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SARS-CoV-2 viral load is associated with increased
disease severity and mortality
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The relationship between SARS-CoV-2 viral load and risk of disease progression remains

largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2

viral load from participants with a diverse range of COVID-19 disease severity, including

those requiring hospitalization, outpatients with mild disease, and individuals with resolved

infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and

13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with

COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is

associated with worse respiratory disease severity, lower absolute lymphocyte counts, and

increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral

loads, especially plasma viremia, are associated with increased risk of mortality. Our data

show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-

19, and therefore its role in disease pathogenesis should be further explored.
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A lthough coronavirus disease 2019 (COVID-19) has
affected more than 20 million cases worldwide, wide gaps
remain in our knowledge of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) pathogenesis, including
the relationship between levels of viral replication and disease
severity. In prior analyses of the SARS-CoV-1 outbreak, viral load
within the nasopharynx was associated with worsened disease
severity and increased mortality1,2. However, it is also clear that
there are significant differences between SARS-CoV-1 and 2,
including differences in the temporal nature of viral shedding3,4,
transmissibility5, epidemiology6, and clinical manifestations7,8.
Additional studies are needed to determine whether the degree of
SARS-CoV-2 viral load within the respiratory tract or other
compartments may predict disease outcomes.

The need for additional SARS-CoV-2 viral studies is not only
limited to respiratory specimens but extends to the blood.
Respiratory failure is the primary cause of death in patients
with COVID-19, but complications arising from a hyperactive
immune response and vascular damage are also prominently
featured both in the pulmonary and extrapulmonary
systems9–13. In addition, there is a suggestion that detectable
plasma viremia using a qualitative viral detection assay may
correlate with disease severity14, although studies to date have
been hampered by the lack of viral load quantification. Toge-
ther, these findings suggest the importance of systemic SARS-
CoV-2 viral circulation but little is known about the prevalence
and magnitude of plasma viremia in predicting COVID-19
outcomes. In this study, we quantify SARS-CoV-2 viral load
from the respiratory tract, plasma and urine of participants
with a diverse range of COVID-19 severity, including indivi-
duals requiring hospitalization, symptomatic non-hospitalized
participants, and those recovered from COVID-19 disease.
Here we show that SARS-CoV-2 viral loads, especially in the
plasma, are predictive of mortality.

Results
Participant characteristics and SARS-CoV-2 viral loads. We
enrolled 88 hospitalized participants with COVID-19, 94 symp-
tomatic individuals who were evaluated in a respiratory infection
clinic, of whom 16 were diagnosed with COVID-19 by standard
clinical testing of nasopharyngeal swabs, and 53 participants
diagnosed with COVID-19, who had symptomatically recovered.
Table 1 shows baseline demographic information, disease sever-
ity, and hospital outcomes. Hospitalized participants were sig-
nificantly older than both symptomatic outpatients and
individuals recovered from COVID-19 (Kruskal–Wallis P <
0.001). Participants recruited in the outpatient setting had the
shortest time between the start of symptoms and the time of
sample collection (median 5 days) compared to hospitalized
individuals (median 13 days) and recovered participants (median
27 days). Eleven of the hospitalized participants were treated with
remdesivir during their hospitalization (Supplementary Fig. 1).

We report SARS-CoV-2 viral load analysis, both as a
continuous variable and analyzed as a categorical variable
(detectable vs. undetectable) given that only qualitative commer-
cial viral detection assays are currently available for clinical care.
Among hospitalized individuals, the majority still had detectable
SARS-CoV-2 RNA at the time of initial sample collection,
including 50% with detectable SARS-CoV-2 RNA by nasophar-
yngeal swab, 67% by oropharyngeal swab, and 85% by sputum
testing. We also performed SARS-CoV-2 viral load testing from
specimens outside of the respiratory tract and found that 27% of
participants had detectable SARS-CoV-2 plasma viremia and 10%
had detectable viral RNA in the urine (Fig. 1). In those with
detectable plasma viremia, the median viral load was 2.4 log10

RNA copies/mL (range 1.8–3.8 log10 RNA copies/mL), which was
significantly lower than that detected in sputum (median 4.4 log10
RNA copies/mL, range 1.8–9.0 log10 RNA copies/mL, Wilcoxon
signed-rank P < 0.001).

