeated at the end of the

study. Subjects were advised to inform the study staff of any

adverse events and adherence was assessed at week 8 by the

percentage of pills returned.

This report is the microbiome, metabolome and cognitive

analysis of this open-label trial that also involved MR imaging of

the brain before and after rifaximin. It is registered at www.

clinicaltrials.gov number NCT01069133. This trial was conducted

under IND number 7,783 granted to Jasmohan Bajaj by the FDA.

Cognitive Test Battery
We used the following tests at baseline and at the 8 week visit;

BDT and the psychometric hepatic encephalopathy score [PHES;

consists of NCT-A, NCT-B, DST, line tracing test (LTT; has 2

outcomes; errors and time) and serial dotting (SDT)] which have

been validated for use in MHE [17]. Patients also underwent

blood draw for MELD score components (serum bilirubin, serum

creatinine and INR), serum sodium and venous ammonia at

baseline and week 8. A portion of the blood during both visits was

centrifuged to produce serum that was stored at 280 degrees C for

metabolomic analysis. We also collected 10 ml of urine during

both visits that was also stored at 280 degrees C for metabolomic

analysis.

Microbiome Analysis
Fresh stool was collected and DNA extracted for microbiome

analysis within 24 h of collection from patients and controls using

published techniques. Microbial community fingerprinting and

multi-tagged pyrosequencing were performed per published

techniques (Text S1) [15]. Metabolomic analysis: Samples were

analyzed using GC and LC mass spectroscopy using published

techniques (details in Text S1, Methods section) [18].

Statistical Analysis
Based on our prior microbiome studies [11] we were able to find

differences in microbiota constituents between advanced cirrhosis

groups with at least 7 subjects in them; we anticipated using 20

patients would be adequate to detect any variation in microbiome

in this relatively compensated population. We compared the

cognitive performance, MELD score (and its individual compo-

nents), venous ammonia and endotoxin levels before and after

rifaximin using paired t-tests. Clinical and microbiome features of

patients before and after rifaximin were compared with a principal

coordinate analysis was also used to show differences between the

two groups. Only taxa with average abundances .1%, P values

,0.05, and low q values (i.e., low risk of false discovery) were

considered significant. Microbiome abundance comparisons be-

tween groups were made at a family level using nonparametric

tests. A comparison was performed between patients before and

after rifaximin using the Wilcoxon matched-pair signed rank tests.

All values are presented as means 6 SD unless mentioned

otherwise.

Metabolomic statistical analyses were performed on all contin-

uous variables using the Statistica DataMiner software version 7.1.

Univariate statistical analysis for multiple study design classes was

performed by breakdown and one-way ANOVA. F statistics and p-

values were generated for all metabolites. Data distributions were

displayed by box–whisker plots, giving the arithmetic mean value

for each category and the standard error as box and whiskers for

1.96 times the category standard deviation to indicate the 95%

confidence intervals, assuming normal distributions. Multivariate

statistical analysis was performed by unsupervised principal

component analysis (PCA) to obtain a general overview of the

variance of metabolic phenotypes in the study [19]. In addition,

supervised partial least-square (PLS) statistical analysis was

performed to obtain information about the variance of metabolic

phenotypes that corresponded to the study design classes [20].

Three plots were obtained for each PCA and PLS model. The first

was a scree plot for the Eigen values of the correlation or

covariance matrix, used as a simple quality check to ensure a steep

descent with an increasing number of Eigen values. Second, 2D

Metabiome and Rifaximin in Cirrhosis
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score scatter plots were generated for at least the first three

dimensionless principal components or PLS vectors, and 3D plots

were generated to better distinguish metabolic phenotypes if

needed. Third, loading plots were generated for each vector in

PCA or PLS, showing the impact of variables on the formation of

vectors.

The abundances of the bacterial identifications were normalized

and taxa present at .1% of the community were tabulated.

