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Surface electromyography (sEMG) is a popular research tool in sport and rehabilitation

sciences. Common study designs include the comparison of sEMG amplitudes collected

from different muscles as participants perform various exercises and techniques under

different loads. Based on such comparisons, researchers attempt to draw conclusions

concerning the neuro- and electrophysiological underpinning of force production and

hypothesize about possible longitudinal adaptations, such as strength and hypertrophy.

However, such conclusions are frequently unsubstantiated and unwarranted. Hence, the

goal of this review is to discuss what can and cannot be inferred from comparative

research designs as it pertains to both the acute and longitudinal outcomes. General

methodological recommendations are made, gaps in the literature are identified, and

lines for future research to help improve the applicability of sEMG are suggested.

Keywords: strength, hypertrophy, rate coding, motor unit recruitment, exercise, activation, excitation, muscle

force

INTRODUCTION

Surface electromyography (electromyography, EMG; surface EMG, sEMG) is a common research
tool used to investigate a wide range of research questions across various disciplines. sEMG
is perhaps most useful for providing insight into how the neuromuscular system behaves.
In its simplest sense, sEMG is a highly-sensitive voltmeter that detects depolarizations and
hyperpolarizations (increases and decreases in voltage, respectively) that occur on the sarcolemma
(muscle fiber membrane). These depolarizations are necessary for, and precede, the contraction of
a muscle. Among other disciplines, the utilization of sEMG is popular in sport and rehabilitation
sciences, with the number of studies including the terms “EMG” and “exercise” increasing
exponentially since 1950 (R2 = 0.98) (Corlan, 2004). In those studies, sEMG amplitudes
collected from different muscles are commonly compared between exercises, techniques, and/or
loads. Based on such comparisons, researchers often attempt to draw conclusions that can be
separated into two primary categories: (1) inferring mechanisms and (2) predicting longitudinal
outcomes. Included in acute, mechanistic variables are activation, force production and sharing
characteristics, and recruitment strategies. Knowledge of such mechanistic variables is expected
to inform researchers and practitioners as to the underpinning of why unique adaptions occur
and through which pathways. Conversely, inferred longitudinal outcomes primarily consist
of muscle hypertrophy and increases in strength, in that it is assumed that greater sEMG
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amplitudes are predictive of greater adaptation (Andersen
et al., 2006; Escamilla et al., 2010; Reiman et al., 2012;
Tsaklis et al., 2015; Halperin et al., 2017). Oftentimes, however,
such conclusions are unsubstantiated and unwarranted. These
misinterpretations mainly stem from (1) the complicated nature
of sEMG and (2) lack of longitudinal work. This leaves both
researchers and practitioners with the important question: If we
cannot make such conclusions, what does sEMG tell us in the
context of exercise?

Numerous pieces have been written on the shortcomings
of sEMG in the exercise fields (Cavanagh, 1974; De Luca,
1997; Farina, 2006; Enoka and Duchateau, 2015). Indeed,
influential biomechanists have been writing about similar issues
since the 1970s (Cavanagh, 1974). However, in our view, few
have attempted to simplify the neuro- and electrophysiological
concepts in their discussion, making it difficult for those who lack
a strong relevant background to fully understand the content.
Thus, our goal with this review is to allow the applied exercise
scientists and educated coaches and practitioners to develop a
better understanding of this important topic. Further, rather than
a general overview of sEMG that pertains to many research
designs and fields, we aimed to narrow our discussion to a
number of common research designs in the exercise domain.
With this in mind, the purpose of this review is manifold.
First, we discuss what conclusions cannot be drawn from sEMG
studies in sport and rehabilitation sciences. This subsection will
cover both acute and longitudinal inferences. Next, we will
discuss what conclusions can be drawn from sEMG studies and
what experimental considerations need to be made before such
conclusions can be drawn. Lastly, we will identify gaps in the
literature and suggest lines for future research to help improve
the applicability of sEMG.

Terms and Definitions
Despite the apparent simplicity of sEMG, many terms relating
to EMG and neuromuscular physiology are often misused and
conflated with one another. Therefore, before delving into the
primary topics of this review, it is necessary to operationally
define a number of technical terms relating to EMG and
neuromuscular physiology. A schematic of how many of these
definitions relate to one another can be found in Figure 1.

• Neural Excitation–Electrochemical input from an α-
motoneuron that depolarizes all of the muscle fibers that it
innervates (Gottlieb et al., 1990; Winters, 1990; Zatsiorsky and
Prilutsky, 2012).

Activation
(excitation-contraction)

Dynamics

Muscle Contraction
Dynamics

Muscle
activation
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Muscle
Force
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FIGURE 1 | Production of muscle force from neural input. Excitation is the electrochemical input from the central nervous system into the muscle. This signal triggers

excitation-contract coupling, which leads to an active muscle state (activation). Finally, muscle force is produced after cross-bridges are formed and force is

transmitted through the muscle. Adapted from Zajac (1989).

• Muscle Excitation–Depolarization of the sarcolemma
following neural excitation, delivered to the muscle via the
neuromuscular junction (Farina et al., 2016). This is also
referred to as themuscle fiber action potential.

• Activation Dynamics–Events following excitation that cause
a muscle to produce active force via actin-myosin cross-
bridging, also known as excitation-contraction coupling
(Gottlieb et al., 1990; Winters, 1990; Zatsiorsky and Prilutsky,
2012). These events are affected by the state of the muscle (i.e.,
previous activation), and thus, so are the events that follow
(Figure 1).

• Muscle Activation–The active state of a muscle, ranging from
0% (all fibers inactive) to 100% (all fibers active) (Gottlieb et al.,
1990; Winters, 1990; Zatsiorsky and Prilutsky, 2012).

• Muscle Contraction Dynamics–Takes into account the
length and velocity of the muscle (Zajac, 1989). Many
phenomenological models exist to represent these dynamics,
such as the Hill muscle model (Hill, 1938), the Huxley cross-
bridge model (Huxley, 1957), and the three-filament model
(includes titin) (Herzog et al., 2012, 2015).

• Muscle Force–Force that is produced by the muscle.
• Surface EMG–Electrophysiological recording technology

used for the non-invasive detection of the electric potential
resulting from the transmembrane current of muscle fibers
(muscle excitation). With appropriate processing and based
on sufficiently reasonable approximations, sEMGmay provide
information on the timing and degree of muscles’ excitation
(Zajac, 1989)1.

WHAT CONCLUSIONS CANNOT BE
DRAWN FROM sEMG STUDIES?

