Interactivity online and on-campus: Data Analysis and Statistical Inference
Mine Çetinkaya-Rundel
Duke University

GOAL
Design learning materials for a variety of delivery methods (online, on-campus, hybrid), collect and analyze data to evaluate their effectiveness, and enhance the materials with lessons learned from these analyses.

Online

Task: Emulate the brick-and-mortar classroom experience of learning R (a statistical programming language) where the instructor can help the student in real time.

Solution: DataCamp (web-based interactive platform for learning R) as an alternative to static instructions, fully integrated to the Coursera course via the LTI protocol.

Data: Click-thru data on viewing hints and solutions as well as performance and time taken to complete labs.

[Some] findings: Valuable information on lab components that students most struggle with, data that would be very difficult to effectively collect or glean in brick-and-mortar lab setting.

Implementation: Attention, Relevance, Confidence, Satisfaction (ARCS) model earlier in video design + Although most students are intrinsically motivated, external rewards seem to have an effect on motivation.

Analysis: Preliminary observations: In-video questions for attention, on-screen test questions on at-risk students, provide accessible materials in many formats, etc.

Results: Pre-post scores on Comprehensive Assessment of Outcomes in a First Statistics course (CAOS) test.

Next steps: Part of university-wide study on learning and attitude of students in flipped courses, analysis and results forthcoming.

On-campus

Task: Increase interactivity in the brick-and-mortar classroom by flipping the course, and do no harm (to learning and attitude) while doing so.

Solution: Use materials developed for Coursera as out-of-class learning materials to prepare students for in-depth hands-on exercises completed in teams in class.

Data: Students’ perceptions of flip-lecture effectiveness, and enhance the materials with lessons learned from these analyses.

Implementation: Attention, Relevance, Confidence, Satisfaction (ARCS) model earlier in video design + Although most students are intrinsically motivated, external rewards seem to have an effect on motivation.

Analysis: Preliminary observations: In-video questions for attention, on-screen test questions on at-risk students, provide accessible materials in many formats, etc.

Results: Pre-post scores on Comprehensive Assessment of Outcomes in a First Statistics course (CAOS) test.

Next steps: Part of university-wide study on learning and attitude of students in flipped courses, analysis and results forthcoming.

Other projects

Identifying characteristics that predict student persistence
by Anthony Weishampel, StatSci

Understanding the mooc student experience through text analysis of interviews by Heather Shapiro, StatSci & Clara Lee, Chemistry

Engagement, self-regulated learning, and perceptions of motivational strategies
by Kun Li, CIT

Social anxiety and forum posting behavior
by Maria Elena Carvajal, Chemistry

Pre-post scores on Comprehensive Assessment of Outcomes in a First Statistics course (CAOS) test

<table>
<thead>
<tr>
<th>Post</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-flip</td>
<td>14.71</td>
<td>12.13</td>
</tr>
<tr>
<td>Flip w/ readings</td>
<td>16.56</td>
<td>13.13</td>
</tr>
<tr>
<td>Flip w/ videos</td>
<td>18.49</td>
<td>13.34</td>
</tr>
</tbody>
</table>

Implementation: Attention, Relevance, Confidence, Satisfaction (ARCS) model earlier in video design + Although most students are intrinsically motivated, external rewards seem to have an effect on motivation.