Unifrac analysis was performed using Version 1.3.0 of Quantita-

tive Insights into Microbial Ecology (QIIME) and weighted P-

values were calculated using a Bonferroni correction. Correlation

networks were performed separately for groups before and after

rifaximin. The microbiome features along with endotoxin,

ammonia, and metabolomics were correlated using a Spearman’s

correlation function and then filtered for correlations .0.60 and

p,0.05. These correlates were calculated using a custom R

module, and the correlations and corresponding attributes were

imported into Cytoscape for visualization of the network models

[21]. The Intersection of the networks was done using the

advanced network merge function in Cytoscape. A Correlation

Difference (CorrDiff) network was calculated using a R module

which extracts edges whose correlations are statistically different

between the before and after treatment with a P value ,0.05 and

where at least one of the original correlations was greater than

0.06 [22,23]. We then compared the network topology of the

network before and after rifaximin to identify which sub-networks

were present in one and not the other, giving us clues on system

functionality [24]. It is assumed that correlations present in one

treatment group that are missing in another not only differentiate

the groups but indicate potential clues to the functionality of the

system, leading the way to hypothesis-driven experimental

research.

Results

Rifaximin Trial
All patients were able to complete the trial with rifaximin

550 mg BID for 8 weeks. The overall compliance with the

medication was 92%. We included 20 patients, 14 men and 6

women with a mean age of 59.763.5 years and education of

1461.7 years. The majority was Caucasian (14, 70%) with the

remainder being African American (6, 30%). The predominant

etiology was hepatitis C (7, 35%), followed by alcohol+hepatitis C

(4, 20%), non-alcoholic fatty liver disease (4, 20%), alcohol alone

Figure 1. Consort Flowchart of the Open-label trial.
doi:10.1371/journal.pone.0060042.g001
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(3, 15%) and others (2, 10%). There was a significant improvement

in serum bilirubin but not the other MELD score components at

the end of the trial (Table 1). There was also a significant

improvement in cognitive performance on all tests apart from the

block design test compared to the pre-treatment baseline. There

was a significant reduction in endotoxin levels after rifaximin

therapy compared to baseline (0.5560.21 vs. 0.4860.24 Eu/ml,

p = 0.02).

Microbiome Changes
There was no significant difference in the overall microbiome

composition before and after rifaximin upon visual inspection of

the principal component analysis (Figure 2A). UNIFRAC PCO

analysis also did not show a significant clustering between the

microbiota composition before and after rifaximin (Figure S1).

However, the UNIFRAC Bonferroni corrected, weighted signif-

icance test for the treatments was indicated a slight difference

between the microbiome compositions (p = 0.01) There was a

significant reduction in the abundance of the taxa Veillonellaceae

(p = 0.025) and increase in the abundance of Eubacteriaceae

(p = 0.042) using Metastats but no other significant changes in

the microbiome abundance were observed after rifaximin therapy

(Figures 2B and 2C).

Metabolome Analysis
There was a significant difference in serum and urine

metabolites between groups before and after rifaximin using

Partial Least Squares Discriminant Analysis (PLS-DA) (figures

S2A and B). Uni-variate analysis of serum metabolites (Figure 3)

showed that the majority of the differentiators were serum fatty

acids that increased after rifaximin therapy. The pattern of fatty

acid increase after rifaximin were a higher level of saturated fatty

acids [caprylic (8:0), myristic (14:0) and palimitic acid (16:0)] which

after the action of stearoyl-CoA desaturase can be turned into

palmitoleic acid (16:1n7), oleic (18:1n9) and eicosanoic acid

(20:1n9). An increase in linolenic acid (18:3n3), gamma-linolenic

acid, linoleic (18:2n6) and arachidonic acid (20:3n6) formed by the

action of delta 6-desaturase and fatty acid elongase was also seen.

There was also an increase in serum fructose, succinic acid and

citramalic acid after rifaximin. The only significant uni-variate

change in urine metabolites was a minor increase in urine succinic

acid.

