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a b s t r a c t

Oxidative stress-induced lipid peroxidation has been associated with human physiology and diseases
including cancer. Overwhelming data suggest that reactive lipid mediators generated from this process,
such as 4-hydroxynonenal (4-HNE), are biomarkers for oxidative stress and important players for
mediating a number of signaling pathways. The biological effects of 4-HNE are primarily due to covalent
modification of important biomolecules including proteins, DNA, and phospholipids containing amino
group. In this review, we summarize recent progress on the role of 4-HNE in pathogenesis of cancer and
focus on the involvement of mitochondria: generation of 4-HNE from oxidation of mitochondria-specific
phospholipid cardiolipin; covalent modification of mitochondrial proteins, lipids, and DNA; potential
therapeutic strategies for targeting mitochondrial ROS generation, lipid peroxidation, and 4-HNE.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Reactive oxygen species (ROS), such as superoxide anion, hy-
drogen peroxide, hydroxyl radicals, singlet oxygen, and lipid per-
oxyl radicals, are ubiquitous and considered as byproducts of
aerobic life [1]. Most of these chemically reactive molecules are
short-lived and react with surrounding molecules at the site of
formation while some of the more stable molecules diffuse and
cause damages far away from their sites of generation. Over-
production of these ROS, termed oxidative stress, may provoke
oxidation of polyunsaturated fatty acids (PUFAs) in cellular
membranes through free radical chain reactions and form lipid
hydroperoxides as primary products [2]; some of these primary
oxidation products may decompose and lead to the formation of
Fig. 1. Chemical mechanisms for 4-HNE formation from lipid peroxidation. (A) General s
can be generated from free radical oxidation of ω-6 PUFA or enzymatic oxidation by
cardiolipin: oxidation of L4CL by the peroxidase activity of cyt c and CL complex in th
(HpODE), 9-HpODE-CL and 13-HpODE-CL. During this process, through intra-molecula
reactive aldehydes are produced including epoxyalcohol-aldehyde-CL (EAA-CL), 4-HNE,
reactive lipid electrophiles. Among these lipid peroxidation (LPO)
products, 4-hydroxy-2-nonenals (4-HNE) represents one of the
most bioactive and well-studied lipid alkenals [3]. 4-HNE can
modulate a number of signaling processes mainly through forming
covalent adducts with nucleophilic functional groups in proteins,
nucleic acids, and membrane lipids. These properties have been
extensively summarized in some excellent reviews [4–10].

Mitochondria are vital for cellular bioenergetics and regarded
as the major cellular site for ROS production [11]. Our previous
works demonstrated that mitochondria are also an important site
for 4-HNE formation [12,13]. Furthermore, it has been well docu-
mented that oxidative stress and ROS generation are intimately
associated with cancer [14,15]. Accumulating data suggest that
mitochondrial macromolecular adducts from 4-HNE are involved
cheme for the formation of 4-HNE from decomposition of lipid hydroperoxides that
lipoxygenases. (B) Lipid electrophiles generated from oxidation of mitochondrial
e presence of H2O2 results in the formation of hydroperoxyoctadecadienoic acid

r peroxyl radical addition and decomposition of an unstable intermediate, several
and 4-oxo-2-nonenal (4-ONE).
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in the initiation and progression of cancer [16,17]. In this review,
we summarize the recent progress on understanding the role of
4-HNE in cancer and focus on the involvement of mitochondria:
formation of 4-HNE from oxidation of cardiolipin, covalent mod-
ification of mitochondrial biomolecules including proteins, DNA
and lipids, and therapeutic targeting the mitochondrial pathways
induced by 4-HNE in the context of cancer pathogenesis.
Formation and catabolism of 4-HNE in mitochondria