Levels of SARS-CoV-2 viral load were significantly correlated
between each of the different respiratory specimen types
(nasopharyngeal vs oropharyngeal Spearman’s r= 0.34, P= 0.03;
nasopharyngeal vs. sputum r= 0.39, P= 0.03, oropharyngeal vs.
sputum r= 0.56, P= 0.001, Supplementary Fig. 2). Plasma viral
load was modestly associated with both nasopharyngeal (r= 0.32,
P= 0.02) and sputum viral loads (r= 0.36, P= 0.049), but not
significantly associated with oropharyngeal viral loads. There was
no significant association between urine viral load and viral loads
from any other sample types.

SARS-CoV-2 viral load is associated with disease severity and
laboratory abnormalities. Detectable plasma viremia was gen-
erally associated with increased disease severity among hospita-
lized participants, as 44% of those on a ventilator had detectable
viremia compared to 19% of those receiving supplemental oxygen
by nasal cannula and 0% of individuals not requiring supple-
mental oxygen (χ2 P= 0.006, Fig. 1b). Two of the 16 (13%)
COVID-19 diagnosed outpatients were found to also have
detectable SARS-CoV-2 plasma viremia, compared to none of the
74 outpatients with negative clinical nasopharyngeal testing for
SARS-CoV-2 RNA and none of the 53 recovered individuals who
had previously been diagnosed with COVID-19. None of the 18
plasma samples from intensive care unit participants collected in

Table 1 Demographics and clinical characteristics of
participants at baseline.

Characteristic Hospitalized
(N= 88)

Symptomatic
non-hospitalized
(N= 90)

Recovered
(N= 53)

Female sex, % 38% 62% 65%
Age, median years
[Q1,Q3]

57 [43,68] 48 [31,59] 33 [29,42]

Ethnicity
Caucasian 35% 79% 81%
Black/African

American
15% 8% 6%

Hispanic/Latino 38% 3% 6%
Other 12% 10% 8%

Comorbidities
Hypertension 53% 22% 2%
Chronic Lung

Disease
18% 30% 2%

Diabetes 40% 11% 2%
BMI

<25 20% 35% 62%
25–29.99 35% 24% 24%
≥30 45% 40% 14%

Days between
symptom onset and
initial sample
collection, median
[Q1,Q3]

13 [10,18] 5 [2,15] 27 [20,34]

Oxygenation status at time of enrollment
Room air 15%
Nasal cannula 37%
Ventilator 48%
Hospitalization status

% Discharged 85%
% Mortality 13%
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the pre-COVID era were found to have detectable plasma SARS-
CoV-2 RNA. Detectable respiratory tract SARS-CoV-2 RNA was
common regardless of disease severity (Supplementary Fig. 3).

In hospitalized participants, higher plasma viral loads were
significantly associated with several markers of inflammation and
disease severity, including lower absolute lymphocyte counts
(Spearman r=−0.31, P= 0.008), and higher levels of both C-
reactive protein (CRP) (r= 0.40, P= 0.0003) and interleukin
(IL)-6 (r= 0.50, P < 0.0001). Significant associations were also
detected between nasopharyngeal and sputum viral loads and
these three markers (Fig. 2a). When analyzed as a categorical
variable, individuals with detectable plasma, nasopharyngeal or
sputum viral loads had significantly lower absolute lymphocyte
counts and higher CRP and IL-6 levels compared to those
without detectable plasma viremia (Fig. 2b–d). Plasma, naso-
pharyngeal, and/or oropharyngeal viral loads were also signifi-
cantly associated with increased levels of the inflammatory
cytokines IL-8, IP-10, Monocyte chemoattractant protein 1
(MCP-1), interferon (IFN)-γ, and IL-1RA (Fig. 2a).

SARS-CoV-2 viral loads and mortality risk. Eleven participants
died, all with respiratory failure listed as the primary cause of
death (Supplementary Table 2). Compared to individuals who
were discharged from the hospital, those who eventually died had
significantly higher levels of plasma viremia at the time of initial
sampling (median plasma viral load 1.0 vs 2.0 log10 RNA copies/
mL, P= 0.009, Fig. 3a), which occurred a median 11 days before
death. For hospitalized individuals with initial detectable viremia,
32% died vs. 8% of those without initial viremia (odds ratio (OR)
5.5, P= 0.02, Fig. 3e).