Correlation Network Analysis
We ran the Spearman correlation network analysis on the 2,238

features in the dataset (Table S1) and selected correlation for both

‘‘Before’’ and ‘‘After’’ treatment that had an absolute Spearman

Correlation Coefficient greater than 0.6 and P-value ,0.05 The

global correlation networks are very complex with 153,000

correlations (2,220 nodes) for the ‘‘before’’ correlation network

(BCN) (Figure 4A) and 57,249 correlations (2,225 nodes) for the

‘‘after’’ correlation network (ACN) (Figure 4B).

We calculated the intersection correlation network (ICN) which

plots all the correlations that are the same in both the BCN and

ACN (Figure 4C). Interestingly, over 99% of the features in the

dataset are found in the intersection correlation network. Thus,

this intersection correlation network delineates the stable core

metabiome of the cirrhotic state that didn’t change during

treatment. Visually, there is a major hub of urine metabolites

with a minor hub of serum metabolites connected by various

minor clusters.

The complexity of the networks is expected as many compounds

will be in the same or complementary metabolic pathway. The

networks are visually different and this is reflected in the

connectivity measurements (Table 2). For example, the average

number of neighbors for the BCN is 59 while it is 51 for the ACN.

These parameters indicate that rifaximin has a major effect of the

metabolic network, reducing a number of the metabolic interac-

tions and reducing the clustering, while keeping the nodes

themselves intact.

When we plotted the Cumulative Distribution Function (CDF)

of the node degree frequency(14), we found that the connectivity

simplified after rifaximin (Figure 4D) and this was a statistically

significant shift (P,0.001). We found that most of the nodes

included in the BCN and ACN are contained in the ICN [2219

nodes] but it contains a much smaller subset of the correlations

with an average number of neighbors of 13.5. Thus, despite most

of the features being present before and after rifaximin therapy,

the connectivity changed significantly after rifaximin. This is in

contrast to a much more minimal effect on the bacterial

abundances of the microbiome. This implies that rifaximin, which

is a bacterial RNA polymerase inhibitor, does not seem to alter the

relative bacterial abundances but does promote a major shift in the

complexity of the peripheral metabiome network implying a shift

in the gut microbiome functionality.

We then calculated the Correlation Difference network

(CorrDiff) (Figure 4E) which is a global view of which correlations

changed significantly after treatment with rifaximin. We selected

only correlation differences that had a Pvalue ,0.05 and where at

least one of the original Spearman correlation was greater than

0.6. This network contains only 1490 features, which is

substantially smaller than the original BCN with only 67% of

the original features. Visual inspection of the CorrDiff (Figure 4E)

shows a more complex network of hubs that is reflected in the

Network Heterogeneity (2.012) and Clustering Coefficient (0.79).

Additionally, one can see that a number of correlations

involving bacteria (red squares) were changed by the rifaximin

treatment Figure 4D). We found five bacterial taxa (Enterobacteri-

aceae, Bacteroidaceae, Veillonellaceae, Porphyromonadaceae and Rikenella-

ceae) that showed a significant difference in correlations before

rifaximin compared to after rifaximin using the correlation

difference network. Subnets centered on these taxa from the

global BCN and ACN were then visualized (figures S3–S7 in File

Table 1. Changes in cognition and cirrhosis severity with
rifaximin therapy.

N = 20 Baseline After rifaximin

MELD score 9.863.3 9.463.1

INR 1.260.2 1.260.2

Serum creatinine (mg/dl) 0.960.1 0.960.2

Serum bilirubin (mg/dl) 1.360.8 1.160.7*

Serum sodium (meq/L) 138.162.8 138.962.7

Venous ammonia 46.2623.4 42.9623.1

Cognitive tests

Number connection-A (seconds) 42.3613.4 37.368.9*

Number connection-B (seconds) 97.2631.9 85.7625.8*

Digit symbol (raw score) 50.0612.3 55.1613.9*

Block design (raw score) 25.9611.9 28.569.6

Line tracing time (seconds) 121.7632.1 96.4633.1*

Line tracing errors (number) 41.2628.3 24.8617.1*

Serial dotting (seconds) 69.6625.7 61.0617.3*

doi:10.1371/journal.pone.0060042.t001
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S1, Text S1). To aid in interpretation, the nodes that were

‘‘unassigned’’ or not yet identified were removed from correlation

networks unless they served as a bridge between two named

features in the subnets.