Acute and Mechanistic Variables
In this section, we cover a number of acute and mechanistic
variables that are commonly collected, analyzed, and interpreted
with the goal of developing a better understanding of force
production and the pathways leading to force generation.
Specifically, motor unit recruitment, rate coding, activation,
force generation, and force sharing are discussed in view
of the common interpretation they receive in the sport and
rehabilitation sciences.

1This is not representative of the number of active cross-bridges in the muscle,

given the number of binding sites in an active muscle changes with its length. For

example, the number of cross-bridges established in an active muscle reduces as

the muscle shortens from its optimal length. Therefore, such measurements are

not a measure of muscle force, namely due to contraction dynamics.
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FIGURE 2 | Recruitment methods and their effects on sEMG amplitude. Case 1: If a muscle recruits motor units from superficial to deep, then this will result in sEMG

amplitude rising at a faster rate than force; that is, sEMG amplitude (% MVIC) ≥ Force (% MVIC). Case 2: If a muscle recruits motor units from deep to superficial, then

this will result in force levels rising at a greater rate than sEMG amplitude; that is, Force (% MVIC) ≥ sEMG amplitude (% MVIC).

Motor Unit Recruitment and Rate Coding
Amotor unit is the fundamental unit that converts efferent action
potentials to force. It consists of a motor neuron and all of
the muscle fibers that said motor neuron innervates. There are
two primary mechanisms by which the nervous system enable
a muscle to produce more force2: (1) motor unit recruitment,
in which more motor units are utilized, and (2) rate coding,
in which the motor units that are already recruited “fire” at
a faster rate (Kukulka and Clamann, 1981; van Bolhuis et al.,
1997; Farina et al., 2016). Importantly, the relative contribution
of motor unit recruitment and rate coding depends on the
muscle group (Kukulka and Clamann, 1981; De Luca et al.,
1982; De Luca and Kline, 2012). To complicate things further,
these recruitment characteristics are task-dependent, in that they
change with different rates of force development, like during
ballistic contractions, and thus are not specific to force levels per
se (Desmedt and Godaux, 1977). Unless the specific recruitment
characteristics of a muscle are known, one cannot discern
motor unit recruitment from rate coding using sEMG amplitude.
Moreover, how a muscle recruits its motor units will greatly affect
sEMG amplitude; for example, a muscle that recruits motor units
from deep to superficial will display a different sEMG amplitude-
force relationship than would a muscle that recruits motor units
from superficial to deep, assuming rate coding characteristics are
equal (Figure 2; Farina et al., 2016). This is exemplified by Mesin
et al. (2010), who found that the tibialis anterior likely has a
superficial-to-deep recruitment pattern, and thus has an sEMG
amplitude-force relationship similar to that depicted in Case 1 in
Figure 2. Whether there is a preferential recruitment direction
for different muscles or circumstances has yet to be determined.
It is clear that heterogeneity in motor unit recruitment and rate

2It should be noted that both of these mechanisms only pertain to active force

production, due to cross-bridging, and are independent of passive contributors to

force production (e.g., parallel elastic elements).

coding patterns precludes one from making conclusions about
either characteristic from sEMG amplitude alone.

Although there are methods to investigate motor unit
recruitment and rate coding using sEMG—such as spike-
triggered averaging and spectral analyses—these techniques are
complex and their validity, especially during dynamic, high-
intensity, or fatiguing exercise, is questionable (Farina et al., 2010,
2014). Moreover, sEMG amplitude alone, which is likely the
variable most-often reported from sEMG experiments, cannot
be used to infer motor unit recruitment or rate coding. This
is because both motor unit recruitment and rate coding have
significant, and nearly equal, contributions to time-averaged
sEMG amplitude [root mean square (RMS) or average rectified
value (ARV)] under non-fatiguing conditions (Farina et al.,
2016). Hence, since the relative contribution of each of the
two pathways cannot be separated using sEMG amplitude, the
conclusions that can be drawn for each mechanism are limited.
Indeed, a recent model suggests that similar recruitment can
occur under different loads with different levels of excitation,
simply due to differences in rate coding (Potvin and Fuglevand,
2017). In addition, under fatiguing conditions and following
training periods, sEMG amplitudes may be altered by intra- and
extracellular ion concentrations and motor unit synchronization
in unintuitive ways (Dimitrova and Dimitrov, 2003; Arabadzhiev
et al., 2010a,b). These alterations affect sEMG amplitudes
and confound the neural drive collected with sEMG with
other measures (Arabadzhiev et al., 2010a,b; Dideriksen et al.,
2011). From these inherent characteristics, it is clear that the
array of contributors to sEMG amplitude precludes one from
drawing conclusions that pertain to motor unit recruitment
and rate coding from sEMG amplitude. Hopefully, future work
implementing new, more sophisticated technologies, like high-
density (HD) EMG and decomposition techniques, may allow
for greater insight into these mechanisms (Merletti et al., 2008).
However, until such technologies are available and validated,
researchers are limited as to the mechanistic conclusions that
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FIGURE 3 | The isometric relationships between muscle force, activation, excitation, and fiber length. (A) Only the active curve is affected by activation, and any

activation can occur regardless of the muscle’s normalized force output. That is, activation is independent of fiber length; normalized force is a function of fiber length

and activation, in addition to contraction velocity (not shown). The passive length-tension curve is unaffected by activation; this has important implications for force

production and force sharing. Both force and length are represented relative to force and length, respectively, at optimal lengtha. (B) Excitation is curvilinearly related

to activation and force, whereas force and activation are directly related to one another (one-to-one). Different muscles have different excitation-activation

relationships, and thus, excitation for a given muscle can be one of the numerous lines that are plotted. Graph derived from Potvin et al. (1996) and Lloyd and Besier

(2003). (C) Raw EMG is influenced primarily by motor unit recruitment and rate coding. The envelope of this signal, rectified EMG, may be considered the sum of

neural drive to the area of muscle over which the electrode is placed, which, somehow [e.g., Σui (t)], is related to excitation, u(t). By filtering this signal, one can obtain

data that are related to activation, a(t). Adapted from Zajac (1989). aThe optimal length shifts to the right with decreasing levels of activation (Lloyd and Besier, 2003;

de Brito Fontana and Herzog, 2016), but a thorough description of these changes is outside the scope of this review.

can be drawn from sEMG signals (Farina et al., 2010, 2014; Del
Vecchio et al., 2017).