The majority (91%) of participants who died were receiving
ventilatory support and so we performed a sensitivity analysis to
assess whether plasma viremia may also predict mortality in those
with the most severe disease. For participants who were on
ventilatory support at the time of initial sample collection, 43% of
those with detectable plasma viremia died compared to 17% of
those without detectable plasma viremia, although this compar-
ison did not reach statistical significance (OR 3.8, P= 0.11). The
median age of those who died was significantly older than those
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who survived (median age in those who died vs. discharged: 76 vs.
55 years, Wilcoxon P < 0.001) and a significantly greater
proportion of COVID-19 patients at or over the age of 70 years
died (percent died in those ≥70 vs. <70 years: 53% vs. 4%, Fisher’s
exact P < 0.001). In a sensitivity analysis focused on those age ≥70
years old, 6 of 7 (86%) participants with initial plasma viremia
died vs. 2 of 9 (22%) without initial viremia (OR 21, P= 0.02).
Levels of SARS-CoV-2 viral load in respiratory secretions were
also higher in those who eventually died (Fig. 3b–d), although the
presence or absence of detectable respiratory secretion viral RNA
were not significantly associated with increased risk of death
(Fig. 3f–h). Logistic regression analysis was also performed with
viral loads as a continuous variable and plasma, oropharyngeal,
and sputum viral loads were all associated with increased risk of
death (Supplementary Table 1).

A subset of hospitalized participants had longitudinal viral load
measurements. Levels of plasma and respiratory viral loads
declined from the first and second sampling time points in almost
all participants, regardless of eventual participant outcome
(Fig. 4).

Discussion
We report a comprehensive analysis of SARS-CoV-2 respiratory
tract, plasma, and urine viral loads of 235 participants who were
either hospitalized with COVID-19, evaluated as symptomatic
outpatients, or had recovered from COVID-19 disease. The
results show a relatively high prevalence of SARS-CoV-2 plasma
viremia in hospitalized individuals with severe disease, but plasma

viremia was also detected in symptomatic non-hospitalized par-
ticipants. Levels of SARS-CoV-2 viremia was also associated with
markers of inflammation and disease severity, including low
lymphocyte counts, and elevated CRP and IL-6 levels. To our
knowledge, this is also the first report that SARS-CoV-2 viral
loads, especially detectable plasma viremia, predicted the risk
of death.

In contrast to prior reports suggesting that the SARS-CoV-2
viral infection is largely confined to the respiratory and gastro-
intestinal tracts15,16, we were able to detect plasma viremia in a
substantial proportion of both hospitalized and non-hospitalized
participants. The prevalence of SARS-CoV-2 plasma viremia was
lower than that found in respiratory secretions, but detectable
plasma viremia had a clear relationship with concurrent clinical
disease severity, lower absolute lymphocyte count, higher levels of
inflammation and increased risk of death. Across the spectrum of
viral infections, the extent of viral load has been a predictor of
disease severity and progression, including for HIV17,18, Ebola19,
influenza, and other non-COVID-19 respiratory viral
infections20–22. The detection of plasma viral load has been
described for both SARS-CoV-123,24 and SARS-CoV-214, but its
role in pathogenesis and ability to predict clinical outcomes
remains unresolved. Although we found that respiratory tract
viral loads were associated with inflammation and outcomes,
higher levels of SARS-CoV-2 plasma RNA had the strongest
relationship with disease severity, key laboratory markers, and
mortality. These results suggest that the detection and quantifi-
cation of viral RNA levels may aid in the risk stratification of
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are reported in an analysis of viral loads at the first and second available time points (TPs) from plasma (n = 13), nasopharyngeal (n = 16), oropharyngeal
(n = 10), sputum (n = 12). Cps copies.
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patients hospitalized with COVID-19. The associations between
SARS-CoV-2 viral load with levels of CRP and IL-6 results also
indicate that active viral infection could contribute to the
hyperinflammatory state that is a hallmark of severe COVID-
1925. However, the causes of inflammation in COVID-19 could
be multifactorial, especially as a subset of participants had ele-
vated inflammatory markers without detectable plasma viremia.
Additional studies are needed to determine whether antiviral
treatment may effectively interrupt this pathway and whether
levels of SARS-CoV-2 viral load could stratify patients into
individuals who are more likely to benefit from an antiviral agent
vs. those with isolated immune dysregulation, who may benefit
more from an anti-inflammatory or immune-modifying agent13.

