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Abstract

ModelTest-NG is a reimplementation from scratch of jModelTest and ProtTest, two popular tools for selecting the best-fit
nucleotide and amino acid substitution models, respectively. ModelTest-NG is one to two orders of magnitude faster
than jModelTest and ProtTest but equally accurate and introduces several new features, such as ascertainment bias
correction, mixture, and free-rate models, or the automatic processing of single partitions. ModelTest-NG is available
under a GNU GPL3 license at https://github.com/ddarriba/modeltest , last accessed September 2, 2019.
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It is well known that the use of distinct probabilistic models of
evolution can change the outcome of phylogenetic analyses
(Buckley 2002; Buckley and Cunningham 2002; Lemmon and
Moriarty 2004). Not surprisingly, a number of bioinformatic
tools have been developed in the last 20 years for selecting the
best-fit model for the data at hand (Posada and Crandall 1998;
Posada 2008; Darriba et al. 2011, 2012; Kalyaanamoorthy et al.
2017). Although Abadi et al. (2019) concluded that using a
parameter-rich model for DNA data leads to very similar
inferences as the best-fit models, they average over a number
of benchmark multiple sequence alignments (MSAs).
However, looking at individual MSA analyses we may observe
in some circumstances substantial topological differences be-
tween trees inferred under the best-fit model and under a
parameter-rich GTR (Tavar�e 1986) model (Arbiza et al. 2011;
Hoff et al. 2016). Nowadays, continuous advances in sequenc-
ing technologies have made possible the assemblage of large
MSAs that require faster and more scalable tools. In particular,
our tools jModelTest (Darriba et al. 2012) and ProtTest
(Darriba et al. 2011), which are among the most popular tools
for DNA and protein model selection, despite implementing
high-performance computing algorithms for parallel execu-
tion with dynamic load balancing, still rely on PhyML
(Guindon and Gascuel 2003) for calculating the maximum
likelihood (ML) scores for the competing models. This step
constitutes the by far most compute-intensive part, requiring
>99% of overall execution time. PhyML and hence
jModelTest and ProtTest are relatively inefficient compared

with more recent tools such as IQ-TREE (Nguyen et al. 2015).
The model selection feature of IQ-TREE, called ModelFinder
(Kalyaanamoorthy et al. 2017), is becoming increasingly pop-
ular due to its algorithmic and computational efficiency, the
wide range of supported evolutionary models, and its user-
friendliness. Another recently released tool for model selection
is SMS (Smart Model Selection) (Lefort et al. 2017). SMS is
based on PhyML and uses heuristic strategies to avoid evalu-
ating the full set of candidate models.

Here, we introduce ModelTest-NG, a new program that
outperforms its predecessors jModelTest and ProtTest in
terms of speed. ModelTest-NG offers a completely redesigned
graphical user interface and has several new capabilities. Its
main features are as follows:

• Data and models supported: ModelTest-NG supports
both nucleotide and amino acid models. It uses statistical
criteria for selecting the best-fit substitution models such
as AIC Akaike (1974), BIC Schwarz (1978), and DT Minin
et al. (2003). It can select among all models included in
jModelTest and ProtTest plus four other empirical amino
acid replacement matrices and protein mixture models
such as LG4M and LG4X (Le et al. 2012). ModelTest-NG
can also assess the fit of a free-rate model (Yang 1995).

• Partitioned MSAs: ModelTest-NG can automatically per-
form model selection on single, nonoverlapping parti-
tions, as specified by the user (e.g., on a per-gene basis, or
by codon position).
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• Phylogenetic templates: Users can select so-called tem-
plates for popular phylogenetic inference tools like
RAxML (Stamatakis 2014), RAxML-NG (Kozlov et al.
2019), IQ-TREE, PhyML, PAUP (Swofford 2002), or
MrBayes (Ronquist et al. 2012). When such a template
is specified, ModelTest-NG will only evaluate models sup-
ported by the given tool and will print out the corre-
sponding command line for phylogenetic reconstruction
under the best-fit model.