Correlation Differences before and after Rifaximin
Therapy

To identify relationships that changed significantly between

baseline and post-rifaximin, we specifically analyzed data on

microbiome, significantly different serum metabolites, and clini-

cal/cognitive data (Figure 5). We found that Bacteroidaceae changed

their linkages from being positively correlated with NCT-B

(indicates poor cognition) and glycocholic acid before to a negative

correlation after; also there was a reduction in intensity of the

positive correlation with glutamic acid and asparagine, both

ammonia sources after rifaximin. Glutamic acid changed from

negative to positive with Lachnospiraceae. We also found that in the

network, serum fatty acids (linoleic, linolenic and oleic, and

isolinoleic, lauric, myristic and palmitoleic acids) remained

correlated with each other positively while the arachidonic acid

was initially positively but then negatively linked to ammonia after

rifaximin. A high score on SDT indicates poor cognition so it is

also interesting that stearic acid, changed its linkage from positive

to negative with that cognitive test as well as with autochthonous

taxa Lachnospiraceae and Incertae Sedis XIV. These correlation

differences are key in evaluating the potential effects of rifaximin

on cognition.

Figure 2. A: Principal Component Analysis of Microbiota. There was no significant change in the PCO of microbiota before and after rifaximin
therapy (yellow dots are before and red dots are after rifaximin) B and C: Composition of microbiota families before (figure 2B) and after (figure 2C)
rifaximin. There was a significant decrease in Veillonellaceae and increase in Eubacteriaceae abundance after rifaximin therapy (marked in red).
doi:10.1371/journal.pone.0060042.g002
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Discussion

This clinical trial demonstrates that rifaximin is associated with

improved cognitive performance and reduction in endotoxemia in

patients with cirrhosis and MHE. This was associated with a

modest change in the stool microbiota characterization with

reduced Veillonellaceae and increased Eubacteriaceae. There was a

significant change in the serum metabolome with a specific

increase in serum fatty acids after rifaximin therapy. Correlation

networks showed that key bacterial families, Porphyromonadaceae,

Bacteroidaceae and Enterobacteriaceae had differing associations with

the metabolome and microbiome after rifaximin compared to

baseline linkages.

The use of rifaximin for MHE therapy is an attractive

proposition due to its efficacy, tolerability and gut-specific action

[4,5,7]. In vitro the rifaximin is able to act on a wide variety of

gram-positive and negative organisms [8]. However there is

emerging evidence that its primary mode of action may be related

to a change in bacterial function and virulence rather than a

simple reduction in bacterial population. Studies in Escherichia coli

and Shigella sonnei, virulent members of Enterobacteriaceae have shown

that rifaximin exposure results in a reduction in its virulence and

ability to adhere to intestinal cells while keeping the counts

comparable to baseline [25,26]. Also fecal microbiota studies from

Crohn’s disease patients have shown that there was a change in

bacterial end-products such as short-chain fatty acids and alcohols,

after rifaximin therapy, rather than an absolute difference in

numbers [27].

Confirming and extending these investigations into cirrhosis and

MHE, we did not find an overall significant change in microbiota

composition at the phylum or order level but there was a modest

reduction in Veillonellaceae and a trend towards increased Eubacter-

iaceae. Veillonellaceae are anerobic gram-negative cocci that have

been found to be higher in abundance in cirrhotic patients’ stool

and colonic mucosa compared to healthy controls [28]. Also, prior

studies show that their abundance is greater in the colonic mucosa

of cirrhotics with HE compared to those without HE and lesser in

those on rifaximin and lactulose compared to lactulose alone [29].