The source for the plasma viremia is still not fully defined and
could reflect spillage from the pulmonary tissue into the vascu-
lature, but there is evidence that SARS-CoV-2 can also directly
infect endothelial cells. Angiotensin-converting enzyme 2 is the
primary receptor for SARS-CoV-2 and can be found on both
arterial and venous endothelial cells26, and other perivascular
cells27. Tissue studies have also revealed evidence of endothelitis
with perivascular inflammation12 and the extrapulmonary spread
of SARS-CoV-2 to other organs28. Although additional infectivity
studies are needed to confirm that plasma viremia represents
infectious virions, these previously published support the concept
that COVID-19 should be considered more than an isolated
respiratory tract infection and that endothelial infection and
systemic circulation of infectious SARS-CoV-2 virions may be
contributing to the increasing reports of extrapulmonary and
micro- and macrovascular complications of COVID-19 that are
often disproportionate to the degree of disease severity9–12,29–32.

There is an intense search for biomarkers of COVID-19 disease
progression that could accelerate early-phase clinical studies of
antiviral agents against SARS-CoV-2. There has been an expec-
tation that respiratory tract viral shedding could serve as such a
surrogate biomarker, but it is unclear if such assumptions are
accurate. An example is the reported clinical benefit of remdesi-
vir33, despite the lack of evidence that remdesivir significantly
reduces respiratory tract viral loads34. We found only modest
correlations between respiratory tract viral loads and those of the
plasma. This highlights the need for additional studies to assess
whether these anatomic compartments may serve as distinct sites
of viral replication and whether antiviral medications might have
differential effects on viral respiratory tract shedding versus
plasma viremia.

Our study has a few notable limitations. First, sputum samples
were obtained for only a subset of participants as many partici-
pants were unable to generate a sample. While sputum samples
had the highest frequency of SARS-CoV-2 detection, this finding
demonstrates a potential limitation in their use as a reliable
diagnostic modality. Our longitudinal analysis of viral load
changes was limited to a subset of participants due to limits on
the frequency of blood draws for hospitalized individuals and
early discharges in those with relatively mild disease. Additional
studies of plasma viral load dynamics early in the course of dis-
ease are needed. Although this is one of the first studies to con-
nect viral load with increased risk of mortality, the number of
deaths in our study population was relatively limited and larger
studies are needed to assess the role of viral load in the outpatient
setting and after adjustments for potential confounding factors.
Our sensitivity analysis did show that the detection of plasma
viral load continued to be associated with higher mortality rates
even when restricted to those with more severe disease or who
were elderly.

In summary, we report that SARS-CoV-2 plasma viremia is
commonly detected in hospitalized individuals but can also be

detected in symptomatic non-hospitalized outpatients diagnosed
with COVID-19. SARS-CoV-2 viral loads, especially within
plasma, are associated with systemic inflammation, disease pro-
gression, and increased risk of death. The role of SARS-CoV-2 as
a mediator of vascular and extrapulmonary COVID-19 disease
manifestations should be further explored.

Methods
Participant enrollment and sample collection. We enrolled hospitalized and
non-hospitalized participants with COVID-19 in a longitudinal sample collection
study at Brigham and Women’s Hospital and Massachusetts General Hospital.
Blood was collected from hospitalized participants diagnosed with COVID-19,
non-hospitalized symptomatic individuals seeking care at a respiratory infection
clinic, and participants who had recovered from known COVID-19 disease.
Nasopharyngeal swabs, oropharyngeal swabs, sputum, and urine were also col-
lected from hospitalized participants. All samples were collected by nurses.
Nasopharyngeal swabs and oropharyngeal swabs were collected in 3 mL of phos-
phate buffered saline. A subset of hospitalized participants had longitudinal sam-
ples collected. Plasma obtained from a cohort of individuals in the intensive care
unit from the pre-COVID-19 era were used as a comparator group35. Samples were
processed within 24 h of collections by the Ragon Institute and AIDS Clinical Trial
Group and were subsequently stored at −80 °C. Each participant’s electronic
medical record was reviewed to determine the oxygenation status (room air, on
oxygen by nasal cannula, or requiring ventilator support), demographics, comor-
bidities and the outcome of the hospitalization (discharge or death). This study was
approved by the Partners Institutional Review Board.

