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Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found 

in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, 

teratogenic, and mutagenic, and pose a serious threat to the health of both 

humans and animals. The global economy and trade are significantly affected 

as well. Various models and datasets related to aflatoxins in maize have been 

developed and used but have not yet been linked. The prevention of crop 

loss due to aflatoxin contamination is complex and challenging. Hence, the 

set-up of advanced decontamination is crucial to cope with the challenge of 

climate change, growing population, unstable political scenarios, and food 

security problems also in European countries. After harvest, decontamination 

methods can be  applied during transport, storage, or processing, but their 

application for aflatoxin reduction is still limited. Therefore, this review aims 

to investigate the effects of environmental factors on aflatoxin production 

because of climate change and to critically discuss the present-day and novel 

decontamination techniques to unravel gaps and limitations to propose them 

as a tool to tackle an increased aflatoxin risk in Europe.

KEYWORDS

aflatoxin, climate change, models, mycotoxin control, decontamination techniques

1. Introduction

Mycotoxins are toxic secondary metabolites produced by filamentous fungi which 
contaminate food and feed products worldwide. More than 25% of food is contaminated 
by at least one mycotoxin, with important implications for the health of humans and 
animals and the global trade and economy (Eskola et al., 2020; Ráduly et al., 2020).
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Aflatoxins (AFs) are the most critical mycotoxins due to their 
toxic potential and occurrence. Indeed, they have been listed as 
Class 1 carcinogens by the International Agency on Research on 
Cancer, known to cause cancer, namely liver cancer, in humans 
(International Agency for Research on Cancer, 2002). Besides, 
they may cause liver inflammation and necrosis, immune 
depression, stunting, growth and development impairment, 
reproductive dysfunction, and even death when consumed at high 
dosages (Rushing and Selim, 2019; Ráduly et al., 2020).

AFs include more than 20 different furanocoumarin 
derivatives, which can be  found on a wide variety of food 
commodities in the field during harvest, transport, and storage 
(Kumar et al., 2017). The most relevant ones are the AFs of the 
B-series (AFB1 and AFB2) and G-series (AFG1 and AFG2), which 
can be found in cereals, peanuts, nuts, and spices, and AFs of the 
M-series (AFM1 and AFM2), which are in vivo hydroxylated 
metabolites secreted in milk.

Being secondary metabolites, the production of AFs is 
sophistically regulated and depends upon a wide spectrum of 
biotic and abiotic factors (Reverberi et  al., 2010; Bayram and 
Braus, 2012; Fountain et al., 2014; Keller, 2015; Pfliegler et al., 
2020; Khan et al., 2021), thus making it difficult to prevent entirely. 
Pre-harvest technologies mainly rely on good agricultural 
practices and the field application of non-aflatoxigenic fungal 
strains as biological control agents displacing aflatoxigenic strains 
on crops (Abbas et al., 2017; Agbetiameh et al., 2019; Sarrocco 
et  al., 2019; Dövényi-Nagy et  al., 2020; Peles et  al., 2021; Ola 
et al., 2022).

Once synthesized, AFs persist in food and feed because they 
are highly stable to heat and most common food and feed 
processing techniques. To reduce AFs contamination, various 
decontamination methods can be  applied after harvest, either 
during transport, storage, or processing (Peles et al., 2021; Sipos 
et al., 2021). Considering that commodities can be imported from 
distant geographical areas and stored for long periods before being 
processed, all post-harvest handling stages are important to 
reduce aflatoxin contamination.

Cereals like maize, sorghum, wheat, and barley are amongst 
the most susceptible commodities to be contaminated by AFs. 
They represent the staple food of human and animal diet 
worldwide and will be increasingly required to feed the growing 
population. Nonetheless, cereal trade globalization is threatened 
not only by fungal infection and mycotoxin contamination but 
also by climate change and insecure political scenarios (King et al., 
2017; Sarmast et al., 2021; Hellegers, 2022).

Cereal production is expected to decrease slightly in 
2022/2023, making it an even more precious commodity in the 
following years (FAO, 2022). In Europe, the production in 2021 
has been estimated to be around 270 million tons (FAOstat, 2022) 
and it will be 4% lower due to hot and dry weather conditions, 
prolonged periods of rainfall deficits, and reduced maize output 
caused by the war in Ukraine (FAO, 2022). Besides tighter supplies 
and market uncertainty, rising energy and input prices will also 
contribute to keeping world cereal prices elevated throughout 

2023 (FAO, 2022). To further complicate this scenario, in the near 
future, climate change will significantly modify fungal and 
mycotoxin contamination patterns, and aflatoxin contamination 
of maize will be the main mycotoxin issue in Europe (Moretti 
et al., 2019). Aside from the increased contamination in the fields, 
increased aflatoxin M1 levels (also above the current European 
regulation limit of 50 ng/kg) are also expected in milk and dairy 
(Van der Fels-Klerx et al., 2019).

Nuts and nut products and oilseed are other two important 
AFs susceptible commodities. Nontheless, European production 
of these two commodities is far behind that of cereals, namely 2 
and 27 million tons, respectively (FAOstat, 2022). While nuts are 
widely imported from abroad (e.g., Turkey, United States, Iran, 
Vietnam, China), they remain the most notified product category 
contaminated by AFs in 2021 by the Rapid Alert System for Food 
and Feed (2022). Regarding oilseed production, The EU cultivates 
three major types of oilseed crops; the main three are rape, 
sunflower, and soya. From a safety point of view, they do not 
represent the major oilseed crops to be  contaminated by AFs 
(Einolghozati et al., 2021).Therefore, the set-up and application of 
advanced decontamination are crucial to cope with the challenge 
of climate change, growing population, unstable political 
scenarios, and food security problems, as summarized in Figure 1.

Due to the aflatoxin worldwide concern, over the past 20 years 
a wide variety of decontamination methods have been investigated, 
including physical, chemical, and biological ones. Therefore, this 
review aims to investigate the effects of environmental factors on 
aflatoxin production in view of the climate change to better 
understand how to model and prevent contamination in the field, 
as well as the present-day and novel decontamination techniques 
which can be applied to the in the field and at post-harvest stage. 
Gaps and perspectives of these methods were also critically 
discussed to propose them as a tool to tackle an increased aflatoxin 
risk in Europe.

2. Genetics of aflatoxin 
production

Molecular genetic tools are absolutely needed (i) to decipher 
the function of aflatoxin biosynthetic genes (Amaike and Keller, 
2011; Amare and Keller, 2014; Caceres et al., 2020; Gil-Serna et al., 
2020), (ii) to shed light on the regulatory motifs and networks 
governing this high-complexity process (Yu, 2012; Eom et al., 
2018; Pfannenstiel et al., 2018; Cary et al., 2019; Gil-Serna et al., 
2020; Zhao et  al., 2022), (iii) to track back genetic changes 
resulting in non-aflatoxigenic biological control fungal strains 
(Moore et al., 2009; Chang et al., 2012a; Adhikari et al., 2016; 
Pennerman et al., 2018; Chang, 2022), (iv) to study population 
structure and dynamics of aflatoxigenic molds in agriculture 
(Chang et al. 2019; Lewis et al., 2019; Weaver et al., 2019; Drott 
et al., 2020), (v) to map the mechanism of action of various agents 
interfering with the aflatoxin production by aflatoxigenic molds 
(Hua et al., 2014; Wang et al., 2015; Ren Y. et al., 2020; Safari et al., 

https://doi.org/10.3389/fmicb.2022.1085891
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Loi et al. 10.3389/fmicb.2022.1085891

Frontiers in Microbiology 03 frontiersin.org

2020), and (vi) to develop novel, RNA interference-based, host-
induced AF control technologies (Majumdar et al., 2017; Wu, 
2022). To make genetics and biotechnology-based approaches and 
innovations more effective, we need to intensify basic research 
aiming at the elucidation of the elements of the regulatory network 
that fine-tunes aflatoxin production adequately to the 
environmental stimuli perceived by aflatoxin producer molds.