Mitochondrion is the “power house” for most eukaryotic cells,
including cancer cells, for its role in ATP production through oxi-
dative phosphorylation. During this process, significant amount of
superoxide are produced at complexes I and III of the electron
transport chain (ETC). Most of the superoxide is converted to hy-
drogen peroxide by superoxide dismutases (SOD). One of the main
targets of ROS is the membrane lipid bilayers, especially the PUFA
chains in lipids. Peroxidation of PUFAs generates an array of pri-
mary lipid oxidation products and lipid electrophiles, among
which 4-HNE is one of the well-studied active lipid electrophiles
[5]. In contrast to its well established biological consequences,
chemical mechanisms that led to 4-HNE formation remain to be
clearly elucidated [18,19]. It is generally accepted that 4-HNE is
derived from decomposition of hydroperoxide of ω-6 PUFAs at the
sn-2 position of glycerophospholipids in cellular membranes
(Fig. 1A). Thus phospholipids containing linoleic acid (LA, 18:2, ω-
6) and arachidonic acid (AA, 20:4, ω-6) on cytoplasma membranes
are considered the major source for 4-HNE production. Our recent
work, however, demonstrated that oxidation of mitochondrial
phospholipid cardiolipin also led to formation of significant
amount of 4-HNE and other oxidation products via a novel che-
mical mechanism that involved cross-chain peroxyl radical addi-
tion and decomposition [20–22] (Fig. 1B).

Cardiolipin is a unique class of mitochondrial specific phos-
pholipids that reside almost exclusively in the inner membrane of
mitochondria (IMM) and are critical for maintaining the structural
Fig. 2. Catabolism of 4-HNE in mitochondria. ROS induced lipid peroxidation in IMM a
4-HNE conjugation with GSH produces glutathionyl-HNE (GS-HNE); this process occurs
nonene (DHN) catalyzed ADH or AKRs. ALDH2 catalyzes the oxidation of 4-HNE to form
integrity of mitochondrial membranes and the function of multi-
ple protein complexes in the ETC [23]. In most mammalian tissues,
tetralinoleoylcardiolipin (L4CL) is the major form of cardiolipins,
which contains four linoleic acid chains in the same molecule.
Incorporation of four LA side chains in L4CL and its association
with mitochondria render L4CL to be readily oxidized by ROS and
then generate electrophiles through this novel “arm to arm” re-
action [20]. We provided further evidence that formation of 4-HNE
and other lipid electrophiles from CL played an important role in
intrinsic apoptosis in the context of atherosclerosis [13]. This
process appears to be involved in cancer. Human kidney cancer
tissue showed greater staining for 4-HNE protein adducts both in
cytoplasm and mitochondria compared to adjacent tissue [24].
Furthermore, about 30% of the 4-HNE adducted proteins locate in
mitochondria and a majority of them are the members of ETC
[25,26].

There are three major detoxification pathways to convert
4-HNE to less reactive chemical species and control their steady-
state intracellular concentrations (Fig. 2). Firstly, the main cata-
bolic reactions are the formation of adducts with glutathione
(GSH), which occurs spontaneously or can be catalyzed by glu-
tathione-S-transferases (GSTs). Secondly, 4-HNE can be reduced to
1,4-dihydroxy-2-nonene (DHN) by aldo-keto reductases (AKRs) or
alcohol dehydrogenases (ADH). Thirdly, 4-HNE can be oxidized to
4-hydroxy-2-nonenoic acid (HNA) by aldehyde dehydrogenase
(ALDH). Throughout more than 1.5 billion years of obligate en-
dosymbiotic co-evolution, mitochondria have developed a com-
plex system to sense and react to oxidative stress similar to their
host. GSH is one of the most important hydrophilic antioxidant in
mitochondria for maintaining the redox balance. Similarly, a sig-
nificant amount of AKRs and ADH is expressed in mitochondria.
ALDH2, one member of ALDH family, is exclusively located in
mitochondria. It is noteworthy that the superoxide dismutases
(SOD) are the well-known antioxidant enzymes that convert su-
peroxide into hydrogen peroxide. Among them, MnSOD resides in
mitochondria whereas Cu/ZnSOD is located in cytosol.
nd OMM (outer membrane of mitochondria) leads to 4-HNE formation. In matrix,
spontaneously or can be catalyzed by GSTs. 4-HNE is reduced to 1,4-dihydroxy-2-
4-hydroxy-2-nonenoic acid (HNA).



Fig. 3. A schematic view of 4-HNE macromolecule adducts in cancer cell. 4-HNE macromolecule adducts are involved in cancer initiation, progression, metabolic repro-
gramming, and cell death. 4-HNE (depicted as a zigzag line) is produced through ROS-induced lipid peroxidation of mitochondrial and plasma membranes. Biological
consequences of 4-HNE adduction: 1, reducing membrane integrity; 2, affecting protein function in cytosol; 3, causing nuclear and mitochondrial DNA damage; 4, inhibiting
ETC activity; 5, activating UCPs activity; 6, reducing TCA activity; 7, inhibiting ALDH2 activity.
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4-HNE mitochondrial protein adducts in cancer