Activation
Muscle activation refers to the state of the muscle and is related to
the magnitude of force that a muscle actively produces (i.e., not
including passive contributions) relative to its maximum ability
to produce force actively (Figure 3A). Although force is related
to activation, force and activation differ in a number of ways.
First, activation only deals with active contributions to muscle
force and thus ignores passive components (Figure 3A). Second,
activation is essentially a scaling factor, which relates active force
and maximum potential active force at a given fiber length and
velocity (Zajac, 1989; Figure 3B). Lastly, activation is unaffected
by length and velocity, whereas force production is highly
influenced by fiber length and velocity. This is because activation
does not take into account muscle contraction dynamics (force-
length, force-velocity, history dependence, etc.). In other words,

activation is related to the number of fibers that are active and not
the force-generating capacity of those fibers.

Rather than measuring activation, sEMG measures changes
in the polarity of the muscle fibers’ membrane resulting
from neural excitation; in other words, sEMG is a measure
of muscle excitation. Activation and excitation differ in that
excitation is a precursor to activation (Figure 1). Specifically,
activation takes into account excitation-contraction dynamics
(Zajac, 1989), including electromechanical delays, ion kinetics,
etc., whereas excitation does not (Figure 1). Activation can
be estimated from muscle excitation and sEMG, but the
relationship is not straightforward (Figures 3B,C; Lloyd and
Besier, 2003; Staudenmann et al., 2010). Because sEMG is
not a direct measure of muscle activation, we suggest that
authors avoid using the term “activation” when referring to
sEMG amplitudes. Instead, authors should simply utilize the
term “sEMG amplitude,” “muscle excitation,” or “myoelectric
activity.” Moreover, we also propose that the term “muscle
activity” is ambiguous and should be avoided, as muscles
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can provide large contributions to a movement without being
excited.

Force Production and Sharing
sEMG is particularly attractive because its primary constituents,
motor unit recruitment and rate coding, are also the precursors
to active force generation (Staudenmann et al., 2010). As such,
one may be eager to associate sEMG amplitudes, especially
those that are normalized to maximum voluntary isometric
contractions (MVIC), with muscle force. This attraction has
been eloquently and satirically described by Dr. Peter Cavanagh
in 1974, “The day that most electromyographic kinesiologists
are collectively awaiting, with the enthusiasm of Doomsday
watchers, is that when they can use some measurement derived
from the electromyogram to indicate the force being produced
by a muscle group during unrestricted movement of the body”
(Cavanagh, 1974). Just like in 1974, doing so today is erroneous
for a number of reasons. First, the passive force-length curve is
ignored (i.e., force contributions from non-contractile structures,
such as collagen/extracellular matrix, tendons, fascia, titin, etc.).
A muscle can produce force with an sEMG amplitude of zero
due to its passive properties (Figure 3A–black line). Second,
the active length-tension curve and contraction history of a
given muscle must be taken into account (Herzog et al.,
2015). The often-cited curvilinear relationship between sEMG
amplitude and force pertains to isometric contractions at one
joint angle. However, when muscles change length, or even
have velocities, then this relationship becomes much more
complicated (Farina, 2006). When considering the active length-
tension relationship, an activation of 70% at a muscle length
of 0.83 will produce similar force to an activation of 60% at
a relative fiber length of 1.0 (Figure 3A). Contraction history,
on the other hand, tells us that a muscle can produce more
force following an eccentric contraction than a concentric one
(Herzog, 2004; Herzog et al., 2015; Seiberl et al., 2015). Lastly,
the amplitude of sEMG detected locally from the muscle does
not take muscle properties into account—that is, physiological
cross-sectional area and normalized muscle force—which will
affect the force-generating capabilities of muscle (Zajac, 1989).
These cautionary points have been elucidated in vivo, in animal
work that has shown that EMG cannot reliably predict muscle
force during dynamic tasks (Roberts and Gabaldón, 2008). The
inherent heterogeneity and dynamic nature of the neuromuscular
system preclude the deduction of muscle force from normalized
sEMG signals.

Force sharing is highly related to force production, as it
aims to understand how different muscles contribute to a net
joint moment. It is quite logical to think that sEMG would
provide valuable insight for force sharing, but not only do
the aforementioned points on force production apply, but
differences in muscle architecture must also be considered (e.g.,
physiological cross-sectional area, muscle moment arms, etc.).
To estimate force sharing, one must utilize musculoskeletal
modeling rather than just sEMG; however, sEMG can be

3Units are arbitrary, relative to the number of active fibers and the muscle fibers’

optimal length, respectively.

quite useful for “informing” musculoskeletal models (Sartori
et al., 2016). Such models are enormously complex, but they
are necessary to better describe force sharing characteristics.
Without such models, sEMG amplitude alone does not provide
great insight into force sharing characteristics of mechanically
redundant muscles.

Interim Summary
Collectively, sEMG studies that aim to draw conclusions about
muscle force production, muscle activation, or mechanisms of
force production are problematic when based solely on sEMG
amplitude. Oftentimes, in order to drawmechanistic conclusions,
more advanced sEMG processing and modeling techniques are
needed. At face value, at best, sEMG amplitude is strictly
indicative of muscle excitation.

Longitudinal Outcomes
Longitudinal outcomes are undoubtedly the most applicable,
clinically relevant measures that a sport or rehabilitation scientist
can provide to a practitioner. In this section, we discuss
two commonly-measured and sought after outcomes: muscular
strength and hypertrophy. Measuring these outcomes, however,
can be quite difficult and time-consuming (Halperin et al.,
2017). Before their discussion, it is important to introduce
the term “surrogate endpoint,” borrowed from the medical
literature. Surrogate endpoints are often utilized to assess a
difficult-to-measure variable—such as one that may take months
or years to occur (like strength or hypertrophy)—with greater
ease (Halperin et al., 2017). For example, cholesterol and
blood pressure have been used as surrogate endpoints for
cardiovascular health (Fleming and DeMets, 1996). Implied by
the idea of a surrogate endpoint is that, not only is the surrogate
endpoint correlated with the clinical endpoint or real variable
of interest, but net effects of interventions on clinical outcomes
are also reflected (Prentice, 1989; Fleming and DeMets, 1996). A
myriad of studies has attempted to utilize sEMG as a surrogate
endpoint of both strength and hypertrophy (Andersen et al.,
2006; Escamilla et al., 2010; Reiman et al., 2012; Tsaklis et al.,
2015; Halperin et al., 2017). While such studies may provide
insight into the neuromuscular system and how changes in
exercise variables, ranging from the exercise itself to load, may
affect muscle excitation, at present, it is unknown if greater
muscle excitation measured with sEMG is predictive of long-
term adaptation, as studies investigating the predictive validity
of sEMG are lacking (Halperin et al., 2017).