The organization of the aflatoxin biosynthetic gene cluster and 
the functions of its genes have recently been reviewed in several 
publications (Caceres et al., 2020; Gil-Serna et al., 2020; Khan 
et  al., 2021; Ferrara et  al., 2022), and, therefore, only a short 
recapitulation of our knowledge on the genetic regulation of AF 
biosynthesis is presented here.

The biosynthesis of AFs is a complex, energy-consuming 
process that needs, as a minimum, 27 enzymatic reactions to build 
up these highly complex molecules. Studies on the genetic 
background of AF biosynthesis in A. flavus and A. parasiticus, as 
well as sterigmatocystin production in A. nidulans, led to the 
identification of the AF gene cluster (Yu et  al., 2000, 2004; 
Georgianna and Payne, 2009; Amare and Keller, 2014).

The 75 kbp long AF gene cluster comprises 30 genes and is 
located near these fungi’s telomere of chromosome III. Of the 
enzyme encoding structural genes of the cluster, four genes, aflA, 
aflB, aflC, and hypC, encoding two fatty acid synthase subunits, a 
polyketide synthase, and an oxidase, respectively, are involved in 
building up the precursor, norsoloric acid (NOR) from hexanoate 
units. NOR is converted to versicolorin B (VERB) by a series of 
enzymes encoded by aflD, aflG, aflH, aflI, aflJ, aflK, aflV, and aflW 
genes. Transformation of VERB into versicolorin A (VERA) is 
catalyzed by a cytochrome P-450 monooxygenase, encoded by 
aflL. Five genes (aflM, aflN, aflY, aflX, and aflO) are responsible 
for converting VERA to sterigmatocystin (STER). Finally, STER 
is transformed into AFB1 in several Aspergillus species belonging 
to section Flavi with the aid of enzymes encoded by aflP, aflQ, 
hypB, hypE, and aflE. An additional gene of the cluster (aflT), 

encoding a putative MFS transporter, was found to have no 
significant role in AF secretion (Chang et al., 2004), despite the 
presence of its gene product (AflT) in the aflatoxisomes (Chanda 
et al., 2010).

The central positive regulator of the AF biosynthesis genes is 
aflR (Yu et al., 1996), encoding a Zn(II)2Cys6 transcription factor 
(Shimizu et  al., 2003). The AflR protein, acting as a pathway-
specific transcription factor, has binding sites on promoters of as 
many as 18 afl genes, including its own promoter, indicating 
autoregulation of aflR (Chang et al., 1995). Within the cluster, next 
to aflR, there is another regulatory gene, aflS acting as an enhancer. 
The product of this gene interacts with AflR, and the AflR-AflS 
complex formed in this manner allows a stringent binding to 
promoters of the target genes (Kong et al., 2014).

Not surprisingly, a wide spectrum of RNA interference based 
technologies has been developed and tested in planta to control 
AF production by aflatoxigenic fungi (McDonald et  al., 
2005;Majumdar et al., 2017; Wu, 2022). A frequently targeted gene 
is aflR in both peanut (Arias et al., 2015; Faustinelli et al., 2018; 
Power et  al., 2020) and maize (Masanga et  al., 2015). Other 
approaches targeted either the aflS regulatory gene (Arias et al., 
2015; Power et al., 2020) or AF biosynthetic genes including aflC 
(encoding polyketide synthase; Arias et al., 2015; Thakare et al., 
2017; Power et  al., 2020; Niño-Sánchez et  al., 2021) and aflM 
(coding for versicolorin dehydrogenase; Raruang et al., 2020). It 
is noteworthy that a RNAi-based AF control system 
simultaneously silencing aflR, aflR, aflC, aflep (coding for AF 
efflux pump) and pes1 (encoding a non-ribosomal peptide 
synthase with hypothesized function in cyclopiazonic acid 
biosynthesis) was also constructed and tested in peanut using both 
transgenic and non-transgenic delivery tools (Arias et al., 2015; 
Power et al., 2020). In addition to host induced gene silencing 
strategies (Majumdar et al., 2017; Wu, 2022), exogenous RNAi 
delivery-based, non-transgenic approaches are gaining ground 
including the application of RNAi-triggering dsDNA and dsRNA 

FIGURE 1

Predicted processes in a climate change scenario.
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by gene gun (Power et al., 2020), DsiRNA (Dicer-substrate siRNA) 
after wounding (Faustinelli et al., 2018) and dsRNA by genetically 
engineered bacteria (RNAseIII-null mutant Escherichia coli, both 
living cells and crude whole-cell autolysates; Niño-Sánchez et al., 
2021). Further AF biosynthetic structural genes like aflD 
(encoding an enzyme converting norsolorinic acid to averantin; 
Abdel-Hadi et al., 2011) are likely to be targeted in future RNA 
interference technologies.

In addition to pathway-specific transcription factors, 
secondary metabolite biosynthesis genes are regulated by global 
(or general) transcription factors, too; these transcription factors 
mediate (i) nutritional, (ii) environmental, and (iii) developmental 
signals (Reverberi et al., 2010; Roze et al., 2011; Yin et al., 2012, 
2013; Montibus et al., 2013; Hong et al., 2013a,b; Ferrara et al., 
2022). Such a complex regulatory network helps fungi to react to 
stressors by producing secondary metabolites. For example, AF 
biosynthesis has long been recognized as an essential oxidative 
stress response mechanism in Aspergilli (Roze et al., 2011), and 
AFs are natural scavengers of reactive oxygen species (Finotti 
et al., 2021).

As far as the nutrition-related factors are concerned, CreA and 
AreA are worth mentioning first. CreA, encoded by creA, a 
Cys2His2 zinc finger transcription factor, is the critical player in 
carbon catabolite repression in filamentous fungi. Deletion of creA 
in A. flavus resulted in the loss of AF production (Fasoyin et al., 
2018), indicating a crucial role of this TF in regulating the AF gene 
cluster. Another transcription factor, AreA, a member of the 
GATA transcription factor family and acting as the primary 
regulator of N-utilization, also affects AF biosynthesis. A ΔareA 
strain of A. flavus increased or decreased AF production compared 
to the wild type depending on the N-source of the culture medium 
(Fasoyin et al., 2019). Among nitrogen forms, nitrate inhibits AF 
formation, increases the expression of aflS gene, and reduces the 
expression of other genes involved in AF synthesis (Price et al., 
2005). However, actual AF synthesis is inhibited by a pathway 
other than AF synthesis, which is hypothesized that is associated 
with a change in the redox potential caused by nitrate, which 
affects the formation of the precursor of polyketide synthesis by 
increasing the activity of mannitol dehydrogenase (Niehaus and 
Jiang, 1989).

Simple sugars and acetate stimulate (Shantha and Murthy, 
1981), and intermediates of the tricarboxylic acid cycle inhibit the 
formation of AF (Buchanan and Ayres, 1977; Shantha and Murthy, 
1981). Although, at the same time, carbon sources do not regulate 
specifically the genes in the AF biosynthesis pathway. They affect 
the synthesis of AFs either through the precursors or the cAMP 
signaling pathway (Georgianna and Payne, 2009).