As mentioned previously, proteins, DNA and membrane lipids
are the primary targets for 4-HNE attack. It was estimated that 1–
8% of the 4-HNE formed in cells will modify proteins [27], among
which, about 30% 4-HNE target proteins locate in mitochondria
[25,26]. Elevated status of oxidative stress has been associated
with a majority of cancer types and thus 4-HNE is believed to be a
major player that contributes to the mutagenic and carcinogenic
effects of lipid peroxidation. Formation of 4-HNE protein adducts
in renal and colon cancer tissues has been related to the growth
and progression of kidney and colon cancer [4]. Increased levels of
4-HNE have been shown to be associated with liver cancer in-
itiation in animal models and humans [28]. A recent study de-
monstrated that RLIP76 regulated pancreatic tumorigenesis
through maintaining cellular levels of 4-HNE, GS-HNE and GS-
DHN [29]. Furthermore, modulation of oxidative stress can be
utilized for therapeutic purpose in cancer prevention and treat-
ment [30]. Doxorubicin (DOX) is one of the most effective antic-
ancer drugs and oxidative stress is a primary mechanism of DOX-
induced toxicity to cancer cells. However, the cardiac side effects
limit its clinical use. Using a redox proteomics method, Zhao et al.
[25] identified several HNE-modified mitochondrial proteins in
cardiac mitochondria from DOX-treated mice. Most of the proteins
are related to mitochondrial energy metabolism, such ATP syn-
thase subunit β (ATP5B), succinate dehydrogenase [ubiquinone]
flavoprotein subunit (SDHA) and NADH dehydrogenase [ubiqui-
none] iron–sulfur protein 2 (NDUFS2) in ETC, and trifunctional
enzyme subunit α (HADHA) in citric acid cycle. The enzymatic
activities of these proteins were significantly reduced in DOX-
treated mice. Treatment of an SOD mimetic averted the production
of DOX-induced HNE-protein adducts and mitochondrial dys-
function. These results imply that robust 4-HNE formation can
induce cancer cell death through affecting mitochondrial function.
Nevertheless, mild mitochondrial function impairment is a major
contributing factor in caner. Studies from Anotonio and Paolo
showed that partial inhibition of ETC complexes improved tumor
cell migration in vitro and in vivo, and the metastasis can be pre-
vented with a mitochondria-targeted superoxide scavenger mito-
TEMPO [31,32]. It should be noted that cardiolipin interacts with a
number of IMM proteins including the ETC complexes and this
interaction is required for optimal activity of complex I (NADH
ubiquinone oxidoreductase), complex III (ubiquinone cytochrome
c oxidoreductase), complex IV (cytochrome c oxidase) and com-
plex V (ATP synthase). Furthermore, any alteration in the cardio-
lipin structure, content and composition may lead to mitochon-
drial dysfunction [33–35]. Constitutive 4-HNE levels might con-
tribute to adaptive response in protecting cancer cells against
oxidative damage. Superoxide production is sensitive to the proton
motive force and it can be significantly reduced by mild un-
coupling of oxidative phosphorylation through action of mi-
tochondrial uncoupling proteins (UCPs). UCP2, the widely ex-
pressed UCP, has been shown to be up-regulated in a number of
aggressive human cancers and plays an important role in cancer
initiation, progression, and metabolic reprogramming as an anti-
oxidant defense [36]. It has been strongly supported by the fact
that UCPs can be activated by ROS [37,38] and several reports
showed that ROS activated UCPs through a free radical chain re-
action and 4-HNE formation; 4-HNE induced uncoupling was in-
hibited by inhibitors of UCPs [39,40]. These studies suggest that
4-HNE may act as a feed-back mechanism through activating UCPs
to mitigate excessive ROS production and oxidative damage in
cancer.