Veillonella spp have also been over-represented in patients with

irritable bowel syndrome, most often those with a mixed or

constipation-predominant clinical picture [30]. The presence of

Veillonellaceae may be a marker for the presence of HE and MHE in

the stool and colonic mucosa of cirrhotic patients [11,29]. Since

the major fermentative substrate for Veillonella is lactic acid, it often

has a symbiotic relationship with taxa such as Streptococcaceae whose

end-product of metabolism is lactate. There was a trend towards

reduction in Streptococcaceae with rifaximin which could also factor

into the reduction of Veillonellaceae in this population. Comple-

mentary to our findings, Eubacteriaceae often respond in directions

opposite to that of Veillonellaceae after dietary manipulation [31].

There was also a change in the overall network connectivity

before and after rifaximin. This is interesting because it shows that

although the network features, i.e. microbiota and metabolome are

present in the networks before and after rifaximin, rifaximin

therapy decentralized and reduced clustering and decreased the

overall complexity of the connections between the same nodes.

This supports a change in bacterial metabolic function rather than

a change in bacterial numbers as the probable cause of its action.

When we specifically studied families that have been associated

with cirrhosis in the network, a significant change in connectivity

before and after rifaximin was observed with respect to

metabolites. Prominent among them were changes in Bacteroidaceae,

Enterobacteriaceae, and Porphyromonadaceae. All three taxa have been

associated with cirrhosis, HE and cognitive dysfunction in the past

and include several pathogenic genera such as Escherichia, Shigella,

Alistipes, Porphyromonas, Bacteroides and Salmonella [11,28,32]. At

baseline, these taxa were correlated with products of aromatic

amino acid and ammonia metabolism and oxidative stress

indicators [28,33]. These correlations changed to become

beneficial, i.e. negatively correlated with oxidative stress or with

aromatic amino acid and nitrogen metabolism after rifaximin.

Interestingly, there was also evidence of several quorum sensors in

the correlation network that can influence the number of co-

existent microbiota, especially those belonging to Enterobacteriaceae

[34]. We also were able to confirm that the autochthonous taxa

continued to be beneficially linked to metabolites before and after

rifaximin therapy [29]. While correlations do not imply causality,

as a whole the network analysis indicates that the associations

between metabolites and microbiota changed after rifaximin

Figure 3. Univariate serum metabolomic analysis. There was a significant increase in fatty acids and intermediates of carbohydrate metabolism
after rifaximin therapy in the serum.
doi:10.1371/journal.pone.0060042.g003
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Figure 4. Correlation networks before and after rifaximin. Legend common for figures 4A, 4B and 4C: The complex correlation network
represented parameters that were linked with a correlation coefficient .0.6 (negative or positive) and with a p value ,0.05. Red nodes represent
bacterial taxa, green ones the serum metabolites, yellow nodes indicate urinary metabolites while blue ones indicate clinical parameters. Red edges
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therapy into a potentially beneficial metabiomic milieu for the

host.

Lipopolysaccharide (endotoxin) was significantly reduced in

patients taking rifaximin, in the current study consistent with

previously reported studies of HE and cirrhosis patients [35].

Moreover, there was a significant increase in serum long-chain

fatty acids in patients on rifaximin as compared to controls. The

absorption of endotoxin and long-chain fatty acids are believe to

primarily occur in the small bowel as bile salts are important for

the solubilization of hydrophobic compounds. Both endotoxin and

long-chain fatty acid are transported packaged in chylomicrons

which are formed in enterocytes in the small bowel [36].

Therefore, we hypothesize that main effect of rifaximin may be

to inhibit bacterial growth and reduce endotoxin absorption in the

small bowel. This is consistent with the reduction of members of

the family Veillonellaceae, which are Gram-negative anaerobic cocci

and have been reported to be in relatively high numbers in the

human ileum [37].