Further studies on the regulatory network fine-tuning the 
carbon and nitrogen metabolisms of aflatoxigenic molds are 
definitely needed because host-induced gene silencing of either 
A. flavus amy1 (encoding alpha-amylase) or alk (coding for 
alkaline protease) significantly reduced growth and AF production 
(Gilbert et al., 2018; Omolehin et al., 2021). Shedding light on the 
elements of this network and their target genes may help us to find 

novel targets for the construction of crops with enhanced AF 
resistance. Importantly, direct targeting of A. flavus by RNAi 
technologies may be more effective than the suppression of the AF 
biosynthetic gene cluster especially in late maturing grain under 
humid conditions (Gressel and Polturak, 2018). Hence, RNA 
interference-based targeting of other important genes maintaining 
fungal growth like spds (coding for spermidine synthase; 
Majumdar et al., 2018) is foreseeable.

Transcription factors involved in responses to environmental 
variables, like pH, oxidative stress, and light, influence AF/STER 
production and transcription of AF genes. PacC, a Cys2His2 zinc 
finger regulator, is the critical player in reacting to pH. An 
A. nidulans mutant with constitutive pacC activity produced 
10-fold less STER than its wild-type parental strain (Keller et al., 
1997). Acidic pH favors AF synthesis through the transcription 
factor PacC, whose binding point is in the promoter of aflR, while 
the inhibitory effect of alkaline pH on AF synthesis is realized 
through pkA (Tilburn et al., 1995; Ehrlich et al., 1999; Shimizu and 
Keller, 2001; Shimizu et al., 2003).

AP-1 and AtfB, bZIP transcription factors, MsnA, a Cys2His2 
zinc finger, and SrrA, a winged helix-turn-helix transcription 
factor, were shown to form a regulatory network to mediate 
oxidative stress response and induce AF biosynthesis in 
A. parasiticus (Hong et al., 2013b). In this fungus, AtfB, by forming 
a heterodimer with AP-1, binds to seven genes of the AF gene 
clusters at the CRE binding sites and induces AF biosynthesis 
(Roze et  al., 2011). Therefore, AtfB silencing brought about a 
remarkable reduction in AF production (Wee et al., 2017). AtfB 
binding and induction of AF production can be initiated by the 
elevation of extra- or intracellular ROS (Roze et al., 2011).

A comprehensive study by Zhao et al. (2022) revealed several 
basic region/leucine zipper motif (bZIPs) transcription factors 
involved in AF production in A. flavus. Ten bZIPs seem to regulate 
AF biosynthesis since gene deletion of the bZIP1, bZIP2, bZIP4, 
bZIP5, atfA, atfB, meaB, and metR reduced AF levels remarkably. 
It is worth noting that the deletion of A. nidulans atfA and 
Fusarium verticillioides FvatfA also resulted in drastically 
decreased mycotoxin, namely sterigmatocystin and fumonisin 
productions in these fungi (Szabó et al., 2020; Kocsis et al., 2022). 
In A. flavus, the elimination of the bZIP transcription factors hapX 
and jlbA decreased AF biosynthesis slightly but significantly (Zhao 
et al., 2022). Furthermore, all 10 bZIPs, except bZIP5, coupled 
with AF production reacted to oxidative stress (Zhao et al., 2022).

The bZIP transcription factor, AflRsmA (restorer of secondary 
metabolism A) is also associated with the AF production in 
A. flavus. The overexpression of AflrsmA increased the AFB1 
production. At the same time, oxidative stress (menadione sodium 
bisulfite and tert-butyl-hydroperoxide) exposed ΔAflRsmA mutant 
showed reduced AF levels compared to the wild type and 
AflRsmAOE strains (Wang et al., 2020). Furthermore, this research 
group identified conserved motifs in promoters of both AF 
biosynthesis genes and stress-response genes, where these 
transcription factors can bind. Interestingly, deletion of Afap1, a 
Saccharomyces cerevisiae Yap1 ortholog bZIP type transcription 
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factor, led to down-regulation of aflM and aflP and up-regulation 
of aflB and aflR, and this contrasting action resulted in a ~ 75% 
decrease of AF production in A. flavus (Guan et al., 2019).

Similar to the regulatory network orchestrating the carbon 
and nitrogen metabolisms of aflatoxigenic fungi, further elements 
of the environmental stress response system and their regulation 
should be revealed and considered as future targets to control the 
growth and AF production of these molds. Actually, there is a 
plethora of literature data demonstrating the efficiency of various 
antioxidants to hinder the AF production by aflatoxigenic fungi 
(Reverberi et al., 2005, 2006; Zjalic et al., 2006; Caceres et al., 2017; 
Zhao et  al., 2018; Xu et  al., 2021). Obviously, a deeper 
understanding of the regulatory elements interweaving the 
pathways responsible for the proper adjustment and co-regulation 
of mycotoxin production and environmental stress response may 
also help us to develop novel technologies for mycotoxin 
contamination control.

The light-responsive Velvet complex regulates secondary 
metabolite genes in a temperature-dependent manner (Lind et al., 
2016). Accordingly, components of this complex (VeA, VelB, 
LaeA) affect AF production. In A. flavus, deletion of laeA resulted 
in the downregulation of aflR, aflS, and aflD, accompanied by loss 
of AF production (Chang et al., 2012b). Whereas, in the ΔveA 
mutants of A. parasiticus, no aflR, aflS, aflC and aflM transcripts 
were observed, and the mutant did not produce the AF precursor, 
versicolorin A (Calvo et al., 2004). VeA of A. flavus regulates not 
only the formation of AFs but also the biosynthesis of 
cyclopiazonic acid and aflatrem (Duran et  al., 2007). 
Concomitantly, VeA is also a key player in the regulation of H2O2 
stress response in A. flavus (Baidya et al., 2014). Interestingly, 
mycovirus-dependent suppression of AF production by A. flavus 
may also be  a result of the interference of mycovirus (PcV) 
degradation products with veA expression (Schmidt, 2009). 
Mycovirus-based technologies to control aflatoxigenic molds can 
be promising but further molecular-level studies are needed in 
this field (Kotta-Loizou and Coutts, 2017).

Lipid synthesis correlates with AF production since the first 
step produces acetyl coenzyme A, which is necessary for forming 
STER and thus AFs (Dutton, 1988). Oxylipins are signal molecules 
derived from fatty acids and play an essential role in regulating 
development, pathogenic processes, and the production of 
secondary metabolites (Tsitsigiannis and Keller, 2006, 2007). 
Genes that encode fatty acid oxygenases (ppoA, ppoB, ppoC) affect 
the expression of brlA and veA genes; the veA gene also regulates 
the brlA gene that affects asexual reproduction, which may have 
an effect that may be  exerted through oxylipins (Tsitsigiannis 
et al., 2005; Calvo, 2008). The effects of ppo genes on aflR can 
be exerted through the PKA or the pathway mediated by the G 
protein (Tsitsigiannis and Keller, 2006).

Finally, development-related transcription factors can also 
regulate AF biosynthesis genes. Home-box proteins (Hbx) control 
basic developmental processes, like conidiogenesis and fruiting 
body development in fungi. Disruption of hbx1 in A. flavus 
resulted in the loss of AF production. Transcriptome analysis 

revealed that Hbx1 is a master regulator, as its deletion affected the 
expression of more than 5,000 genes in the A. flavus genome, 
including down-regulation of aflO, aflP, and aflR (Cary et al., 
2019). NsdC, a Cys2His2 zinc finger and NsdD, a GATA type TF, 
are required for sexual and asexual development in Aspergillus 
spp. and influence AF biosynthesis. In a ΔnsdC mutant of A. flavus, 
transcript levels of aflR increased, but that of aflM and aflP 
decreased, resulting in a loss of AF production (Cary et al., 2012).