ALDH2, located in the mitochondrial matrix, is better known
for its critical role in ethanol metabolism. ALDH2 is also capable of
metabolizing endogenous aldehydic products derived from lipid
peroxidation, such as 4-HNE, thus protecting mitochondria from
these toxic agents [41]. Chronic consumption of ethanol has been
causally linked to the development of upper aero digestive track
(UADT) cancers, liver cancer, colorectal cancer, and breast cancer.
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Studies from Asian countries confirmed a significant association
between ALDH2 enzyme deficiency and UADT cancer risk [42–44].
Excessive ethanol consumption enhances lipid peroxidation by
overwhelming antioxidant defense system in tissues and the al-
dehydic products of lipid peroxidation can covalently bind to
proteins in tissues [45,46]. Doorn et al. showed that 4-HNE was
both a substrate and an inhibitor of ALDH2; inhibition of ALDH2 by
4-HNE is reversible at low concentration and become irreversible
when the concentration of 4-HNE reaches 10 mM [47]. This in-
hibition appears to be a result of 4-HNE-cysteine adduct at the
ALDH2 active site. Thus 4-HNE-induced ALDH2 inactivation may
have an important role in the progression of some cancers.
4-HNE mitochondrial DNA adducts in cancer

Mitochondria are unique organelles because they contain their
own DNA which is responsible for encoding 2 ribosomal RNAs, 22
transfer RNAs and 13 protein subunits of the ETC. Mitochondrial
DNA (mtDNA) is organized into protein–DNA complexes called
nucleoids within the mitochondrial matrix. This kind of structure
can provide some protection to the genome while mtDNA remains
in close proximity to the ECT which is considered the main source
of ROS within the cell. Therefore, it is predictable that mtDNA is
highly susceptible to oxidative damage by ROS. Indeed, more
oxidative damage to mtDNA has been widely observed than those
of nuclear DNA. However, whether these damages are directly
from mitochondrial ROS remain to be clearly defined. Exposure to
ROS can result in a number of oxidative modifications to DNA
including the lesions 8-oxoguanine (8-oxo-dG, 2,6-diamino-4-hy-
droxy-5-formamidopyrimidine (FapyG), 4,6-diamino-5-for-
mamidopyrimidine (FapyA), and thymine glycol. These mtDNA
modifications can cause point mutations, deletions, and strand
breaks; thus the unrepaired oxidative damage may lead to the
production of dysfunctional proteins. 8-Oxo-dG represents the
most commonly studied oxidative lesions and increased levels of
8-oxo-dG are found in mtDNA from patients with arsenical skin
cancers [48], glioma [49], urinary bladder and renal cancer [50].

4-HNE, the product of lipid peroxidation, is mutagenic and
genotoxic in viruses, bacteria and mammalian cells. It reacts with
all four DNA bases but with different efficiency: G 4C 4 A 4T
[44]. 4-HNE-dG represents the best biomarker of the genotoxic
effects of 4-HNE and these adducts are primarily found in nuclear
DNA. A classic example of etiological relevance of 4-HNE-dG in
human cancers is 4-HNE-dG induced p53 mutation. P53 is a well-
known tumor suppressor and a mutational hotspot in human
cancers, especially in hepatocellular carcinoma. 4-HNE-dG adducts
were preferentially formed at the third base of codon 249 in the
p53 gene, causing gene mutation and affecting diverse biological
processes including cell cycle arrest, apoptosis, DNA repair, and
differentiation [51]. However, modification of mtDNA by 4-HNE
and other lipid electrophile has yet to be discovered.
4-HNE mitochondrial lipid adducts in cancer

Mitochondria are dynamic organelles surrounded by two
membranes with a well-defined lipid composition; most of these
lipids are synthesized in the endoplasmic reticulum. However, de
novo lipid synthesis and remodeling of mitochondrial lipids are
important for maintaining the structural integrity and function of
mitochondria. The most abundant phospholipids in mitochondrial
membrane are phosphatidylcholine (PC) and phosphatidyletha-
nolamine (PE), representing about 40–55% and 30–45% of total
mitochondrial phospholipids, respectively. CL accounts for around
15% of mitochondrial phospholipids. Other lipids, such as
phosphatidylserine (PS), sphingolipids and sterols, are present at
modest or even trace amounts [52]. Phospholipids containing
amino group, such as PE and PS, can undergo both a Michael ad-
diction and a Schiff base formation with 4-HNE [53]. Since the low
amount of PS in mitochondria, PE become the primary targets of
4-HNE adduction. PE Michael adducts were found in human urine
and blood in oxidative stress related situations such as aging and
diabetes [54], while the biological relevance is much less docu-
mented compared to protein and DNA adducts. Guichardant et al.
[55] demonstrated that 4-HNE adduction made PE a poor sub-
strate for secreted phospholipase A2 and was not cleaved by
phospholipase D. Plasmalogen, an important subclass of PE, is
covalently modified by 4-HNE and this modification may alter its
antioxidant potential. However, all these lipid modification by
4-HNE have not been shown to be derived from mitochondrial
lipids.
Therapeutic strategies for manipulation of ROS and lipid per-
oxidation in cancer: implication for mitochondrial 4-HNE