Hypertrophy
Muscle hypertrophy, or the growth of muscle fibers, is a
highly sought-after exercise outcome for individuals ranging
from patients with sarcopenia to physique competitors. Due
to its longitudinal nature, it can be quite difficult and time-
consuming to measure experimentally. As such, sport and
rehabilitation scientists have commonly utilized sEMG to acutely
compare exercises and loading schemes to help drive exercise
programming. However, recommendations from these studies
are often unjustified and ill-advised as, at present, there are
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no longitudinal studies to suggest that sEMG is predictive of
hypertrophic outcomes (Halperin et al., 2017).

The premise upon which the assumption that sEMG
amplitude may be useful for predicting hypertrophy could be
challenged on a theoretical level; that is, muscle excitation is
predictive of hypertrophic outcomes. A number of avenues
have been explored that may challenge this premise, including
the relationship between muscle protein synthesis (MPS) and
hypertrophy, the presence of hypertrophy without muscle
excitation, and differential hypertrophy with similar excitation,
which are explained herein.

Acutely, it has been postulated that maximum motor unit
recruitment, a primary constituent of the sEMG signal, is
important for stimulating hypertrophy (Wernbom et al., 2007;
Marcotte et al., 2015; Dankel et al., 2017). From a more
mechanistic standpoint, the presumed implicit (NB this has not
been explicitly stated) rationale for sEMG amplitude being able
to predict hypertrophy would be that greater sEMG amplitude
implies greater muscle excitation, which implies greater MPS
(Kumar et al., 2009; Holm et al., 2010), which implies a
greater hypertrophic response. This argument breaks down when
considering that acute fractional protein synthesis, a measure of
MPS, is not correlated with hypertrophy (Mitchell et al., 2014).
Thus, even if sEMG amplitude was a valid surrogate for MPS,
a study that to our knowledge has yet to take place, it will not
necessarily be predictive of hypertrophic outcomes.

It has been known since the 1970s that a muscle does not need
to be excited for growth to occur (Goldberg et al., 1975). In fact, a
hypertrophic response can be elicited in denervated muscle by
applying mechanical tension (stretch) (Sola et al., 1973). Such
findings, that stretch itself is a stimulus for hypertrophy, were
recently replicated in humans, in a study that demonstrated an
increase in gastrocnemii muscle thickness following 6 weeks of
static stretching (Simpson et al., 2017). Taken together, it is clear
that a muscle does not need to be excited to grow; however, this
evidence does not suggest that hypertrophy can be maximized
without a muscle being excited.

More recent data further support the idea that muscle
excitation alone cannot predict hypertrophy: Eftestøl et al.
(2016) divided 20 rats into two groups: 10 high-load (100%
of maximum isometric strength) and 10 low-load (50–60% of
maximum isometric strength, thus resulting in a fast, concentric
contraction). Experimenters stimulated tibialis anterior (TA)
and extensor digitorum longus (EDL) with identical electrical
stimulation every other day for 6 weeks (Eftestøl et al., 2016).
It was found that the magnitude of hypertrophy of both
TA and EDL were dependent upon and proportional to the
load (Eftestøl et al., 2016). Therefore, hypertrophic responses
were dependent on more than just excitation. Of relevance,
activation-independent (not excitation-independent) differences
in hypertrophy have also been shown to occur in humans.
Noorkoiv et al. (2014) trained young adult males using isometric
knee extensions at short or long muscle lengths (ascending
and descending limbs of the length-tension curve, respectively),
with loads corresponding to 80% of each participant’s MVIC
strength, measured at each participant’s optimal joint angle, over
a period of 6 weeks. Only participants who trained at long muscle

lengths experienced increases in quadriceps muscle volume
(Noorkoiv et al., 2014). From these data, it can be argued that
hypertrophic responses were either independent of activation or,
alternatively, greater with what may have been slightly lower
activation, as passive-elastic forces may have contributed to the
long-length condition (Noorkoiv et al., 2014). One may argue
that the relationship between force output and sEMG amplitude
is suggestive that sEMG may be able to serve as proxy for
the force “felt” by a given muscle, and thus hypertrophy, but
this relationship is muscle-length specific and can become quite
complex, as discussed in the preceding section (section Acute and
Mechanistic Variables).

In addition to the above, substantial evidence suggests
that there is a disconnect between sEMG amplitudes and
hypertrophy during highly-fatiguing conditions. Mitchell et al.
(2012) measured the effects of 3 sets of 30% vs. 3 sets of
80% vs. 1 set of 80% of one-repetition maximum (1 RM)
knee extensions on quadriceps muscle hypertrophy. Investigators
found that 3 sets of 30% and 3 sets of 80% elicited similar
growth (Mitchell et al., 2012). In an attempt to elucidate the
mechanisms underlying these outcomes, Jenkins et al. (2015)
carried out a sEMG study and found that, when taken to
momentary muscular failure, 3 sets of 80% 1 RM elicited greater
sEMG amplitude than did 3 sets of 30% 1 RM. These results
indicate that sEMG amplitude alone cannot be used to predict
hypertrophic outcomes in highly-fatiguing conditions (Vigotsky
et al., 2016) and are consistent with several other studies, which
have investigated either hypertrophy or sEMG (Schoenfeld et al.,
2014, 2016, 2017; Looney et al., 2016).

Both basic science and applied research challenge the notion
that excitation—the construct measured by sEMG—is necessarily
predictive of hypertrophy, as other variables influence both
sEMG amplitude and the strength and hypertrophy responses to
resistance training. Notwithstanding these data, complementary
data are necessary to paint a broader and more complete picture
of the potential role of excitation in hypertrophy. Specifically,
results from experiments in which excitation is the independent
variable and load is a control variable are needed. For example,
a study in which the load utilized is equal to 50% MVIC
and excitations are 50% (isometric) and 90% (concentric) of
maximum. A related study could explore the influence of sEMG
amplitude on hypertrophy while keeping constant muscle length
and contraction velocity. Moreover, it is important to note that
absence of evidence is not evidence of absence; although sEMG
has not been established to be predictive of hypertrophy, it does
not mean that no relationship exists. Some indirect evidence
loosely suggests that sEMG amplitude may have a potential
role in predicting hypertrophy: When comparing rectus femoris
sEMG amplitude in single-joint exercises (knee extension) to
that elicited by multi-joint exercises (simultaneous hip and
knee extension), it is clear that the former elicits much greater
sEMG amplitudes (Yamashita, 1988; Ema et al., 2016). Separate,
longitudinal evidence suggests that single-joint exercises are
effective for rectus femoris hypertrophy (Ema et al., 2013), while
multi-joint exercises (barbell back squats) are not (Fonseca et al.,
2014; Earp et al., 2015). These data alone are not enough to
suggest that a strong, predictive relationship exists, especially
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because the data are from different cohorts, but taken together
may be used as a rationale to investigate whether a relationship
does indeed exist. In other words, using these data to justify a
relationship is tautological and lacks pragmatism; putmuchmore
eloquently, “. . . one must not verify an idea using the same data
that suggested the idea in the first place” (Feynman et al., 2011).