Besides their roles in nucleosome positioning and RNA 
polymerase recruiting, the global transcription factors we summed 
up above assist, thus, the AF-producing Aspergilli by 
interconnecting the perception of environmental/developmental 
signals and the fine regulation of the AF biosynthesis genes. 
Future studies will hopefully point at novel targets for the 
development of effective RNA interference-based, host-induced 
plant biotechnological methods to control AF production in 
important crops sensitive to aflatoxigenic molds, possibly even 
in Europe.

3. Environmental factors affecting 
AF production

A proper mapping of environmental factors affecting AF 
production are of paramount importance when good agricultural 
practices and effective storage protocols are adapted, developed, 
and evaluated (Dövényi-Nagy et  al., 2020; Sipos et  al., 2021). 
Monitoring these environmental factors may help experts to 
control AFs in feed and food production chains (Farkas 
et al., 2022).

Not surprisingly, several environmental factors affect the 
biosynthesis of AFs, such as temperature (O’Brian et al., 2007), 
light, pH, carbon sources, and nitrogen sources (Calvo et al., 2002; 
Price et al., 2005).

Water activity (aw) and temperature are crucial environmental 
aspects affecting A. flavus growth and AF production. The effect 
of temperature on AF synthesis is temporary; above the optimal 
temperature required for synthesis, the genes of the AF gene 
cluster are repressed, except for aflR and aflS, the level of which 
remains at a constant value (O’Brian et al., 2007). However, the 
level of the AflR protein is much lower at a higher temperature, 
which can be explained by transcription inhibition of the genes of 
the AF gene cluster and the inactivation of proteins (Liu and 
Chu, 1998).

The aw × temperature connections are related to the ratio of the 
two essential regulatory genes (aflS/aflR). The higher ratio of 
aflS/aflR relate to the higher level of AFs production (Schmidt-
Heydt et al., 2009, 2010; Abdel-Hadi et al., 2010, 2012; Medina 
et  al., 2014). For example, AFB1 production on polished rice 
occurs over a broader range of temperature × aw levels. For fungal 
growth on polished rice, the optimal conditions were aw 0.92–0.96 
and 28–37°C. The maximum amounts of AFB1 were observed at 
33°C and aw 0.96 on polished rice (Lv et al., 2019). Two regulatory 
genes (aflR and aflS) were up-regulated at aw 0.90 (Lv et al., 2019). 
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In addition, the expression of 11 development-related genes 
amplified under 0.99 aw treatment (Zhang et al., 2014).

Moreover, the effect of relating conditions of aw × temperature 
× elevated CO2 had little consequence on fungal growth; they had 
a significant influence on structural aflD and regulatory aflR genes 
and can significantly stimulate the production of AFB1 (Medina 
et al., 2014).

For an A. nomius strain, isolated from Brazil nuts, the ideal 
temperature for growth was 30°C and the best state for expressing 
the aflR, aflD, and aflQ genes. However, maximum production of 
AF B and G occurred at 25°C (Yunes et al., 2020). On the other 
hand, in A. flavus, compared with 37°C, the transcript abundance 
of 30 AFs biosynthesis genes was much higher at 30°C, and most 
genes were up-regulated at both protein and transcription levels 
at 28°C (Bai et al., 2015).

Drought stress has been revealed to stimulate the production 
of reactive oxygen species (ROS) in plant tissues (Cruz de 
Carvalho, 2008). Cells use their antioxidant system to protect 
themselves from reactive oxygen radicals, which can react with 
DNA, proteins and lipids and damage their functions. When the 
balance between antioxidants and reactive oxygen radicals is lost, 
oxidative stress occurs (Apel and Hirt, 2004). Oxidative stress 
stimulates AF synthesis, while antioxidants such as gallic acid 
adversely affect the formation of AF by inhibiting aflM and aflD 
genes (Jayashree and Subramanyam, 2000; Mahoney and 
Molyneux, 2004; Reverberi et al., 2008). Superoxide dismutase 
plays an essential role in the effect of oxidative stress on AF 
formation, which catalyzes the conversion of superoxide into 
hydrogen peroxide and water and inhibits the formation of AF 
(Furukawa and Sakuda, 2019). Enzymes involved in oxidative 
stress presented significantly down-regulated in liquid media and 
up-regulated at 28°C (p ≤ 0.05) in A. flavus (Wang et al., 2019).

A clear understanding of how abiotic factors impact aflatoxin 
contamination is crucial to understand their real impact in new 
geographical locations in the climate change scenario. This 
information can be  integrated in new models which can 
be exploited for early prediction (as described in section “Climatic 
effects and climatic models in Europe”) and pro-active 
intervention. Today, precision agriculture, nanotechnology, 
machine learning, and artificial intelligence can be used to set-up 
an innovative crop management/intervention system with real-
time monitoring and responsiveness, especially in controlled-
environment agriculture and during storage.

4. Climatic effects and climatic 
models in Europe

Naturally, A. flavus is hosted by a wide range of plants, while 
AF production is most common in plant types with higher oil 
content (e.g., maize, hazelnut, and other nuts). The distribution 
and growth of fungi in the soil are altered by geographical areas, 
soil type, soil water retention, climatic conditions (temperature, 
humidity, and rainfall), altitude, landform, type of crop grown, 

rotation, crop, and insect presence (Zhang et  al., 2017). In 
addition, larger population densities were associated with soils 
with a significant organic matter content, abundant nitrate, 
phosphate, potassium, increased pH, and more significant 
electrical conductivity. Fungal spores can be  spread by direct 
contact with the soil, dust-carrying soil particles, or insect vectors 
(Abbas et  al., 2017; Zhang et  al., 2017). Soil (specifically 
agricultural soils), where mould-infected plant residues are often 
present, serves as the main pool of mycotoxigenic fungi (Zhang 
et al., 2017). Therefore, considering mycotoxin concentrations, 
geographical location significantly affects the distribution of AFs. 
Therefore, the risk of a shift in traditional occurrence areas for AFs 
is expected in the World, while the incidence of AF 
is unpredictable.

Interestingly, AF notifications for the RASFF of the European 
Union are very low in Europe (Figure 2), especially for maize, 
compared to the other food sources and other continents, thanks 
to the regulations. The European Union has one of the most 
inclusive and sternest regulations on AF levels, set by the 
commission regulation 1881/2006 (European Commission, 2006) 
and later by its amending supplement 165/2010 (European 
Commission, 2010), that are binding upon the 27 member states 
of the EU. In the current climatic situation, European countries in 
which maize cultivation is expected, i.e., in France, Romania, 
North-East Italy and Hungary (in total reporting for 60% of the 
total production for the 28 EU Member States, FAOStat, 2013), 
show a low chance of AF occurrence (European Commission, 
2007). The European nations trade most of their maize amongst 

FIGURE 2

Severe aflatoxin B1 contamination for the different food and feed 
sources (%) reported in the European Union in 2021 (Rapid Alert 
System for Food and Feed, 2021). The data distribution from the 
2021 and 2020 years was not statistically significantly different, 
but in 2021, the reported cases were twice as much (385) as in 
2020 (165). However, the origin of the aflatoxin contaminated 
products was derived from all over the World. Serious aflatoxin 
contamination was reported only in some percent every year in 
the European Union.
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each other; from the outside, several European nations also import 
maize from Brazil and Argentina and much less from the USA 
(Wu and Guclu, 2012).

Prediction models are an important tool to predict fungal 
occurrence and mycotoxin contamination. Nonetheless, there are 
still open issues, like: (i) keeping prediction accurate in climate 
change scenario, (ii) remodel the impact of cropping systems, (iii) 
consider co-occurring fungi and their ecology changing during 
the growing season, and (iv) multimycotoxin occurrence 
(Camardo Leggieri et al., 2020).