Ethics declaration. Informed written consent was obtained from all hospitalized
participants diagnosed with COVID-19, all non-hospitalized symptomatic indivi-
duals seeking care at a respiratory infection clinic, all participants who had
recovered from known COVID-19 disease, and all individuals in the intensive care
unit from the pre-COVID-19 era.

Markers of inflammation and disease severity. Levels of CRP and absolute
lymphocyte count were recorded from the electronic medical record. Thirty-five
additional markers of inflammation were evaluated in plasma by the Luminex
xMAP assay (ThermoFisher): epidermal growth factor, Eotaxin, fibroblast growth
factor-basic, granulocyte colony-stimuating factor (CSF), granulocyte-macrophage
CSF, hepatocyte growth factor, IFN-α, IFN-γ, IL-1α, IL-1β, IL-1RA, IL-2, IL-2R,
IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40/p70) IL-13, IL-15, IL-17A,
IL-17F, IL-22, IP-10, MCP-1, MIG, MIP-1α, MIP-1β, RANTES, tumor necrosis
factor-α, and vascular endothelial growth factor.

SARS-CoV-2 viral load quantification. Levels of SARS-CoV-2 viral load were
quantified using the US CDC 2019-nCoV_N1 primers and probe set (Supple-
mentary Table 3)36. Virions were pelleted from respiratory secretions, swab fluids,
plasma, or urine by centrifugation at approximately 21,000 × g for 2 h at 4 °C. The
supernatant was removed and 750 µL of TRIzol-LS™ Reagent (ThermoFisher) was
added to the pellets and then incubated on ice. Following incubation, 200 µL of
chloroform (MilliporeSigma) was added and vortexed. The mixtures were sepa-
rated by centrifugation at 21,000 × g for 15 min at 4 °C, and subsequently the
aqueous layer was removed and treated with an equal volume of isopropanol
(Sigma). GlycoBlue™ Coprecipitant (ThermoFisher) and 100 µL 3M Sodium
Acetate (Life Technologies) were added to each sample and incubated on dry ice
until frozen. RNA was pelleted by centrifugation at 21,000 × g for 45 mins at 4 °C.
The supernatant was discarded and the RNA was washed with cold 70% ethanol.
The RNA was resuspended in diethyl pyrocarbonate-treated water
(ThermoFisher).

Each reaction contained extracted RNA, 1× TaqPath™ 1-Step RT-qPCR Master
Mix, CG (ThermoFisher), the CDC N1 forward and reverse primers, and probe36.
Viral copy numbers were quantified using N1 quantitative PCR (qPCR) standards
in 16-fold dilutions to generate a standard curve. The assay was run in triplicate for
each sample and two non-template control wells were included as negative
controls. Quantification of the Importin-8 housekeeping gene RNA level was
performed to determine the quality of respiratory sample collection. An internal
virion control (RCAS) was spiked into each sample and quantified to determine the
efficiency of RNA extraction and qPCR amplification37. Concurrent analysis of
results by this CDC N1 viral load assay showed high correlation with that of the
Roche cobas SARS-CoV-2 ORF-1ab and E genes (Supplementary Fig. 4).

Statistical analyses. Levels of SARS-CoV-2 viral load at the time of initial hos-
pital collection were compared by site of sampling, disease severity and hospital
outcome. SARS-CoV-2 viral load analysis was performed both as continuous
variables with non-parametric rank-based testing and as a categorical variable
(detectable vs undetectable) with Fisher’s exact and χ2-tests given the qualitative
nature of current commercial qPCR tests. SARS-CoV-2 viral loads below 40 RNA
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copies/mL were categorized as undetectable and set at 1.0 log10 RNA copies/mL.
For the subset of participants with repeated sampling, the sign test was used to
assess viral load change between the first and second time point. Correlation
analysis was performed using Spearman rank-based testing. In the correlation
analysis between the soluble inflammatory markers and viral load, a p-value <0.01
between a marker and any of the viral load measurements was the threshold to
include that marker in the reported results. Logistic regression and other statistical
analyses were performed using GraphPad Prism 8 and SAS software, version 9.4.
Only univariate analysis was performed due to the available sample size, but we
did perform sensitivity analysis for plasma viral load effects based on disease
severity and age.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Data. Source data are provided with this paper.
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