Strength
Strength, like hypertrophy, is an outcome of resistance training
that is highly desirable. Because there are many ways to
test strength (Buckner et al., 2016), the working definition
of strength within the context of this piece is the ability
of a muscle to produce force in any objective, measurable
context. Throughout the physical therapy and rehabilitation
literature, sEMG amplitude thresholds for adaptation have been
suggested; for example, thresholds of 40–60% of MVIC have
been suggested to be necessary for strength gains to be elicited
from a given muscle (Andersen et al., 2006; Ayotte et al., 2007;
Escamilla et al., 2010; Reiman et al., 2012). It seems that these
recommendations for sEMG interpretation stem from training
load recommendations (Andersen et al., 2006). The rationale
behind this is simply that sEMG amplitudes increase, or are
correlated, with force, and greater loads are needed for greater
strength gains. Implicated by such a rationale are a couple
of assumptions that will be addressed: (1) normalized sEMG
amplitude is equal to the relative load of an exercise, and (2) the
relative loads provided are actually what is needed to improve
strength.

The supposition that sEMG amplitude is equal to the relative
load of an exercise may be true for some isometric muscle
actions when performed in the same position to which sEMG
has been normalized (Alkner et al., 2000), although not always
(see section Acute and Mechanistic Variables) (Potvin et al.,
1996). However, in the context of dynamic exercises, or when
positions differ from the normalization position, this relationship
does not hold (Aspe and Swinton, 2014; Calatayud et al., 2015;
Vigotsky et al., 2015). Accordingly, there is no basis to assume
that loading recommendations can be extrapolated to sEMG
amplitude recommendations.

The second assumption of this rationale is that heavier loads
are needed to increase strength. Indeed, while this is in line with
the principle of specificity, in some contexts, lighter loads (<40%)
have also been shown to have the ability to increase strength
(Mitchell et al., 2012; Morton et al., 2016), albeit not as well as
heavier loads (Schoenfeld et al., 2015). Moreover, there are data
to suggest that strength gains may occur from unloaded activities,
such as downhill walking (Maeo et al., 2015, 2016), which only
elicits EMG amplitudes of ∼30% MVIC for the vastus medialis
and rectus femoris (Maeo et al., 2012). The construct of strength
gain is not straightforward, as results will depend on how strength
is tested (Buckner et al., 2016; Gentil et al., 2017) and that strength
gains are not a binary outcome, but rather, they occur on a
continuum. As such, we feel that this premise is not supported
by more recent literature. Because strength is born from a variety
of exercise programming variables (load, frequency, volume,
etc.) and characteristics (kinetics and kinematics), more work
is needed to understand exactly how sEMG amplitudes play an

interactive role in exercise prescription. Finally, because strength
is often tested as an emergent property of one or multiple joints,
adaptations of surrounding musculature (agonists, synergists,
and antagonists) must also be considered; these adaptations may
decrease the relative importance of single-muscle adaptation for
single- or multi-joint strength outcomes (de Boer et al., 2007).

An interesting and relevant longitudinal study was carried
out by Calatayud et al. (2015), who had participants perform
either a 6 RM elastic band-resisted push-up or 6 RM bench press
over a 5-week period. Acutely, these exercises elicited similar
sEMG amplitudes of the pectoralis major and anterior deltoid,
and longitudinally, resulted in similar increases in bench press
6 RM and 1 RM (Calatayud et al., 2015). While this is a step in
the right direction, the similarities in sEMG amplitude may very
well have been an epiphenomenon rather than a cause for the
strength outcomes. That is, both sEMG amplitudes and strength
gains may have been a function of training load. More studies are
needed that manipulate the relationship between load and sEMG
amplitude to filter out their relative importance in rendering
strength gains.

Interim Summary
Muscular strength and hypertrophy are adaptations of interest
for practitioners of all types, ranging from physical therapists to
trainers and coaches. Due to the ease-of-use of sEMG and the
seemingly logical basis for inferring strength and hypertrophy
adaptations from sEMG amplitude, numerous authors have
attempted to utilize sEMG amplitude as a surrogate endpoint for
these longitudinal measures. Doing so, however, is not supported
by the current body of literature. We strongly urge practitioners
and researchers to view acute data through a critical lens;
implying and inferring longitudinal outcomes from acute data
should be condemned until acute measures have been validated
as surrogate outcomes (Halperin et al., 2017). Lastly, from some
of the data presented hitherto, it is likely that sEMG amplitudes
will be interactive with other exercise programming variables
in the determination of longitudinal adaptation. This is not a
limitation of sEMG, but rather a limitation of working with
complex biological systems.

WHAT CONCLUSIONS CAN BE DRAWN
FROM sEMG STUDIES (WITH CAUTION)?

Up to this point, the limitations of sEMG have been covered in
great detail. However, it is prudent to discuss how sEMG can be
properly applied and interpreted, in addition to how gray areas
can affect interpretation. Therefore, this section focuses on what
conclusions can “cleanly” be drawn from sEMG and under what
conditions one must approach sEMG interpretations with more
caution.