Various models and datasets related to AFs in maize have been 
developed and used, but they have not yet been linked. The EU 
green paper suggested that climate change effects will be regional 
and be either damaging or beneficial depending on geographical 
area (European Commission, 2007).

A model reflected a low to a medium probability of AF 
contamination under the +2°C increase. The climatic changes in 
Southern Europe are predicted to reach an increase of 4–5°C with 
more extended drought periods, causing increasing desertification 
and decreasing crop yields (Solomon et  al., 2007). Serious 
contamination with AF was predicted in some southern European 
countries like Italy or Bulgaria (Battilani et al., 2016). However, 
maize production is marginal in these areas. Changes of +2.5–
3.5°C with dryer and hotter summers are predicted for Western 
and Atlantic European areas. For the Central European countries, 
an increase of 3–4°C, higher rainfall and floods were forecasted, 
and longer growing periods would benefit crop yields. Northern 
Europe expects a mean temperature increase of 3–4.5°C and a 
significant (30–40%) increase in precipitation. It may lead to 
increases in crop yields and perhaps new crop cultivation 
techniques and changes in crop successions (European 
Commission, 2007; Solomon et al., 2007). The +5°C increase was 
predicted to lead to more expansive contaminated areas in the 
European domain. However, in southern Europe, AF increase was 
predicted to be limited since conditions would be less suitable for 
A. flavus growth (Battilani et  al., 2016). In 2022, the 
Intergovernmental Panel on Climate Change reported that the 
global warming can reach 1.5°C in the near-term (2040) that 
would cause unavoidable increases in multiple climate hazards 
and present multiple risks to ecosystems and humans (very high 
confidence. The frequency of extreme agricultural droughts is 
projected to be  150 to 200% more likely at 2°C for the 
Mediterraneum (IPCC, 2022).

5. Advanced mycotoxin reduction 
with biological control

Biological control is regarded as one of the most promising 
solutions to counteract Aspergillus spp. growth in the field. 
Biological control is achieved by multiple means: (i) parasitism 
(deriving nutrients from the host); competition (for space and 
nutrients), and antibiosis (production of inhibitory metabolites 
and enzymes). The antagonistic behavior may derive from more 

than one mechanism, depending on the species involved and on 
the environmental conditions (Calistru et al., 1997). So far many 
species with Aspergillus inhibitory activity have been studied; 
atoxigenic strains and Trichoderma spp. are the most used and 
effective microorganisms, although bacteria and yeasts showed 
antagonistic and AFs reducing activities.

5.1. Atoxigenic Aspergillus strains

Atoxigenic Aspergillus strains are able to inhibit toxigenic 
fungi growth by competitive exclusion and to reduce mycotoxin 
production thanks to the production of organic volatile 
compounds (Moore et al., 2021).Atoxigenic Aspergilli are not able 
to produce AFs due to the partial or total deletion in AFs 
biosynthetic gene cluster (Moore, 2022) and when applied in the 
field, they can displace toxigenic strains and significantly lower 
both infection rate and aflatoxin production by native Aspergilli 
(Mauro et  al., 2018; Moral et  al., 2020). Different commercial 
products based on single or a combination of atoxigenic strains 
exist. In the US, Aspergillus flavus AF36, developed by USDA-
ARS, and Afla-Guard® (A.flavus NRRL21882), developed by 
Syngenta, are commercialized. Another success story is Aflasafe® 
(developed by USDA-ARS, IITA, M&B Gates Foundations et al.), 
composed by four atoxigenic isolates belonging to distinct 
vegetative compatibility groups, native to the target nation 
(Bandyopadhyay et al., 2016). Aflasafe® was authorized in Nigeria, 
The Gambia, Senegal, Kenia, Burkina Faso, Ghana, Tanzania, and 
approved in Malawi, Zambia, and Mozambique.

Since 2003, several non-compliant, AF contaminated maize 
has been produced in Europe due to extreme temperature and dry 
weather (Mauro et al., 2013; Kos et al., 2018). This prompted the 
search for atoxigenic strains to be  used as biocontrol agents, 
leading to the development of AF-X1™ (commercialized by 
Corteva Agriscience), a devitalised sorghum, coated with spores 
of A. flavus MUCL54911 (Mauro et al., 2018). To date, in Italy 
AF-X1™ has been granted a temporary authorization of 120 days 
that has to be renewed every year until full authorization as plant 
protection product from the European commission is granted.

Indeed, despite the high level of efficacy proved in several field 
trials and the outstanding success in low-income countries (>90% 
of AFB1 reduction), there are still concerns regarding the 
application of these biocontrol agents in Europe. Data is missing 
on the viability and population dynamics in water/sediment, its 
persistence and multiplication in natural environments. Several 
studies indicate that atoxigenic strains can persist year after year 
and to reduce aflatoxin contamination even if they are not 
re-applied (Moore, 2022). The genetic stability of these strains, i.e., 
if they still are atoxigenic generation after generation, still must 
be  assessed. Additionally, the dietary and non-dietary risk 
assessments, and the ecotoxicological risk assessment (the impact 
in terms of pathogenicity and infectivity on non-target organisms, 
humans included) could not be finalized either due to lack of data 
(EFSA, 2022).
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A concerning issue regards the potential promotion of 
fumonisin-producing strains and the possibility that non 
aflatoxigenic strains produce other mycotoxins in the field. 
Nonetheless, this hypothesis has not been yet verified (Ortega-
Beltran et al., 2021).

5.2. Trichoderma spp.

Trichoderma spp. are among the most diffused biocontrol 
agents worldwide. They are commonly found in soil and root 
ecosystems, and elicit their biocontrol activities on a wide variety 
of plant pathogens through mycoparasitism, competition, and 
antibiosis. In fact, it is a fast growing, metabolically flexible 
species, able to parasitize other fungi and to produce a wide range 
of antibiotic substances (Ren et al., 2022).

The active substances produced by Trichoderma have shown 
to reduce Aspergillus growth and subsequently AFs production, or 
possibly to degrade AFs rather than to inhibit their synthesis 
(Gamal et al., 2022; Ren et al., 2022).

Among the extracellular cell wall degrading enzymes 
produced by Trichoderma spp., peroxidase has been shown to 
degrade AFs (Dini et al., 2022) and inhibit hyphal growth, while 
protease P6281 showed inhibitory activity on conidial germination 
and mycelial growth (Deng et al., 2018).

Trichoderma is presently marketed as active ingredients of 
more than 250 products worldwide, including bio-pesticides, 
biofertilizers, growth enhancers and stimulants of natural 
resistance (Woo et al., 2014).

5.3. Bacteria and yeasts

Among bacteria, Bacillus, Pseudomonas, Lactobacillus, 
Streptomyces are the main genera with inhibitory activity towards 
Aspergillus spp. mycelial growth, conidial germination, and AFs 
production by competition and antibiosis. A wide range of 
inhibitory compounds have been identified among enzymes 
(chitinases, proteases, and glucanases), peptides, organic acids 
(lactiv and fatty acids) and miscellaneous alicyclic and aromatic 
compounds (Ren X. et al., 2020).

Different Saccharomyces and non- Saccharomyces yeasts (e.g., 
a Saccharomyces, Aureobasidium, Pichia, Metschnikowia, Dekkera 
(van der Walt), and Rhodotorula genera) have been studied in 
biological control, especially for Aspergillus infection in grapes (Di 
Canito et al., 2021). Also yeasts act via competition and antibiosis, 
the latter via production of lytic enzymes, peptides, toxic 
compounds, and volatile organic compounds (Ren et al., 2019).