Evidence provided thus far clearly demonstrated that 4-HNE
played an important role in cancer through mitochondria. 4-HNE
at low concentrations can protect cancer cells against further da-
mage (e.g., UCPs reduce superoxide production) whereas cells
undergo apoptosis or even necrosis at high concentrations when
adduct load on mitochondrial macromolecules overwhelms the
protective mechanisms. Thus, strategies focusing on manipulating
mitochondrial ROS generation, lipid peroxidation, and 4-HNE for-
mation may provide therapeutic value to prevent or treat cancer.

While moderate ETC inhibition and subsequent increase in
mitochondrial ROS production promote tumor cell migration and
metastasis, specific scavenging of mitochondrial superoxide can be
a therapeutic option to prevent spontaneous tumor metastasis.
Studies by Paolo et al. showed that treatment with mitochondrial
specific superoxide scavenger mitoTEMPO, an SOD2 mimetic,
prevented the metastatic phenotype in human and mouse cancer
cells [32]. MitoTEMPO impairs the formation of ROS including
H2O2 and lipid peroxides [56]. Similar to mitoTEMPO, mitoQ, a
mitochondria-targeted form of coenzyme Q10, is currently being
tested in clinical trials [57]. These findings may offer a rationale to
test mitochondria-targeted superoxide scavengers in metastasis
prevention trials.

Robust ROS formation is a common mechanism for some an-
ticancer drugs to kill cancer cells, such as DOX and arsenic trioxide
(As2O3). However, only limited reports have taken into account of
the roles played by the lipid peroxidation products induced by
ROS. Reports showed that some PUFAs, such docosahexaenoic acid
(DHA), can sensitize various tumor cells such as breast cancer,
ovarian cancer, and cervical cancer, to ROS-inducing anticancer
agents. The cytotoxic effect of combined treatments was due to
induction of apoptosis, preceded by increased production of in-
tracellular aldehydes of lipid peroxidation. These effects can be
abolished by treatment of antioxidant vitamin E [58]. A recent
study demonstrated that ketogenic diet (high in LAs, and low in
carbohydrates and protein) enhanced radio-chemo-therapy re-
sponses in lung cancer xenografts by a mechanism that may in-
volve increased oxidative stress [59]. Ketogenic diets may enrich
mitochondrial CL with LA and at the same time force cells to rely
on mitochondrial oxidative metabolism for energy production.
According to our studies, LA-containing CL is an abundant source
of 4-HNE under oxidative stress condition and predisposes cancer
cells to undergo apoptosis. Indeed tumors from mice treated with
ketogenic diet and radiation showed significantly increased levels
of 4-HNE-modified proteins. Therefore, these results suggest that
ketogenic diet (high in PUFAs, i.e., DHA, LA, and arachidonic acid)
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could serve as an effective adjuvant for improving responses to
radio-chemo-therapies in the treatment of cancers by a mechan-
ism linking mitochondrial 4-HNE formation, oxidative stress, and
lipid peroxidation.
Conclusions

Lipid peroxidation-derived 4-HNE is a prototypical reactive li-
pid electrophile that readily forms covalent adducts with nucleo-
philic functional groups in macromolecule such as proteins, DNA,
and lipids (Fig. 3). A body of work have shown that generation of
4-HNE macromolecule adducts plays important pathological roles
in cancer through interactions with mitochondria. First of all,
mitochondria are one of the most important cellular sites of 4-HNE
production, presumably from oxidation of abundant PUFA-con-
taining lipids, such as L4CL. Emerging evidence suggest that this
process play a critical role in apoptosis. Secondly, in response to
the toxicity of 4-HNE, mitochondria have developed a number of
defense mechanisms to convert 4-HNE to less reactive chemical
species and minimize its toxic effects. Thirdly, 4-HNE macro-
molecule adducts in mitochondria are involved in the cancer in-
itiation and progression by modulating mitochondrial function
and metabolic reprogramming. 4-HNE protein adducts have been
widely studied but the mtDNA modification by lipid electrophiles
has yet to emerge. The biological consequence of PE modification
remains to be defined, especially in the context of cancer. Last but
not the least, manipulation of mitochondrial ROS generation, lipid
peroxidation, and production of lipid electrophiles may be a viable
approach for cancer prevention and treatment.
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