After rifaximin therapy, there was an increase in long-chain

saturated fatty acids along with products of stearoyl CoA

desaturase. We also found a significant increase in unsaturated

fatty acids with higher linoleic, conjugated linoleic, linolenic and

arachidonic acids after the treatment with rifaximin. This specific

fatty acid profile is interesting because animal studies have shown

that it is possible to modify the adipose tissue and peripheral fatty

acid profile with introduction of probiotics or bacteria that have

specific fatty acid enzyme mutations [38]. Also these studies found

that these changes in peripheral fatty acid changes can benefit

brain fatty acid constitution in these animals giving a potential

mechanism for the biological effect of gut bacteria on brain

function [39]. This increase is unlikely to be dietary since the diet

remained constant throughout the study and there was no change

in the mead acid level, which is a marker for dietary intake change

between the pre and post-rifaximin profile [40]. Therefore the

increased fatty acids are likely either due to an enhanced transport

from the gut to the bloodstream via the thoracic duct as

chylomicrons or enhanced release from the adipose tissue. Gut

microbiota can affect adipose tissue and peripheral lipoprotein

lipase by modulating the fasting-induced adipose factor [41,42].

The lack of short-chain fatty acids, which are major end-products

of bacterial fermentation, in this serum profile is likely because the

majority of their biological activity occurs within the gut lumen

and they are directly absorbed and transported into the liver [43].

The predominance of long-chain serum fatty acids in the post-

rifaximin profile supports the gut-based transport of these

molecules in chylomicrons as a potential mechanism for their

higher levels. Prior studies have shown that fatty acids, both

saturated and unsaturated, are associated with brain function in

animal, human and population-based studies[39,44–46]. The

brain fatty acid profile impacts neurogenesis, cognition and

memory possibly by affecting neurotransmission, axonal sheath

composition and cell membrane fluidity. Fatty acids increased in

our study, arachidonic and linoleic acids, have been shown to

influence brain function directly [44,46]. There was a significant

represent negative correlation between connected nodes and blue edges indicate positive correlations. A: Correlation network before rifaximin (BCN)
with r.0.6 or ,20.6 and p,0.001. B: Correlation network after rifaximin (ACN) with r.0.6 or ,20.6 and p,0.001. C: is the intersection of 5A and B.
It demonstrates those nodes and correlations that remain exactly same before and after rifaximin. D: Cumulative Degree Function curve. This graph
plots the cumulative degree function of the node frequency distributions before and after rifaximin. It shows that after rifaximin therapy there was a
significant reduction in network complexity (p,0.0001). Blue line: before and red line: after rifaximin. E: Correlation difference before and after
rifaximin. This figure shows the correlations that significantly changed between the before and after rifaximin state; i.e. if two nodes were connected
positively in the before rifaximin network but aftr rifaximin changed to negative, they are represented here. While the color coding of the nodes is
similar, red edges demonstrate linkages that were positive in the BCN but became negative in ACN, while blue edges represent correlations that
changed from negative to positive after the use of rifaximin.
doi:10.1371/journal.pone.0060042.g004

Table 2. Comparison of network topology before and after rifaximin.

Before Rifaximin After Rifaximin
Intersection of the two
networks

Number of Nodes 2220 2225 2219

Isolated Nodes 0 0 511

Connected Components 1 1 547

Average Number of Neighbors 59.0405405 51.4588764 13.5205047

Network Density 0.02660682 0.02313798 0.00609581

Clustering Coefficient (saturation of the nodes) 0.36257932 0.33746817 0.31452636

Network Diameter (largest distance between nodes) 6 6 15

Network Radius (shortest distance between nodes) 4 4 1

Characteristic Path Length (expected distance between two
nodes)

2.77271111 2.75946771 4.68771603

Network Centralization 0.23453281 0.18386182 0.15184087

Shortest Path (shortest path through all nodes) 4926180 4948400 2600364

Network Heterogeneity (tendency to form hubs) 1.19030892 1.05451615 1.80374813

Intersection indicates the nodes and network common to both before and after rifaximin. The table shows that the majority of nodes involved were common
(intersection) between the groups while the network density (average number of neighbors and network density) changed after rifaximin therapy. While the diameter
and radius remained same, there was a reduction in the path length and heterogeneity after rifaximin compared to before. There was also a decrease in network
centralization which means that the distribution was spread out after rifaximin therapy compared to before.
doi:10.1371/journal.pone.0060042.t002
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improvement in their cognitive function after rifaximin therapy

across most cognitive domains. While our study did not evaluate

mechanisms, it can be speculated that changing the gut bacterial

end-product and fatty acid profile could benefit this cognitive

ability by potentially affecting the brain fatty acid profile.