Bacteria and yeast-based commercial biocontrol products are 
marketed in Europe after approval at EU level and authorization 
by Member States. Although they have been proven in several 
papers to be active against Aspergillus, they may be specifically 
registered to be used against other plant pathogens, like Botrytis 
cinerea, depending on the country.

6. Advanced decontamination 
techniques to minimize aflatoxin 
risk

The growing threat of aflatoxicosis requests novel 
decontamination measures to ensure food safety and food 
security. Decontamination techniques can be divided into three 
categories: (i) chemical, (ii) physical, and (iii) biological, according 
to the mechanism involved in the reduction or degradation.

Despite the enormous amount of literature published in the 
last years, there is currently a limited number of valid methods 
that have been authorized in Europe for aflatoxin reduction. 
Table  1 summarizes the main characteristics, advantages, and 
disadvantages of aflatoxin advanced decontamination techniques, 
which will be further described in the following sections.

6.1. Present-day methods: Mycotoxin 
detoxifying agents

Mycotoxin detoxifying agents (MDAs) were defined by the 
EFSA (European Food Safety Authority) et  al. (2022) as 
“substances that can suppress or reduce the absorption, promote 
the excretion of mycotoxins or modify their mode of action” 
(Boudergue et al., 2019). Therefore, two main categories were 
identified, namely adsorbing and biotransforming agents. 
Adsorbing agents reduce mycotoxin bioavailability and uptake in 
living organisms by physically binding to the toxin, while 
biotransforming agents degrade mycotoxins into non-toxic 
metabolites (Boudergue et al., 2019).

From a regulatory point of view, Commission Regulation (EC 
1831/2003; European Commission, 2003) introduced the category 
of technical additives intended to “suppress or reduce the 
absorption, promote the excretion of mycotoxins or modify their 
mode of action.” Nonetheless, detoxification processes can 
be  applied in Europe to products intended for animal feed 
(Commission Regulation 786/2015; European Commission, 2015) 
if it is effective, characterized, does not result in harmful residues 
of both the substance/microorganism/enzyme used to detoxify 
and the toxin, and does not adversely affect the characteristics and 
the nature of the feed. This implies that a safety and efficacy 
assessment must be carried out before a method can be proposed 
and commercialized. Aside from these requirements, the cost of 
such a method must be considered, especially when treating a 
low-cost commodity, like, for example, maize for feed.

6.1.1. Adsorbents
Adsorbents may be  silica-based inorganic compounds or 

carbon-based organic polymers and can be  used to sequester 
mycotoxins in feed or the gut of feedstock. Commercially available 
inorganic adsorbents are composed of aluminosilicates, such as 
bentonite, montmorillonite, zeolite, and hydrated sodium calcium 
aluminosilicates (HSCAS), and they can bind the β-keto-lactone or 
bilactone system of AFs through the uncoordinated metal ions in the 
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mineral (Čolović et  al., 2019). Carbon-based organic polymers 
include yeast cell wall and glucomannan, composed of lipids, 
proteins, polysaccharides, glucans and mannans. Being chemically 
and physically diverse compounds, they bind AFB1 through different 
types of non-covalent interactions, such as hydrogen bonds, and 
ionic or hydrophobic interactions (Kolawole et al., 2019).

The adsorption capability depends on the charge distribution, 
surface area, and pore size of the material. It may also occur within 
the layers of the adsorbent, thus increasing its binding capacity 
(Zhu et  al., 2016). Adsorbents are widely commercialized as 
technical additives and proven to reduce the detrimental effects of 
AFs ingestion.

Despite being incredibly effective in binding AFB1, adsorbents 
display several disadvantages, like the unspecific binding to micro 
and macronutrients, veterinary medicinal products and additives, 
and the narrow spectrum of action towards multiple mycotoxins. 
To overcome this issue, research focuses on developing innovative 
hybrid adsorbents which combine the physical properties and 
binding capacity of different materials (Ma, 2019). Nano-
adsorbents are a hot research topic because they have improved 
selectivity, sensitivity, and binding area. Graphene derivatives and 
clay minerals are the most promising materials because of their 
efficacy and lower cost. Nonetheless, large-scale production and 

commercialization are limited due to scale-up difficulties, high 
cost, and lack of long-term toxicity studies (Song and Qin, 2022).

Several recent papers investigated the potential of probiotics 
in AFs binding and, to a less extent, degradation, with regards to 
Lactobacillus spp., Lactocaseibacillus spp., Streptococcus spp., and 
Saccharomyces cerevisiae. The peptidoglycans and other cell wall 
polysaccharides are responsible of binding AFs. They show great 
potential even for a possible food application, considering their 
Qualified Presumption of Safety (QPS) status (Abdolmaleki 
et al., 2022).

6.1.2. Microorganisms
Microbial detoxification of mycotoxins has been known since 

a very long time. The evidence that mycotoxins do not accumulate 
in agricultural soil and that can be reduced in some fermented 
foods prompted very productive research on microorganisms able 
to degrade mycotoxins and, consequently, on enzymes able to 
perform such degradation (Zhu et  al., 2017). The isolation of 
microorganisms is often performed from contaminated 
environments, and followed by an enrichment step, in which the 
microorganism is grown in specific selective media which contain 
restricted carbon sources and a high level of 
mycotoxin contamination.

TABLE 1 Mode of action, advantages, and disadvantage of aflatoxin decontamination techniques.

Method Mode of action Advantages Disadvantages

Adsorbents Adsorption Low level of inclusion; active in the intestinal tract of 

animals and in feed; functionalization allows the 

binding towards different toxins.

Unspecific binding of nutrients, medicinal 

drugs, vitamins etc.

Microorganisms Adsorption and biotransformation Work through two modes of action; Multistep 

processes may be performed; multimycotoxin activity 

is possible; Inexpensive.

Impact on food matrix may be relevant; 

production of multiple (undesired) 

metabolites; not applicable to all matrices.

Enzymes Biotransformation Minor impact on food matrix; Specific; multistep 

processes may not be performed by single enzymes; 

Multimycotoxin activity is unlikely.

Expensive; formulation is needed to ensure 

activity in harsh environments/in vivo; lack 

of knowledge on residual toxicity of 

degradation products.

Ultraviolet irradiation Biotransformation Effective using mild operational conditions, low cost, 

high operability at industrial scale; already in use for 

surface sanitization in food industry.

low penetration in solids and in turbid 

liquids; lack of knowledge on residual 

toxicity of degradation products.

Magnetic nanoparticles Adsorption and biotransformation Work through two modes of action; easy recovery; can 

be designed/functionalized for multimycotoxin binding 

activity.

lack of knowledge on the effects on food/

feed matrices; residual toxicity of 

degradation products and of magnetic 

particles.

Plasma treatment Biotransformation Also inactivates fungal growth and mycotoxin 

production.

High cost of equipment; low penetration in 

solids and in turbid liquids; lack of 

knowledge on the effects on food/feed 

matrices; lack of knowledge on residual 

toxicity of degradation products.

Nanozymes Adsorption and biotransformation Work through two modes of action; high efficiency, 

stability, and reusability

lack of knowledge on the effects on food/

feed matrices; lack of knowledge on 

residual toxicity of degradation products.
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Microorganisms can reduce mycotoxin contamination by two 
different mechanisms, namely adsorption to cell wall, as discussed 
in Section “Atoxigenic Aspergillus strains,” and biotransformation. 
Biotransformation of AFs can be performed by different genera of 
filamentous fungi (Pleurotus, Armillariella, Armoracia, Trametes, 
Rhizopus, Trichoderma, Clonostachys, Cladosporium, Aspergillus), 
yeasts (Saccharomyces, Pichia, Candida, Kluyveromyces, Yarrowia, 
Rhodotorula, Rhodosporidium), and bacteria (Bacillus, 
Metschnikowia, Komagataella, Streptomyces, Rhodococcus, 
Pseudomonas, Pediococcus, Lactiplantibacillus, Lactiplantibacillus, 
Enterobacter, Cupriavidus, Brevibacterium) (Piotrowska, 2021; 
Nahle et al., 2022).