Binary Excitation (On/Off)
Knowing the state of a muscle is incredibly important for
experiments that aim to measure variables that require no
active contributions; for example, passive stiffness. This is often
thought to be one of the most valid applications of sEMG,
provided that the electrode is representative of the entire muscle
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FIGURE 4 | Under-representative sampling of motor units with sEMG. (A) Unlike observed for skin parallel-fibered muscles, the same action potentials propagating

along the fibers of pennated muscles are not sampled by a single pair of surface electrodes positioned anywhere on the muscle. As exemplified above, action

potentials of motor units A and D are detected mainly by proximal and distal electrodes (red and green ellipses), respectively. sEMG amplitudes detected locally likely

provide an unrepresentative view of the actual degree of muscle excitation. Biased inferences may be drawn from unrepresentative sEMG. Consider, for example, the

amplitude of sEMG detected by any pair of distal electrodes in the figure (from i to n). If, during a given submaximal contraction, only the distal muscle region is

excited, normalized sEMG amplitude will likely indicate a nearly 100% degree of excitation. Conversely, normalized sEMG detected proximally would overly

underestimate the degree of excitation. These considerations presume excitation of the whole muscle volume during the reference, normalization condition. Inferences

on the degree and timing of excitation are not supported by EMGs detected locally from large, pennated muscles. Reproduced from Merletti et al. (2016), with

permission. (B) Raw sEMG detected with pairs of electrodes from different locations along medial gastrocnemius. Gray, shaded areas indicate periods when the root

mean square amplitude (30ms epochs) was greater than the background, rest level during a standing task. Nota bene the false conclusions that can be drawn

regarding the state of a muscle by looking at only one pair of electrodes (e.g., electrode pair #1). Reproduced from dos Anjos et al. (2017) (under CC-BY 4.0).

(Cavanagh, 1974; Farina, 2006). This, however, is not always
the case, as electrodes only cover a small, select portion of
muscle (Figure 4A). Indeed, recent evidence suggests that some
parts of a muscle may be electromyographically “silent” while
other parts are not (dos Anjos et al., 2017; Figure 4B). These
uncertainties likely also apply to greater contraction intensities,
as negative electromechanical delay was recently observed in up
to 23% of isometric elbow flexion trials with net joint moments
ranging from 20 to 70% MVIC (Dieterich et al., 2017). These
data suggest that an electrode, for a short period of time, is
not representative of the entire muscle over which it is placed
(Dieterich et al., 2017). It has been proposed that such findings
are at least partially a function of interelectrode distance; smaller
interelectrode distances result in smaller pick-up volumes, which
decreases how representative a sEMG signal is of the muscle over
which the electrodes are placed (Vieira et al., 2017). Fortunately,
the periods during which electrodes are poorly representative of
a muscle’s binary state (on/off) are often transient (Figure 4B),

and thus, it is likely that an electrode will provide insight as to
the muscle’s current state eventually. In other words, although
an electrode may not accurately represent the state of a muscle
at any instant (a single time point), it will provide the state of
the muscle over longer periods of time. When dealing with short
bursts of excitation, the implications are less clear and more
caution should be used when interpreting results (Cavanagh,
1974). It follows that one may reasonably conclude whether or
not a muscle is “on” or “off” if the time of interest is > ∼200ms
(Dieterich et al., 2017). Finally, one can increase their confidence
in knowing the state of a muscle by using multiple electrodes
or HD-sEMG, which accounts for intramuscular heterogeneity
(Dieterich et al., 2017; dos Anjos et al., 2017; Le Mansec et al.,
2017).

Timing of Excitation
Much like knowing if a muscle is “on” or “off,” it can be incredibly
insightful to know when a muscle changes its state; for example,
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determining when a muscle turns “on” during the gait cycle.
Such insight has applications for musculoskeletal modeling,
understanding pathology, and basic motor control. Due to the
variability in electromechanical delays (Dieterich et al., 2017),
gathering the timing of activation can be more complicated
(Cavanagh, 1974). Thus, depending on the application and speed
of movement (e.g., isometric vs. ballistic), electromechanical
delays—although on the order of a few tenths of a second—may
need to be considered (Cavanagh, 1974), as should the possibility
that an electrode may not readily represent the state of a muscle
(dos Anjos et al., 2017; Figure 4). Notwithstanding these points,
if small errors are acceptable for the application in question (e.g.,
<200ms; Dieterich et al., 2017), then sEMG can be very useful
for this purpose. Finally, one can increase their confidence in
knowing the state of the muscle by using multiple electrodes or
HD-sEMG (Figure 4; Dieterich et al., 2017; dos Anjos et al., 2017;
Le Mansec et al., 2017).

Relative Muscle Excitation
Muscle excitation is the process by which a motor neuron
action potential depolarizes the sarcolemma of muscle fibers.
This process leads to muscle activation and then the production
of muscle force (Figure 1). Because muscle excitation involves
the depolarization of a muscle fiber (muscle fiber action
potential), the sum of muscle excitations can be recorded
using sEMG (Figure 3C). Thus, rectified sEMG amplitude
scales with the level of global muscle excitation (Figure 3C).
However, when attempting to compare excitation between
timepoints, individuals, or muscles, a number of factors must
be considered. The following subsections describe considerations
when attempting to draw conclusions on relative muscle
excitation, and what information can be obtained under
“perfect” experimental conditions, with controls for important
confounding variables (e.g., electrode movement and changes in
tissue conductivity) (Farina, 2006). It should be noted that such
factors are quite difficult to control during dynamic contractions;
in many cases, these factors are inherent and thus are impossible
to control for (Farina, 2006). A summary of this section is shown
in Table 1, and all of the examples/applications provided assume
the consideration criteria provided in Table 1.

Within-Subject, Within-Muscle

Considerations
When performed acutely, within a single session, relative muscle
excitation can be measured, assuming that fatigue, electrode
position/movement (relative to both the skin and underlying
motor units), tissue conductivity, and signal nonstationarity
(rapid changes in signal properties) are taken into account
(Farina, 2006). Longitudinally, especially following a training
program, such results should be more strongly scrutinized
(Arabadzhiev et al., 2014). In such cases, changes in sEMG
amplitude may arise from not only central factors4, but also
peripheral factors5. Because these changes may arise from

4Central factors include, but are not limited to, corticomotor (Fisher et al., 2016)

and motoneuron (Heckman et al., 2009) excitability.
5Peripheral factors include, but are not limited to, increased intracellular action

potentials due to changes in the biochemical environment (e.g., increased resting

calcium levels, Arabadzhiev et al., 2014), changes in tissue properties (e.g.,

both neural and peripheral sources, it can be difficult to draw
meaningful conclusions. In many cases, central adaptations may
not be able to be discerned from peripheral adaptations using
just sEMG.