We observed that rifaximin does not alter the relative bacterial

abundances but does promote a major shift in the complexity of

the metabiome network. However, we did not measure absolute

abundances of the taxa in the microbiome. Thus, there is a

possibility that rifaximin may have had an impact on total

microbial mass in the gut that may also play a role in the

modulation of the metabiome to improve MHE.

A limitation of this study was that the majority of the

metabolome features were unidentified due to limitations in the

GC and LC MS databases. Future studies should focus on

delineating those metabolites that are at key nodes in the major

network hubs of the CorrDiff or are key links between metabiome

components. The fecal metabolome and small bowel microbiota

analysis could have given additional insight into the mechanism of

action of rifaximin. Our sample size was also limited, which could

have potentially impeded our ability to characterize changes in

microbial abundance, since there is considerable inter-individual

microbial variability. Also our study is limited by the evaluation of

fecal bacteria, which could have differing abundances from that of

the colonic and small bowel mucosal bacteria [29]. However,

given these limitations, we were still able to detect changes that are

physiologically plausible and relevant to the ultimate result which

is improvement in cognition and reduction in endotoxemia after

rifaximin therapy.

We have demonstrated that a systems biology approach using

network correlation analysis and correlation difference analysis

was much more informative in interpreting the interaction of the

metabiome (i.e. phenome, microbiome and metabolome) than

current multivariate analyses. We postulate that the metabiome is

a complex non-linear dynamic and interrogating this dynamic

with one time point cannot completely capture the fluctuation in

the metabolic network. Additionally, microbiome identification

alone may have limited utility in that many taxa may have the

same metabolic function in the gut ecosystem. Thus, methodology

interrogating functional aspects of the metabiome, such as the

metabolome and metatranscriptome, should prove more informa-

tive.

We conclude that rifaximin therapy has a systemic and local

effect on the microbiota, metabolome, endotoxemia and cognition

in patients with minimal hepatic encephalopathy. A significant

improvement in cognition with reduction in endotoxemia was

observed with a modest change in stool microbiota composition.

There was a significant increase in serum long-chain fatty acids

after rifaximin therapy. We also found a significant linkage of

bacterial taxa with the metabolites, especially those linked to

ammonia, aromatic amino acids and oxidative stress, which shifted

to reflect changes in bacterial metabolic function after rifaximin

therapy. Therefore the mechanism of action of rifaximin, based on

our results, may be associated with changing microbiota-associated

metabolic function leading to cognitive improvement.

Ethics Statement
All research involving human participants was approved by

Hunter Holmes McGuire VA Medical Center Institutional

Review Board. Written informed consent, as approved by the

Institutional Review Board, was obtained and all clinical

investigations were conducted according to the principles

expressed in the Declaration of Helsinki.

Figure 5. Subset of correlation differences before and after rifaximin. This figure is limited to the metabolomics and clinical/cognitive
features that changed with rifaximin and their interaction with the bacterial taxa. The linkages that significantly changed in nature (positive to
negative or vice-versa) or intensity (less to more or vice-versa while remaining positive or negative) with p,0.05 are shown. Nodes: Blue: bacterial
taxa, green: serum metabolites, Yellow: cognitive or clinical data. Linkages were dark blue if correlations were positive before and changed
significantly to negative, light blue if they changed significantly but remained positive throughout, red if correlations were negative at baseline but
changed to positive after therapy and green is negative relationship throughout but a significant change.
doi:10.1371/journal.pone.0060042.g005
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