Currently, two commercial products based on living 
microorganisms have been released onto the market. A novel 
genus, formerly known as Eubacterium, belonging to the 
Coriobacteriaceae family (Biomin® BBSH® 797, DSM 11798) 
produces de-epoxidases able to detoxify trichothecenes, and 
Trichosporon mycotoxinivorans, a non-pathogenic yeast, produces 
peptidases able to detoxify ochratoxin A. However, so far, there is 
not any valid, commercially available microorganism-based 
solution to decontaminate AFs in feed.

Using whole microbial cells instead of the isolated enzyme has 
the advantage of being low-cost and potentially more effective. A 
single organism can produce enzymes able to degrade different 
toxins, or to perform multi step reactions. Indeed, as described by 
Heinl et al. (2010), fumonisin degradation can be performed by the 
consecutive action of a carboxylesterase and an aminotransferase. 
On the other hand, the production of degrading enzymes by 
microorganism may be difficult to standardize and to adjust to the 
level of contamination. Other enzymes and metabolites can 
be produced and their effect on the properties of the matrix might 
be difficult to predict. The only exception is represented by matrices 
specifically intended to be fermented, like silage, or by-products 
which can be fermented and used as ingredients in feeds, like spent 
grains or distilled dried grains with solubles (DGGS). For these 
reasons, the use of isolated enzymes represents a more convenient, 
though expensive option.

6.1.3. Enzymes
A wide variety of enzymes have been identified and 

characterized for their mycotoxin degrading capabilities in the last 
years (Loi et al., 2017; Wang et al., 2022).

So far only two enzyme-based commercial products have 
been released onto the European market. Fumzyme® by DSM is 
a fumonisin esterase capable of degrading fumonisin B1 to a 
non-toxic compound, which has been recently approved for use 
in all animal species (EFSA Panel on Additives, and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2020; 
Regulation EU, 2021/363). ZENzyme® by DSM is a hydrolase able 
to detoxify zearalenone, recently approved for all terrestrial 
animal species (EFSA Panel on Additives, and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2022).

There are no other successful examples, especially for AFs. 
Despite the many publications on AFs degradation by enzymes 
(Loi et al., 2016, 2020a; Yang et al., 2021), currently there are no 

commercial options onto the market. Most of the literature focuses 
on in vitro AFs degradation, lacks data on degradation products, 
and toxicity assessments.

Most AFs degrading enzymes reported in literature fall into the 
category of oxidoreductases, like laccases, peroxidase, or the 
so-called “AF oxidases” (Loi et al., 2017; Guan et al., 2021; Kumar 
et al., 2022). AF’s structure is highly stable and requires a strong 
oxidation to be degraded. These enzymes are incredibly versatile, 
yet unspecific. This complicates to study the mechanism, kinetics, 
degradation products, and toxicity of the compounds resulting 
from the reaction. AFs are metabolized in in vivo by endogenous 
oxidases, which activate AFB1 to the mutagenic 8,9-epoxyAFB1. 
This is performed by specific liver cytochromes P450 isoforms 
(CYP1A2, 2A6, and 2A13). Nonetheless, unspecific oxidation 
might also result in the generation of AFQ1, a less toxic compound, 
with other specific cytochrome isoforms (CYP3A4, 1A2, 3A7). 
Interestingly, it has been demonstrated that peroxidases and 
laccase-like enzymes can detoxify AFB1 to AFQ1 and do not 
activate the toxin to epoxide (Loi et al., 2020b; Qin et al., 2021). 
Other degradation mechanisms have been hypothesized, including 
the nucleophilic attack on the lactone and the furan rings, leading 
to their opening (Kumar et al., 2022). Although the enzymatic 
reduction has always been referred to be specific, this is not true 
for these enzymes. Their capability of degrading AFs relies on their 
high oxidative capacity, which is not restricted to AFs as substrates. 
Laccases and peroxidases also work in combination with redox 
mediators, which broaden even more the substrate spectrum of 
these enzymes. Indeed, when studied in protein and carbohydrate-
rich foods, these enzymes have been shown to catalyze the 
formation of crosslinks and deeply modify the nutritional, 
technological, and rheological properties of foods (Isaschar-Ovdat 
and Fishman, 2018). In some cases, the modification resulted in an 
improvement of the nutritional (Loi et al., 2018) and technological 
properties (Loi et al., 2020a,b) of the food, therefore a careful case 
by case evaluation is necessary to effectively apply these enzymes.

Stability and activity in real matrices are challenges for the 
enzymes, and structure-based engineering has been shown to 
dramatically improve enzyme performance (Wang et al., 2022). 
The cost of enzyme production is another important hustle to 
overcome. Recombinant production is an effective strategy to 
increase production yield and lower costs.

6.2. Innovative methods

6.2.1. Ultraviolet irradiation
The use of ultraviolet radiation (UV) proved to be an effective 

physical method to reduce contaminants and microorganisms 
through photochemical degradation and DNA damage, 
respectively (Sun et  al., 2019). Ultraviolet radiation (UV) is a 
non-ionized radiation, with wavelength ranges between 100 and 
400 nm. UV light spectrum is divided UV-A (315–400 nm), UV-B 
(280–315 nm), UV-C (200–280 nm), and UV-V (100–200 nm) 
(Rifna et al., 2019) and may be generated by solar radiation, UV 
lamps, or even Light Emitting Diodes (LEDs). LEDs show unique 
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advantages, especially regarding the lack of radiant heat and can 
be easily applied in refrigerated storage (Loi et al., 2021). Due to 
its antibacterial properties, it finds application in the food industry 
to reduce the microbial load in air and water or on the surface of 
fresh products like fish, egg, chicken, liquid food, milk, fruit juices, 
or cider (Akhila et al., 2021). Two different mechanisms have been 
described in UV irradiation mediated degradation of 
contaminants: photolysis and photocatalysis. In the first case, 
degradation is due to the absorption of electromagnetic radiation, 
while in the latter, a photocatalyst (metal oxide, metal 
chalcogenide, or carbon-based material) is used to enhance 
degradation: TiO2 and ZnO are among the most used catalysts.

Photolysis occurs when reactant molecules absorb photons; 
electrons are excited to a high energy state, and when energy is 
released the chemical structure of the molecule is altered. The 
wavelength of UV radiation is inversely proportional to photon 
energy. Therefore, UV-C radiation has shown the most promising 
effects for microbial and mycotoxins decontamination (Shen and 
Singh, 2021).

UV light can also be given in a concentrated form, so that 
intense short bursts (pulses) have more penetration capacity. This 
technology is therefore called “pulsed UV.”

Aflatoxins are photosensitive and may be degraded by either 
photolysis or photocatalysis. AFB1 photocatalytic degradation is 
supposed to occur by direct oxidization of hydroxyl free radicals 
(•OH), H+, and other oxidative species generated by UV/
photocatalyst. UV treatment leads to profound modifications in 
the chemical structure of AFB1, which preferentially start from the 
double bond on the bifuran moiety. Other degradation pathways 
involve the cycloaddition reaction at the furan ring and lactone 
ring, followed by further structure rearrangements (Sun et al., 
2019; Murugesan et al., 2021; Song et al., 2022).