Applications
Perhaps one of the most common types of comparisons made
in sport and rehabilitation sciences are within-subject, within-
muscle comparisons. For example, researchers will compare
sEMG amplitudes elicited during different exercises (Andersen
et al., 2006; Escamilla et al., 2010). Notwithstanding the
noted considerations, acute within-subject, within-muscle (i.e.,
pre- and post-conditions within the same session) studies
performed under controlled conditions (i.e., kinematically-
matched; preferably isometric) may provide useful information.
For example, Trajano et al. (2013) used sEMG normalized to
maximumM-wave amplitude to help tease out peripheral factors
from central factors that affect force loss following an acute
bout of static stretching (Table 1). Longitudinally, sEMG may
inform mechanisms of changes in function, so long as the
aforementioned potential confounders are controlled for or, at
the very least, taken into consideration (Table 1).

Within-Subject, Between-Muscles

Considerations
For measures to be indicative of muscle excitation, the
previously-discussed confounding variables (fatigue, electrode
movement, tissue conductivity, and nonstationarity) must
be taken into account; tissue conductivity will necessarily be
different between muscles, due to differences in geometry and
dynamics (Farina, 2006). It should also be considered that an
individual may be better able to voluntarily excite one muscle
more than another during an MVIC task, or alternatively,
electrodes may be more or less representative of a respective
muscle (Figure 4). Both of these scenarios may result in altered
(inflated or deflated) normalized sEMG amplitudes6. Moreover,
the kinematics of the muscle over which the electrode is placed
must be considered: Are the relative lengths and velocities of the
muscles in question comparable, and how is electrode position
relative to each muscle’s innervation zone changing? One should
be wary when attempting to compare excitation patterns of
different muscles, especially during dynamic efforts (Farina,
2006).

Applications
If signals are properly normalized and appropriate considerations
are made (Table 1), one may infer relative muscle excitation from
within-subject, between-muscle sEMG studies. For example,
such studies may provide insight as to how differences in strength
arise following verbal cueing (Lohse et al., 2011) or how co-
contraction following a resistance training program may help

subcutaneous fat, Kuiken et al., 2003), and changes in muscle architecture (Lieber

and Fridén, 2000).
6Normalizing to a submaximum level of excitation when maximum is assumed

will inflate the normalized sEMG amplitude. This effect may be amplified with

differential recruitment patterns (Figure 2). Moreover, in the case of submaximal

normalizations, the linear assumption of normalizations may be violated (Hug and

Tucker, 2017).
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TABLE 1 | Examples of practical research questions and possible conclusions that can be drawn based on the relative excitation of muscle from sEMG amplitudes.

Within-muscle Within-subject Between-subjects

Acute • Changes in neural drive, potentially associated with

changes in motor performance.

◦ Does the decrease in force output following stretching

stem from changes in neural drive?

◦ Trajano et al., 2013

• Criteria 1–3, 6, 7, and sometimes 8

• Can inform potential mechanisms for differences in function.

◦ Do stronger individuals have greater muscle excitation?

◦ Trezise et al., 2016

• Criteria 1–6, 7, and sometimes 8

Longitudinal • Can explain how changes in function occur.

◦ Does agonist muscle excitation change following a

resistance training program?

◦ Moritani and deVries, 1979

• Criteria 1–7 and sometimes 8

• Can explain differential mechanisms for changes in function.

◦ Do different resistance training interventions lead to (dis)similar muscle

excitation, and are those changes related to differences in strength gain?

◦ Jenkins et al., 2017

• Criteria 1–7 and sometimes 8

Between-muscles Within-subject Between-subjects

Acute • Provide insight into how changes in function may arise from

acute interventions.

◦ Are differences in co-contraction with different

instructions associated with different strength measures?

◦ Lohse et al., 2011

• Gain a better understanding of which, and to what extent,

different muscles are recruited during an exercise.

◦ Santana et al., 2007

• Criteria 1–3, 5, 7, 8, and 9

• When used with statistical analysis, can provide information about complex

neuromuscular pathology

◦ How does pathology affect motor control?

◦ Steele et al., 2015

• Can inform mechanisms for differences in function.

◦ Do those who exhibit greater strength have less co-contraction?

◦ Macaluso et al., 2002

• Criteria 1–6, 7, and 8

Longitudinal • Can help explain how changes in function arise.

◦ Is the reduction in co-contraction following resistance

training associated with increased strength?

◦ Erskine et al., 2010, 2014

• Criteria 1–9

• Can help explain how changes in function arise.

◦ Can divergent changes in strength following an intervention be explained by

changes in co-contraction?

◦ Erskine et al., 2010, 2014

• Criteria 1–9

Examples of valid sEMG questions from the literature are described, along with criteria that must be fulfilled in order to draw valid conclusions from those studies. Note that the referenced

studies do not necessarily fulfill the criteria.

Operational definitions:

• Function = proficiency in performing a motor task;

• Acute = within the same session, electrodes are not removed;

• Longitudinal = measurements are made before and following an intervention or over time, electrodes are removed and reapplied, usually occurs over weeks or months;

• Within-muscle = all comparisons are made within the same muscle (e.g., medial gastrocnemius vs. medial gastrocnemius);

• Between-muscle = comparison requires measurements from at least two muscles (e.g., a ratio between two muscles or directly comparing EMG amplitudes of different muscles).

The condition criteria are as follows:

1 Electrodes are not positioned symmetrically with regard to the muscle innervation zone;

2 Negligible crosstalk from nearby muscles;

3 Electrodes sample from most of the whole volume of the target muscles (i.e., electrode is representative of the muscle);

4 Electrodes are positioned at the same skin location relative to the muscle;

5 Anatomical changes/differences (subcutaneous tissue, etc.) are controlled for;

6 Minimal changes/differences in biochemical environments;

7 Kinematics (i.e., position/ROM and velocity) are kept constant between trials, subjects, and/or muscles that are being compared;

8 Signals are normalized, preferably to maximum M-wave amplitude; and

9 Recruitment characteristics (deep-to-superficial, superficial-to-deep) must be considered.

explain changes in strength (Erskine et al., 2010, 2014; Table 1).
Other studies have utilized sEMG to compare which muscles
experience the greatest excitation during different exercises
(Santana et al., 2007; Table 1), but interpreting what these
differences mean is ambiguous (see section What Conclusions
Cannot Be Drawn from sEMG Studies?).

Between-Subjects, Within-Muscle

Considerations
Much like comparing between-muscles, there are a number of
concerns pertaining to whether or not individuals in a group,
especially symptomatic ones, have the ability to maximally excite

a muscle during a normalization trial7. Furthermore, different
participants respond differently to different normalization
positions and techniques (Vera-Garcia et al., 2010; Contreras
et al., 2015), so one can never be sure whether they are comparing
apples-to-apples, so to speak, unless more robust normalization
techniques are used, such as maximum M-wave amplitude. In
such cases, training (exercise) experience may still confound

7Pain centrally inhibits muscle excitation (Farina et al., 2005) and changes EMG-

to-force ratios (Graven-Nielsen et al., 1997) without affecting muscle function

(Arvidsson et al., 1986; Graven-Nielsen et al., 1997). Thus, someone in pain may

produce lower excitation during a normalization trial (e.g., MVIC), which would

inflate normalized sEMG amplitudes.
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TABLE 2 | Further reading.