• Native implementation: ModelTest-NG constitutes a full
reimplementation of jModelTest and ProtTest in Cþþ
that relies on a novel and efficient low-level implemen-
tation of the Phylogenetic Likelihood Library (PLL)

(https://github.com/xflouris/libpll-2; last accessed
September 2, 2019). This library encapsulates all com-
pute- and memory-intensive phylogenetic likelihood
computations and fully leverages the capabilities of mod-
ern x86 processors by using the AVX and AVX2 vector
instruction sets. PLL also incorporates a recent algorith-
mic technique for accelerating likelihood calculations
(Kobert et al. 2017). All required
numerical optimization routines are implemented in
the pll-modules library (https://github.com/ddarriba/pll-
modules; last accessed September 2, 2019).

• Parallel execution: ModelTest-NG can take advantage of
multicore desktop computers and clusters using
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FIG. 1. Model selection accuracy comparison between ModelTest-NG, jModelTest/ProtTest, and ModelFinder for simulated data (top) and LOESS
curved fitted to a scatter plot of ModelTest-NG run times versus ModelFinder for empirical data (bottom), for DNA (left) and protein (right)
MSAs. The dashed line represents equal run times.
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PThreads and MPI (Message Passing Interface) (see sup-
plementary material, Supplementary Material online for
details).

We benchmarked ModelTest-NG against jModelTest,
ProtTest, and ModelFinder (part of IQ-TREE version 1.6.1)
using simulated as well as empirical data sets. We measured
model selection accuracy (i.e., how often the generating
model is recovered) using the simulated data sets, as well as
run times. In all cases, we used the default model selection
parameter settings. The experimental setup is described in
detail in the supplementary material, Supplementary Material
online, where we also further discuss the results.

ModelTest-NG found the true generating model for 81%
of the simulated DNA MSAs (jModelTest: 81%, ModelFinder:
70%) and for 85% of the simulated protein MSAs (ProtTest:
85%, ModelFinder: 87%) (fig. 1). In general, the larger the data
in terms of number of taxa and number of sites, the better
ModelTest-NG performs compared with the competing tools
(see fig. 1).

In terms of speed, on simulated DNA data, ModelTest-NG
was 110.77 times faster than jModelTest but slower than
ModelFinder (the latter was 1.59 times faster). On empirical
DNA data, ModelTest-NG yielded average speedups of 510.13
over jModelTest and of 1.24 over ModelFinder (supplementary
fig. S1, Supplementary Material online). On simulated protein
data, ModelTest-NG yielded average speedups of 36.07 over
ProtTest, and similar run times as ModelFinder. On empirical
protein data, ModelTest-NG was 36.94 times faster than
ProtTest, and 1.19 times faster than ModelFinder.
Importantly, ModelTest-NG seems to scale better than
ModelFinder and jModelTest/ProtTest on large MSAs.

To ensure a fairer comparison with SMS, which only con-
siders a subset of the models, we conducted a separate set of
experiments comparing only ModelTest-NG and SMS on em-
pirical data. For DNA data, both tools selected the same
model 80% of the time, while ModelTest-NG was 95.53 times
faster. For protein data, ModelTest-NG selected the same
model as SMS 86.7% of the time and was 17.20 times faster.

The thoroughness of the model parameter optimization
routines in ModelTest-NG can be controlled by the user. In
additional experiments, we found that the more thoroughly
we optimize the likelihood score the more accurate the se-
lected model becomes (see Supplementary Material online).
Possibly, the slight loss of accuracy in ModelFinder in our
simulations can be explained by a less thorough default
model optimization setting than in ModelTest-NG.

ModelTest-NG represents a substantial improvement
over our previous tools, jModelTest and ProtTest.
Although being equally accurate, it is up to two orders of
magnitude faster on empirical data. Compared with
ModelFinder, we observed similar run times for empirical
data sets, but ModelFinder was faster on synthetic MSAs,
particularly on DNA data. However, the accuracy of
ModelFinder on DNA data was substantially lower than
for ModelTest-NG (70% vs. 81%, respectively). In future ver-
sions of ModelTest-NG, we intend to introduce new meth-
ods to dynamically determine the optimal speed/accuracy

tradeoff for the data set at hand. ModelTest-NG is partic-
ularly well suited for analyzing large data sets.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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