UV treatment has been employed for mycotoxins 
degradation in food commodities, such as oils, milk, wheat, 
and peanut. UV photocatalysis showed several limitations 
when applied to food, such as the oxidation of valuable 
nutritional components and low penetration in solids and 
turbid liquids (Shen and Singh, 2022). UV photolysis/
photocatalysis is considered as an advanced oxidation method 
with significant advantages: no secondary pollution, easy and 
mild operational conditions, low cost, operability, and 
applicability in the food industry (Shen and Singh, 2022). For 
these reasons, it has been employed with success for the 
degradation of organic pollutants in the wastewater and air 
environment. Nonetheless, due to its oxidative nature, a 
careful evaluation of the detrimental effect on food in terms 
of sensory and nutritional profiles and toxin residues must 
be performed to achieve a satisfactory application. Scale-up of 
the technology for bulk-level applications, sustainability, and 
reusability of photocatalysts are important features that 
deserve further study (Magzoub et al., 2019).

6.2.2. Magnetic nanoparticles
Magnetic nanoparticles are small particles (less than 100 nm) 

made up of pure metals, metal alloys and metal oxides which have 

emerged as excellent adsorbents, due to their unique structural 
advantages, large surface area, tunable surface functionalities, and 
easy recovery with external magnetic fields (Horky et al., 2018).

Iron and zinc oxides, silver, copper, or selenium 
nanoparticles are gaining massive attention in mycotoxin 
research because of their effective binding capacity in 
agricultural feedstuff and foods. Nanoparticles can 
be functionalized to enhance mycotoxin binding capacity, to 
provide binding affinity towards various types of mycotoxins, or 
even to immobilize enzymes, cells (Duishemambet Kyzy et al., 
2022) or build magnetic-propelled yeast cell robots (Lu et al., 
2021) able to reduce mycotoxin contamination. AFB1 
degradation has been studied using iron oxide nanoparticles in 
vitro and in edible oils magnetic graphene composite. The main 
issue for the practical use such material is the gap in the toxicity 
evaluation and in data collection to set safety limits (Malhotra 
et al., 2020).

6.2.3. Plasma treatment
Plasma is an ionized gas that generates several reactive 

charged and neutral species, including photons, positive and 
negative ions, and oxygen and nitrogen reactive species (Mandal 
et al., 2018). It can be divided into thermal and non-thermal (cold) 
plasma, depending on the type of gas generation methods, and 
working temperature. Cold plasma works at around room 
temperature (30–60°C), and for this reason, it finds multiple 
applications in sterilization, inactivation, decontamination, and 
disinfection in the food industry. The reactive species generated 
by the cold plasma are highly active oxidants.

The capability of cold plasma to inactivate fungal growth and 
mycotoxin production has been well documented. Nonetheless, 
recently some studies have also investigated the capability of 
degrading mycotoxins (Hojnik et al., 2021; Wu et al., 2021). The 
degradation mechanism has been recently unraveled: oxidative 
degradation of AFB1 occurred via the electrophilic addition of 
water on C8 and formation of AFB2a or H-atom abstraction from 
the bonds C–H at the 8 and 9 positions. These reactions lead to 
the opening of the lactone and terminal furan ring; these unstable 
intermediates undergo further degradation (Hojnik et al., 2021; Li 
et al., 2022).

Plasma technology is at its very first beginning, and there are 
substantial limitations to its concrete application. Suitable plasma 
equipment is still at the laboratory stage and mainly designed for 
other applications besides food. The process still needs 
standardization and improvement to overcome the low 
penetration capacity (Wu et al., 2021). Finally, the effects on food 
matrices have been poorly studied, and further research is needed 
to propose this technology as an AF decontamination method in 
food and feed.

6.2.4. Nanozymes
Nanozymes are inorganic nanoparticles with enzyme-like 

properties in redox reactions. They combine the properties of 
nanomaterials and oxidases in a more stable and efficient system. 
Nanozymes with laccase and peroxidase-like activities were 
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developed for contaminant removal, including AFB1 (Zhang et al., 
2020; Guo et  al., 2021; Wei et  al., 2022). Nanozyme show also 
adsorptive characteristics due to the hierarchical porous structure 
(Wu et al., 2020; Ma et al., 2021; Pérez-Gómez et al., 2022) and can 
combine filtration, adsorption, and catalysis in a multifunctional 
removal process (Ren et al., 2019). These studies show that these 
innovative materials possess high efficiency (up to 96%), stability, 
and reusability (up to 5 cycles). Few authors investigated the 
effectiveness on real matrices (Ma et al., 2021; Wei et al., 2022) and 
the toxicity of both nanozyme and degradation products (Wei et al., 
2022). These data are promising, as high removal rates were obtained 
in vegetable oils, with little impact on their quality. In the study 
conducted by Wei et al. (2022), the stability of the metal part was 
assessed to verify that no metal component leaked into the food.

Even though preliminary LC–MS/MS data suggest that less 
toxic compounds could be  generated by nanozyme catalysis, 
additional research is needed to further characterize these 
products and confirm that they are less toxic. On the other hand, 
there is no data on their use in solid, low-water content materials 
like grains and nuts, which would represent the most important 
and useful application for AFs removal.

6.3. Gaps and main limitations of 
postharvest decontamination techniques

Despite the technical obstacles, there are several steps which 
must be considered for a successful development of a new post-
harvest reduction method.

A mandatory prerequisite to research for a new product and 
invest in its commercial application is that there is a sufficient need, 
an end-user, and an economic benefit for both the producer and 
the final customer. Even if aflatoxin threat is per se a sufficient 
reason to motivate the research and development of new post-
harvest reduction methods, the low perceived risk of incurring 
aflatoxicosis, the low cost of the raw material and the possibility to 
downgrade or divert the material to countries with less stringent 
regulation, might slow the process of developing new postharvest 
methods. A close partnership between research and companies is 
mandatory to overcome technical and economical gaps between 
research and practical application.

So far, the cost-effectiveness and technology readiness level 
(TRL) of innovative postharvest methods are weak points (Marshall 
et al., 2020). Some of the innovative technologies discussed in this 
review might be  already in use and commercially available for 
different applications; nonetheless, they have low TRLs (3–5) if 
we consider mycotoxin reduction application (Marshall et al., 2020).

Large-scale production and the impact of such methods in 
actual application must be  assessed (Ortega-Beltran and 
Bandyopadhyay, 2021). Another critical point is that regulatory 
approval through a dossier submission to EFSA must be obtained. 
Nonetheless, the biggest obstacle is still represented by the 
regulatory gap that hinders the application of such methods to 
food matrices.

7. Conclusion

AFs contamination is becoming an emerging risk in 
European countries and requires the implementation of novel 
post-harvest methods. Due to climate change and growing 
populations, environmental factors affecting mycotoxins 
production are also altering. This leads to a change in the 
distribution and growth of fungi in the soil which is difficult to 
predict and prevent.

AFs are among the most difficult toxin to degrade, and 
effective degradation only occurs when strong oxidants are used, 
irrespectively of their nature (physical or biological methods) and 
origin. Adsorption, on the other hand, can be  used for AFs 
removal and commercial solutions exist for feed use. The 
toxicological impact and detrimental effects on food matrices still 
need to be deeply investigated for new technologies.

Adopting an integrated pre- and post-harvest approach, 
possibly using different reduction techniques remains the most 
effective way to counteract AF risk. None of the strategies can 
completely prevent or reduce AFs contamination or can be used 
as a general all-purpose decontamination method. Future research 
is needed to overcome gaps and limitations, possibly in close 
connection with industries and other stakeholders, to finally apply 
these novel methods at the industrial level.
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