Topic References

Basic biophysics of sEMG Enoka, 2015; Farina et al., 2016

sEMG during fatiguing contractions Dimitrova and Dimitrov, 2003; Arabadzhiev

et al., 2010b; Potvin and Fuglevand, 2017

sEMG during dynamic contractions Farina, 2006

sEMG and muscle force Staudenmann et al., 2010

Muscle recruitment characteristics De Luca and Kline, 2012

sEMG limitations and interpretations Cavanagh, 1974; Clarys and Cabri, 1993;

De Luca, 1997; Clarys, 2000; Soderberg

and Knutson, 2000; Pieter Clarys et al.,

2010; Enoka and Duchateau, 2015

Reporting standards Winter et al., 1980; Hermens et al., 1999;

ISEK, 2017

maximum M-wave normalized sEMG signals (Arabadzhiev
et al., 2014). Therefore, comparisons between subjects of starkly
different populations (trained vs. untrained or those in pain vs.
not in pain) may be confounded (Farina, 2006).

Applications
In more homogeneous populations, one can use sEMG to
understandmechanisms for differences in function. For example,
authors have used maximum M-wave normalized sEMG
amplitudes to help us understand differences in strength between
individuals (Trezise et al., 2016) and to explain how changes
in strength may arise following different interventions (Jenkins
et al., 2017; Table 1).

Between-Subjects, Between-Muscles

Considerations
The considerations for between-subject and between-muscle
comparisons above both apply to this category, but are
amplified due to the larger potential for differences to
exist.

Applications
sEMG can be useful for comparing co-contraction between
populations—such young and old individuals—to understand
how differences in function—such as strength—may arise
(Macaluso et al., 2002; Table 1). Moreover, sEMG from
several muscles drive muscle synergy analyses, which are
showing to be informative for understanding neural control
differences in those with cerebral palsy or changes following
a stroke (Steele et al., 2015; Table 1). Muscle synergy analyses
can also be applied to experimental questions in sport,
which could provide insight into motor control strategy
differences between populations while carrying out a task
(e.g., expert vs. non-expert) or under different biomechanical
constraints (e.g., limiting degrees of freedom or adding external
load). Longitudinally, one may wish to understand how
between-muscle neural control strategies explain differential
adaptations to an intervention (Erskine et al., 2010, 2014;
Table 1).

HOW CAN sEMG BE MADE MORE
APPLICABLE?

Challenging the applicability of sEMG can be viewed as
bittersweet. While it is quite humbling that we do not truly
understand what we are measuring or its implications, this
also opens the door for high quality, impactful research.
Ultimately, longitudinal outcomes are likely of greatest interest
to practitioners (Halperin et al., 2017). Therefore, there is a
tremendous need to evaluate the ability of sEMG to be used as
a surrogate endpoint for muscle strengthening and hypertrophy
(Halperin et al., 2017). We, the authors, have pondered potential
study designs to investigate this question but have been unable
to ideate something that we believe is sufficient to answer the
question. While previous investigations may be thinking along
the right lines, they do not provide robust evidence (Calatayud
et al., 2015). However, we encourage readers and fellow scientists
to brainstorm and carry out such research, with the end goal
of determining (1) if sEMG amplitude can be predictive of
strength improvements or hypertrophy, (2) what the minimum
difference in sEMG amplitude is for predicting greater strength
or hypertrophy adaptations, (3) how generalizable the results
are, and (4) how new technologies and more advanced signal
processing techniques can be utilized. Indeed, hypertrophy and
strength are likely highly multifactorial and nonlinear, which
will make such research tremendously difficult, if not impossible.
Similar work has already been carried out as it pertains to muscle
protein synthesis and hormone responses to exercise bouts
(Mitchell et al., 2012, 2014; West and Phillips, 2012; Damas et al.,
2016; Morton et al., 2016), and we believe it is time that sEMG
be scrutinized in a similar fashion. Such research will validate
or invalidate hundreds, if not thousands, of sEMG studies
that were intended to be extrapolated for these longitudinal
outcomes.

SUMMARY OF CONSIDERATIONS FOR
THE APPLICABILITY OF sEMG

1. Factors other than muscular effort influence the myoelectric
signal, including muscle length, contraction mode,
contraction speed, etc. Comparing sEMG signals between
different exercises that do not control for these variables
should be avoided.

2. Even when the sEMG signal adequately represents the force
of the muscle, caution should be exercised when concluding
that a certain exercise will be better for increasing strength
or hypertrophy due to other factors that influence these
adaptations.

3. Comparing normalized sEMG values between individuals
with and without pain should be viewed cautiously. Changes
in the normalized sEMG value over time cannot indicate
changes in excitation because the normalized value can be
influenced by excitation during the normalization contraction
or during the measured exercise. Normalizing to maximum
M-wave amplitude can, to an extent, help diminish such
effects.
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4. Within-subject, within-muscle comparisons of the sEMG
signal across different exercises may be able to provide insight
into muscular force production, provided the previously
mentioned controls are made.

CONCLUSIONS

sEMG is a useful tool for gaining insight into the neuromuscular
system, musculoskeletal modeling, and basic science work, but
its practical applicability is limited at present. Researchers
wishing to produce applicable research pertaining to longitudinal
adaptation should prioritize longitudinal studies rather than
acute, cross-sectional sEMG work (Halperin et al., 2017).
Because sEMG has not been validated as a surrogate endpoint
for longitudinal measures, readers should be wary of bold
conclusions. Important mechanistic details of sEMG, such as
signals being confounded by peripheral factors and data not

being representative of a muscle, must be considered when
attempting to draw conclusions—even acute, mechanistic ones.
For these points, we wish to stress that the burden of proof is
on researchers to show that cross-sectional sEMG findings are
practically meaningful for longitudinal outcomes, and until this
is shown, discussions and conclusions should not imply that
they are. Finally, although this review was expansive, depth was
sacrificed for breadth and communicabilty. For readers interested
in learning more about some of the topics discussed in this
review, recommended texts, chapters, papers, and reviews are
provided in Table 2.
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